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Abstract

Partial MaxSAT (PMS) is a generalization to SAT and
MaxSAT. Many real world problems can be encoded
into PMS in a more natural and compact way than
SAT and MaxSAT. In this paper, we propose new ideas
for local search for PMS, which mainly rely on the
distinction between hard and soft clauses. We use these
ideas to develop a local search PMS algorithm called
Dist. Experimental results on PMS benchmarks from
MaxSAT Evaluation 2013 show that Dist significantly
outperforms state-of-the-art PMS algorithms, including
both local search algorithms and complete ones, on
random and crafted benchmarks. For the industrial
benchmark, Dist dramatically outperforms previous lo-
cal search algorithms and is comparable with complete
algorithms.

Introduction
The maximum satisfiability problem (MaxSAT) is the op-
timization version of the satisfiability problem (SAT) which
consists in finding an assignment that maximizes the number
of satisfied clauses. A significant extension of MaxSAT
is the Partial MaxSAT (PMS) problem, in which clauses
are divided into hard and soft and the goal is to find an
assignment that satisfies all hard clauses and the maximum
number of soft clauses.

Combinatorial problems containing hard and soft con-
straints are very common in real world situations. PMS al-
lows to encode such problems in a more natural and compact
way than SAT and MaxSAT. Applications of PMS include
network routing (Jiang, Kautz, and Selman 1995), schedul-
ing problems (Thornton and Sattar 1998), timetabling prob-
lems (Cha et al. 1997), combinatorial auctions, and FPGA
routing (Fu and Malik 2006), etc. Moreover, PMS is partic-
ularly interesting from an algorithmic point of view because
the algorithms can exploit the distinction between hard and
soft constraints. Such a structural feature has a great impact
on the performance of algorithms.

PMS (as with MaxSAT) is an NP-hard problem, and prac-
tical algorithms for this problem mainly fall into two types:
complete algorithms and incomplete algorithms. Complete
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algorithms guarantee the optimality of the solutions they
find, but may fail to find a good solution within reasonable
time for large instances. Incomplete algorithms, mainly
including local search algorithms, cannot guarantee the
optimality of their solutions, but they can find optimal
or near-optimal solutions within reasonable time, and thus
are particularly useful in real world applications where the
requirement is to find a good approximate solution quickly.

Related Works
There are numerous complete algorithms for solving PMS.
A large family of complete PMS algorithms employ a
branch and bound algorithm scheme (Li, Manyà, and Planes
2007; Lin, Su, and Li 2008; Heras, Larrosa, and Oliveras
2008; Li et al. 2009; Davies, Cho, and Bacchus 2010).
Another large family of complete PMS algorithms are based
on iteratively calling a SAT solver (Fu and Malik 2006;
Berre and Parrain 2010; Koshimura et al. 2012; Ansótegui,
Bonet, and Levy 2013; Martins, Manquinho, and Lynce
2013; Morgado et al. 2013). Some other approaches reduce
PMS into a well-known optimization problem and use
an off-the-shelf solver for such a problem. A successful
example of such approaches is to reduce PMS into Integer
Linear Program (ILP) and solve the instance by a Mixed
Integer Programming (MIP) solver (Ansótegui and Gabàs
2013).

Local search solvers for weighted MaxSAT can be used to
solve PMS, as PMS can be encoded into weighted MaxSAT,
by setting the weight of each soft clause as 1 and that of
each hard clause as the number of soft clauses plus 1. There
have been numerous works on local search for MaxSAT, and
a survey can be found in (Hoos and Stützle 2005). Also,
local search techniques for SAT can be applied to MaxSAT.
Most earlier successful local search algorithms for SAT have
been extended for approximating MaxSAT in the UBCSAT
system (Tompkins and Hoos 2004). Recently, a local search
MaxSAT algorithm called CCLS won four categories in the
incomplete track of MaxSAT Evaluation 2013, thanks to the
configuration checking strategy (Cai, Su, and Sattar 2011),
which has shown success in SAT solving (Cai and Su 2013).
However, local search MaxSAT solvers do not show good
performance on PMS instances, especially on non-random
ones, when compared to complete solvers.

There are also efforts devoted to specialized local search
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algorithms for PMS. Unlike the situation of MaxSAT, local
search algorithms for PMS do not benefit that much from
the techniques for SAT, mainly due to its special features.
To develop effective local search PMS algorithms, it is
necessary to exploit the distinction between hard and soft
clauses. One of the earliest works in this line is a weighted
version of WalkSAT (Jiang, Kautz, and Selman 1995),
which also tackles PMS as weighted MaxSAT (with the
encoding mentioned above), but prefers to flip variables in
falsified hard clauses. Afterwards, Cha et. al. observed that
the larger the weight differential between hard clauses and
soft clauses, the slower the search is (Cha et al. 1997). This
insight has led to an algorithm in which the hard clause
weight is set to a hand-tuned optimal level (rather than
simply set to the number of soft clauses plus 1) (Cha et
al. 1997). This was further improved by Thornton et. al.
by maintaining a dynamic weight differential between hard
and soft clauses (Thornton and Sattar 1998; Thornton et
al. 2002), resulting in the TWO-LEVEL algorithm. Exper-
imental results in (Thornton and Sattar 1998) showed the
superiority of dynamic weighting strategies over the fixed
weighting strategy in (Cha et al. 1997).

Main Contributions and Structure of the Paper
In this work, we propose new ideas for local search for PMS.
Based on these ideas, we develop a local search algorithm
dubbed Dist, as it makes good use of Distinctions between
hard and soft clauses.

We propose a clause weighting scheme which only works
on hard clauses. Moreover, unlike previous PMS local
search algorithms, we separate hard score and soft score,
and design a variable selection heuristic accordingly. The
heuristic first prefers to satisfy more hard clauses, and then
tries to satisfy more soft clauses without increasing number
of falsified hard clauses. When neither case is possible, a
variable from a falsified clause is selected, based on the best
soft score criterion.

We compare Dist with state-of-the-art solvers including
both local search solvers and complete ones on all PMS
benchmarks from MaxSAT Evaluation 2013. Experimental
results show that Dist outperforms all other solvers on
random and crafted benchmarks. For the industrial bench-
mark, Dist dramatically outperforms previous local search
algorithms and is comparable to complete algorithms. To the
best of our knowledge, this is the first local search algorithm
that is comparable to complete algorithms on industrial PMS
instances.

The remainder of this paper is organized as follows: some
preliminary concepts are given in the next section. Then we
introduce the main new ideas in our algorithm and propose
the Dist algorithm. After that, we present experimental
results demonstrating the performance of Dist and study the
effectiveness of the algorithmic components of Dist. Finally,
we give some concluding remarks and future directions.

Preliminaries
Given a set of n Boolean variables {x1, x2, ..., xn}, a
literal is either a variable xi or its negation ¬xi, and a

clause is a disjunction of literals. A Conjunctive Normal
Form (CNF) formula is a conjunction of clauses, and can be
expressed as a set of clauses. A complete truth assignment is
a mapping that assigns to each variable either 0 or 1. Given
an assignment, a clause is satisfied if it has at least one true
literal, and falsified otherwise.

Given a CNF formula, the Partial MaxSAT (PMS) prob-
lem, in which some clauses are declared to be hard and
the rest are declared to be soft, is the problem of finding
an assignment such that all hard clauses are satisfied and
the number of falsified (satisfied) clauses is minimized
(maximized). PMS is the SAT problem when there are no
soft clauses, and is the MaxSAT problem when there are no
hard clauses. In this sense, PMS is a generalization to both
SAT and MaxSAT.

For a PMS instance F , we say a truth assignment α is
feasible iff it satisfies all hard clauses in F , and the cost of
a feasible assignment α, denoted by cost(α), is defined to
be the number of falsified soft clauses under α. An optimal
assignment is a feasible assignment with the minimum cost.
The basic schema for local search algorithms for PMS
(as with MaxSAT) is as follows. Starting with a randomly
generated complete assignment, the algorithm chooses a
variable and flips it in each subsequent step, trying to find
a feasible assignment with a lower cost.

Main Ideas
In this section, we present new ideas in our local search
algorithm for solving PMS.

Weighting Only for Hard Clauses
Our algorithm employs a clause weighting scheme that
works only on hard clauses. This is essentially different from
previous local search PMS algorithms which also utilize
clause weighting schemes, as they increase weights of all
falsified clauses, including both hard and soft ones.

Our weighting scheme works as follows. For each hard
clause, we associate an integer number as its weight, which
is initialized to 1 at the start of the algorithm.1 Whenever
a “stuck” situation w.r.t. hard clauses is observed, hard
clause weights are updated according to a weighting scheme
similar to PAWS (Thornton et al. 2004): with probability
sp (smoothing probability), for each satisfied hard clause
whose weight is larger than one, the clause weight is
decreased by one, otherwise, the clause weights of all
falsified hard clauses are increased by one.

Some intuitive explanations behind the idea of weighting
only for hard clauses are presented below.

Why weighting for hard clauses: (1) Clause weighting
for hard clauses helps to obtain feasible solutions. It iden-
tifies those hard clauses that are usually falsified in local
optima, so that the algorithm can prefer to satisfy such

1When PMS is encoded as weighted MaxSAT (as in MaxSAT
evaluations), hard clauses have weights due to the encoding. We
note that the weights used in our algorithm are independent of the
original weights of hard clauses. Actually, we only use the original
weights to recognize hard clauses.
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hard clauses. In this way, we can avoid the situation that
some hard clauses are always falsified in local optima. (2)
Moreover, with the diversification by the weighting scheme,
the algorithm tends to visit different satisfying assignments
for hard clauses, and thus different groups of feasible
assignments. In this way, the algorithm can better explore
the space of feasible assignments, and thus is more likely to
come across better feasible assignments.

Why not weighting for soft clauses: Some soft clauses
might be usually falsified in local optima, due to a high
cost of satisfying them, i.e., making more clauses falsified.
Indeed, as is usually the case, there are some soft clauses
falsified under optimal assignments. However, the object of
PMS is to satisfy as many soft clauses as possible rather
than all of them, under the constraint that all hard clauses
are satisfied. Therefore, our opinion is that compelling the
algorithm to satisfy “difficult” soft clauses at the price of
falsifying more soft clauses has no clear benefits, and would
mislead the algorithm towards feasible solutions with more
falsified soft clauses.

Separating Hard Score and Soft Score
Most local search algorithms for SAT and MaxSAT prob-
lems utilize the score property, which measures the increase
of the number (or total weight) of satisfied clauses caused by
flipping x. Previous local search algorithms for PMS also
utilize the score property to pick variables. In this work,
however, we use hard score and soft score separately, which
allows us to make better use of the special structure of PMS
and thus design more efficient local search algorithms for
solving PMS.

Definition 1 (hard score) The hard score of a variable x,
denoted by hscore(x), is the increase of the number (or total
weight) of satisfied hard clauses by flipping x.

For convenience, we say a variable x is a 0-hscore
variable if and only if hscore(x) = 0.

Definition 2 (soft score) The soft score of a variable x,
denoted by sscore(x), is the increase of the number (or total
weight) of satisfied soft clauses by flipping x.

Dist adopts the weighted version of hard score and the
unweighted version of soft score, as it employs a clause
weighting scheme that works only for hard clauses.

To facilitate our discussions about Dist afterwards, we
give some definitions here. In local search algorithms for
SAT and MaxSAT, a variable is said to be decreasing if its
score is positive, and increasing if its score is negative. Now,
we extend the notion of decreasing variables to hard score
and soft score.

Definition 3 For a variable x, x is hard-decreasing iff
hscore(x) > 0, and is soft-decreasing iff sscore(x) > 0.

Previous local search algorithms for PMS utilize the score
property, which can be seen as a weighted sum of hard score
and soft score in the form of A × hscore(x) + sscore(x),
where A is a positive integer number. Intuitively, because
hard clauses are compelled to be satisfied, the factor A
should be set very large (as an extreme case, A is set to

the number of soft clauses plus one). On the other hand, the
search would be quite restricted if A is too large. Hence,
the main concern in previous local search PMS algorithms
is how to control the value of A to make the search
more effective (Cha et al. 1997; Thornton and Sattar 1998;
Thornton et al. 2002).

However, no matter which strategies they use, these
algorithms set A to be a relatively large number so that hard
clauses are more important than soft ones. Therefore, when
using a heuristic preferring variables with greater scores, it
is likely that those variables with greater hscores are actually
picked. This is, in our opinion, a drawback of previous local
search algorithms for PMS.

In contrast to previous local search algorithms, Dist
utilizes hard score and soft score separately. This makes the
algorithm more flexible, in the sense that it can pick the
flipping variable according to either hard score or soft score,
or both, according to different situations.

Variable Selection Based on Hard and Soft Scores
The scenario that the search faces varies considerably, and
we divide them into three situations. The variable to be
flipped is picked according to different scoring functions
under each situation as follows:

1. There exist hard-decreasing variables. Flipping such vari-
ables will decrease the total weight of falsified hard
clauses, and hence lead the search to feasible solutions. As
the preliminary goal of PMS is to find a feasible solution,
such variables are given the highest priority to be flipped.
However, there is still one question that needs to be
answered: when there is more than one hard-decreasing
variable, which one should be selected? Two natural
answers are to pick the best one or to pick one randomly.
It is difficult to decide which one is the best, unless
there is some variable whose hscore and sscore are both
the greatest, which rarely happens. On the other hand,
randomized strategies are more robust and thus is adopted
in Dist (with bias towards the one with the best hscore).

2. There are no hard-decreasing variables, yet there are
variables with hscore of 0. In this case, we further
consider those 0-hscore variables with positive sscore,
as flipping such variables would decrease falsified soft
clauses without breaking more hard clauses. Therefore,
flipping such variables is of clear benefit, especially when
no hard-decreasing variables are present. Specifically,
the one with the best positive sscore is picked, which
seems the fastest way towards the goal of PMS under this
situation.

3. There are neither hard-decreasing variables nor 0-hscore
soft-decreasing variables. This means the search gets
stuck, as no improving flip is available. So, the weights
of hard clauses are updated, and then a variable is picked
from a falsified clause. Since hard clauses are compelled
to be satisfied, we select a random falsified hard clause
if any, and otherwise a random falsified soft clause is
selected (this strategy has been used in (Jiang, Kautz, and
Selman 1995)).
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A question is then which variable should be chosen from
the selected clause. Since before the stuck situation we
mainly focus on satisfying hard clauses or at least pro-
tecting them, what we need here should be a disturbance
of the search w.r.t. variables’ hscores. A good heuristic
is to pick the variable with the greatest sscore, which is
independent of the variables’ hscores, while at the same
time helping to satisfy as many soft clauses as possible.

The Dist Algorithm
Based on the ideas in the preceding section, we develop an
efficient local search algorithm for solving PMS, which is
called Dist as it makes good use of the Distinctions between
hard and soft clauses. The Dist algorithm is outlined in
Algorithm 1, as described below.

In the beginning, Dist generates an assignment α ran-
domly, and the cost of the best feasible solution, denoted
by cost∗, is initialized as +∞. After the initialization, the
loop (lines 3-15) is executed until a limited number of steps
is reached. During the search, whenever a better feasible
solution is found, the best feasible solution α∗, and cost∗,
are updated accordingly (lines 4-5).

In each iteration, Dist flips a variable, which is selected
according to the variable selection heuristic mentioned in
the previous section. First, Dist picks a random hard-
decreasing variable (i.e., hscore(x) > 0) if any. If no hard-
decreasing variable is present, then Dist picks a best variable
(w.r.t. sscore) from the set S of variables with 0-hscore
and positive sscore. If there do not exist hard-decreasing
variables and the S set is empty, which means the algorithm
gets stuck, then Dist updates hard clause weights according
to the weighting scheme described in the preceding section,
and picks a variable from a falsified clause. Specifically,
it chooses a clause randomly from falsified hard clauses if
any, and from falsified soft clauses otherwise. The variable
with the greatest sscore from the chosen falsified clause is
selected. Note that in Dist, all ties are broken randomly. In
practice, in order to make the algorithm more robust, we also
employ a pure random walk step with a small probability in
each random step, as suggested in (Hoos 1999).

Finally, when the loop terminates on reaching the step or
time limit, Dist reports cost∗ and the best feasible solution
α∗ that has been found, if cost∗ is not greater than the
number of soft clauses (this means a feasible solution is
found, since cost∗ is initialized as +∞ and is updated only
when a better feasible solution is found). Otherwise, Dist
reports “no feasible assignment found”.

Also note that Dist is a specialized algorithm for solving
partial MaxSAT, and when solving MaxSAT instances con-
taining only soft clauses, it can be seen as an extension of
GSAT (Selman, Levesque, and Mitchell 1992).

Experimental Evaluation
We empirically evaluate Dist on all Partial MaxSAT bench-
marks in MaxSAT Evaluation 2013, including three cate-
gories namely random, crafted and industrial. We compare
Dist with state-of-the-art local search algorithms and the
best complete algorithms for these benchmarks.

Algorithm 1: Dist
Input: Partial MaxSAT instance F , maxSteps
α := randomly generated truth assignment;1
cost∗ := +∞;2
for step := 1 to maxSteps do3

if @ falsified hard clauses & cost(α) < cost∗ then4
α∗ := α; cost∗ := cost(α);5

if H := {x|hscore(x) > 0} 6= ∅ then6
v := a variable randomly picked from H;7

else if S:={x|hscore(x)=0 & sscore(x)>0} 6= ∅ then8
v := a variable in S with the greatest sscore;9

else10
update weights of hard clauses;11
if ∃ falsified hard clauses then c := a random12
falsified hard clause;
else c := a random falsified soft clause;13
v := a variable in c with the greatest sscore;14

α := α with v flipped;15

if cost∗ ≤ #(soft clauses) then return (cost∗, α∗);16
else return “no feasible assignment found”;17

Experimental Setup
Dist is implemented in C++ and complied by g++ with the ’-
O2’ option, and will be distributed online. The sp parameter
for the weighting scheme is set to 0.0012.

We compare Dist with two local search solvers, TWO-
LEVEL and CCLS. While TWO-LEVEL (Thornton et al.
2002) is a state-of-the-art PMS local search solver, CCLS
is a local search solver for weighted MaxSAT that won
random and crafted weighted MaxSAT categories in the in-
complete track of MaxSAT Evaluation 2013. CCLS employs
a diversification strategy called configuration checking that
has proved successful in SAT solving (Cai and Su 2012;
Luo et al. 2013; Cai and Su 2013).

We also compare Dist with four complete solvers, in-
cluding WMaxSatz09 (Li et al. 2009), ILP-2013 (Ansótegui
and Gabàs 2013), QMaxSAT2-mt (Koshimura et al. 2012)
and optimax-it. The first three are the best algorithms in
the random, crafted and industrial Partial MaxSAT cate-
gory of MaxSAT Evaluation 2013 respectively3. The solver
optimax-it was slightly modified from the complete solver
optimax and won all Partial MaxSAT categories and the in-
dustrial MaxSAT category in the incomplete track. Note that
we do not compare Dist with the portfolio solver ISAC+-pms
(Ansotegui, Malitsky, and Sellmann 2014) despite the fact
it performs better than the above complete algorithms. The
reason is that ISAC+-pms is a collection of algorithms, and
it calls different algorithms depending on the input instance.

Interestingly, these complete solvers belong to different
types of methods. WMaxSatz09 is a branch-and-bound al-
gorithm; ILP-2013 converts MaxSAT into ILP and uses
the MIP solver IBM-CPLEX to solve the ILP instances;
QMaxSAT2-mt and optimax-it are SAT-based solvers.

2except that 0.0001 for industrial instances with more than 2500
variables

3http://maxsat.ia.udl.cat:81/13/results/index.html
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Instance set # Dist CCLS WMaxSatz09 TWO-LEVEL ILP-2013 QMaxSAT2-mt optimax-it
min2sat/v160c800l2 30 0.13(30) 0.38(30) 153.08(27) 691.89(2) 225.65(26) 0(0) 0(0)
min2sat/v260c1040l2 30 0.67(30) 1.44(30) 133.96(18) 375.10(4) 171.53(21) 0(0) 0(0)
min3sat/c70v350l3 30 0.02(30) 0.12(30) 134.75(30) 15.94(30) 525.46(13) 350.68(2) 0(0)
min3sat/c80v400l3 30 0.02(30) 0.09(30) 332.23(26) 128.73(28) 0(0) 0(0) 0(0)
pmax2sat/hi 29 0.01(29) 5.67(29) 7.75(29) 0.07(28) 308.34(2) 0(0) 0(0)
pmax2sat/me 30 0.01(30) 0.48(29) 3.31(30) 0.04(30) 173.08(12) 0(0) 0(0)
pmax3sat/hi 30 <0.01(30) 0.01(30) 28.42(30) 0.01(30) 615.04(7) 214.04(1) 0(0)
Total solved 209 209 208 190 152 81 3 0
Mean ratio 100% 99.52% 90.95% 72.84% 38.60% 1.43% 0%

Table 1: Experimental results on random PMS benchmark from MaxSAT Evaluation 2013. We remove one instance from the “pmax2sat/hi”
family as it has been proved that the hard clauses compose an unsatisfiable formula and thus no feasible assignment exists for the instance.

Instance set # Dist ILP-2013 WMaxSatz09 QMaxSAT2-mt TWO-LEVEL CCLS optmax-it
frb 25 141.16(23) 214.56(11) 111.85(5) 15.81(22) 79.57(5) 34.42(17) 106.1(3)
job-shop 3 0(0) 0(0) 0(0) 20.55(3) 0(0) 0(0) 43.77(3)
maxclicque/random 96 0.03(96) 31.12(96) 0.69(96) 20.32(80) 0.09(92) 0.24(96) 67.23(77)
maxclicque/structured 62 30.95(59) 125.48(38) 41.78(39) 26.87(28) 7.15(39) 25.56(43) 33.78(22)
maxone/3sat 80 0.18(80) 4.93(80) 0.22(80) 67.31(71) 61.43(70) 1.84(75) 34.77(64)
maxone/structured 60 46.55(56) 67.22(58) 43.22(59) 8.61(60) 12.32(36) 124.57(1) 1.59(52)
min-enc/kbtree 42 9.36(42) 125.71(42) 373.20(20) 71.25(6) 43.53(33) 24.94(39) 60.47(3)
pseudo/miplib 4 0.02(4) 4.93(4) 0.61(4) 0.05(4) 150.39(3) 0.03(4) 0.47(4)
scheduling 5 211.23(1) 0(0) 0(0) 560.67(4) 0(0) 0(0) 0(0)
Toal solved 377 361 329 303 279 278 275 228
Mean ratio 77.83% 66.88% 58.76% 77.72% 53.33% 58.40% 55.72%

Table 2: Experimental results on crafted Partial MaxSAT benchmark from MaxSAT Evaluation 2013.

All experiments are carried out on a workstation under
Ubuntu Linux operation system, using an Intel(R) Core(TM)
i7-2640M 2.8 GHz CPU and 8 GB RAM. The time limit is
set to be 1000 CPU seconds for each run.

Evaluation Methodology
We follow the evaluation methodology adopted in the in-
complete track of MaxSAT evaluations: Each solver is
executed once on each instance, where the solver prints
successively the best solution it finds so far. For each solver
on each instance family, we report within parenthesis the
number of instances where the solver finds the best solution,
and the mean time of doing so over such “winning” instances
(not including proving time for complete solvers). Solvers
are ordered from left to right according to the total number
of “winning” instances. The number of instances of each
family is specified in the column “#”. Since the number of
instances varies among families, we also present for each
solver the mean ratio of “winning” instances. The rules at
MaxSAT Evaluations establish that the winner is the solver
which finds the best solution for the most instances and ties
are broken by selecting the solver with the minimum mean
time. In bold we present the best results for each family.

Experimental Results
In this subsection, we present the comparative experimental
results of Dist and its competitors on each benchmark.

Results on Random PMS Benchmark:
Table 1 shows the comparative results on the random PMS

benchmark. As is clear from Table 1, Dist dominates on
all instance families. The only other solver that might be

comparable to Dist on random instances is CCLS. So we take
a further look at the comparison between Dist and CCLS.
We observe that Dist is more robust and more efficient than
CCLS. Dist finds the best solution for all instances very
quickly, while CCLS fails to find the best solution for one
partial Max-2-SAT instance. Also, the averaged run time
over all successful instances (to find the best solution) of
Dist is 10 times less than that of CCLS.

Results on Crafted PMS Benchmark:
The experimental results on the crafted PMS benchmark

are presented in Table 2. Among 377 instances, Dist finds the
best solution for 361 of them, more than any other solver. In
detail, Dist gives the best performance for 6 out of 9 instance
families, while the other 3 families are dominated by the
complete solver QMaxSAT2-mt. We would like to note that
Dist is the only local search solver that performs better than
complete solvers on crafted instances.

Results on Industrial PMS Benchmark:
Table 3 summarizes the experimental results on the in-

dustrial PMS benchmark. When comparing the local search
solvers, Dist shows substantial superiority over the other
local search solvers. Dist finds the best solution for 337
instances, while this figure is only 80 and 70 for CCLS and
TWO-LEVEL respectively.

For this industrial benchmark, the two SAT-based com-
plete solvers QMaxSAT2-mt and optmax-it are the best
two solvers for these industrial instances. Nevertheless,
Dist shows better performance than other types of com-
plete solvers, including the ILP-translation approach ILP-
2013 and the branch-and-bound algorithm WMaxSatz09.
We also observe that, among the four instance families
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Instance set # QMaxSAT2-mt optmax-it Dist ILP-2013 WMaxSatz09 CCLS TWO-LEVEL
aes 7 0.72(1) 100.94(2) 5.01(6) 18.22(2) 0(0) 1.41(4) 0.01(1)
bcp-fir 50 26.36(49) 13.6(48) 92.64(37) 9.66(50) 213.63(28) 91.49(25) 0(0)
bcp-hipp-yRa1/simp 17 6.54(17) 2.67(16) 14.49(17) 1.27(5) 1.49(6) 1.65(7) 0(0)
bcp-hipp-yRa1/su 38 28.83(38) 8.68(29) 104.33(32) 0(0) 0(0) 0(0) 0(0)
bcp-msp 50 41.11(35) 17.35(14) 56.87(41) 142.02(25) 95.27(23) 0(0) 11.88(20)
bcp-mtg 40 0.11(40) 0.14(40) 181.03(36) 88.29(24) 108.31(14) 0(0) 0(0)
bcp-syn 50 50.98(23) 20.46(25) 65.22(28) 9.73(48) 48.62(22) 0.44(20) 71.17(19)
trial/circuit-trace-compaction 4 5.62(4) 49.9(4) 0(0) 318.81(1) 57.94(1) 0(0) 0(0)
close_solutions 50 85.41(50) 17.55(37) 53.11(38) 123.84(30) 0(0) 47.41(11) 27.66(14)
des 50 217.02(50) 37.91(20) 779.53(12) 247.39(16) 0(0) 0(0) 930.18(1)
haplotype-assembly 6 49.29(6) 0.42(4) 0(0) 229.55(3) 0(0) 0(0) 0(0)
packup-pms 40 4.17(40) 1.85(40) 142.72(12) 0.66(40) 0(0) 0(0) 0(0)
pbo-mqc/nencdr 50 22.17(50) 23.91(42) 0(0) 266.59(1) 288.47(23) 0(0) 0(0)
pbo-mqc/nlogencdr 50 11.32(50) 19.98(48) 379.14(14) 238.11(2) 188.24(38) 0(0) 0(0)
pbo-routing 15 1.76(15) 0.23(15) 15.98(15) 21.03(15) 2.01(5) 0(0) 13.94(14)
protein_ins 12 10.35(12) 170.68(10) 1.99(12) 0.15(1) 0.07(2) 4.09(12) 0(0)
tpr/Multiple_path 48 51.68(48) 167.13(37) 59.42(12) 61.13(14) 374.45(5) 0(0) 0(0)
tpr/One_path 50 12.89(50) 43.79(46) 9.18(25) 23.32(50) 3.15(25) 0(0) 0(0)
Total 627 582 478 337 327 192 80 70
Mean ratio 90.46% 77.01% 55.83% 48.58% 26.32% 17.35% 12.31%

Table 3: Experimental results on industrial Partial MaxSAT benchmark from MaxSAT Evaluation 2013.

which are not dominated by QMaxSAT2-mt, Dist gives
the best performance for 3 of them. In this sense, Dist
could be complementary to SAT-based solvers. It would be
interesting to underpin this assumption by using a spearman
correlation test or the marginal contribution to the oracle
performance (Xu et al. 2012). We leave this for future work.

Discussion
In this section, we study the effectiveness of the weighting
scheme as well as two strategies in Dist.

We compare Dist with its three alternatives, which are
modified from Dist as follows.

• Dist_alt1: update all clause weights (replace line 11 in
Algorithm 1);

• Dist_alt2: when there are hard-decreasing variables, pick
the one with the best hscore, breaking ties by preferring
the one with the greatest sscore. (replace line 7 in
Algorithm 1);

• Dist_alt3: pick a random variable from the selected falsi-
fied clause (replace line 14 in Algorithm 1).

Benchmark # Dist Dist_alt1 Dist_alt2 Dist_alt3
Random 209 209 59 89 209
Crafted 377 361 317 329 294
Industrial 627 337 242 246 202

Table 4: Experimental results comparing Dist with its alternatives.
For each benchmark, each cell reports for each solver the number
of instances where it finds the best solution.

The experimental results (Table 4) demonstrate the su-
periority of Dist over its alternatives, which indicates the
effectiveness of the algorithmic components. We also note
that these degenerated alternatives of Dist still exhibit signif-
icantly better performance than previous local search solvers

on crafted and industrial benchmarks. This indicates the
algorithmic framework of Dist, which is based on separated
hard score and soft score, is more promising than previous
local search approaches on structured PMS instances.

Conclusions and Future Work
In this work, we proposed novel ideas for local search
for Partial MaxSAT, which exploit the distinction between
hard and soft clauses. Specifically, we proposed a clause
weighting scheme that works only for hard clauses, and a
variable selection heuristic which utilizes hard score and
soft score separately. We then used these ideas to develop
a local search algorithm for PMS called Dist. Experimental
results show that Dist dramatically outperforms previous
local search algorithms. Also, Dist outperforms complete
algorithms on random and crafted benchmarks, and is com-
parable and complementary on industrial instances.

It is natural to extend our method to weighted partial
MaxSAT. Also, the strong experimental results suggest that
local search based on hard and soft score is a promising
direction for solving PMS and deserves further research.
We consider to improve Dist by designing more effective
heuristics. For example, when there are hard-decreasing
variables, we can utilize more sophisticated variable selec-
tion strategies, such as considering the dominating variable
set of hard-decreasing variables.
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