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Abstract. Attention is both ubiquitous throughout and key to our cog-
nitive experience. It has been shown to filter out mundane stimuli, while
simultaneously communicating specific stimuli from the lowest levels of
perception through to the highest levels of cognition. In this paper we
present a connectionist system with mechanisms that produce both ex-
ogenous (bottom-up) and endogenous (top-down) attention. The foun-
dational algorithm of our system is the Temporal Pooler (TP), a neocor-
tically inspired algorithm that learns and predicts temporal sequences.
We make a number of modifications to the Temporal Pooler and place
it in a framework which is inspired by predictive coding. We use a novel
technique in which feedback connections elicit endogenous attention by
disrupting the learned representations of attended sequences. Our exper-
iments show that this approach successfully filters attended stimuli and
suppresses unattended stimuli.

Keywords: Attention, Hierarchical Temporal Memory, Predictive Cod-
ing

1 Introduction

Attention lies at the heart of cognitive experience. It enables our conscious per-
ception to focus upon specific elements within the vast and dynamic sensorium.
It manifests in many forms: following an object along the horizon, concentrat-
ing on a melody, or mentally solving a mathematical problem. This ubiquity
suggests that attentional mechanisms must be intrinsic to any truly biological
approach to artificial intelligence.

It has been proposed that attention plays a role in the earliest levels of cogni-
tion and perception, acting to filter out stimuli that are not selected as the target
of attention [3, 13]. Under this paradigm only the attended stimulus reaches the
highest levels of cognition, while unattended stimuli are filtered out at the early
levels of sensory perception. This filtering of stimuli is also reflected in neural
recordings, where attention has been shown to enhance the responses of neurons
in the neocortex that encode the attended stimulus, while simultaneously sup-
pressing that of unattended stimuli [17, 21]. The ability to filter specific stimulus
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has obvious advantages to artificial intelligence systems (e.g. reducing the prob-
lem space), as such there has been a renewed interest in applying attentional
mechanisms to connectionist systems in recent years (we discuss some of this
work in Section 2).

Our model fits into a broad body of work that understands the brain as a
prediction machine which self-organises to form generative predictions (or hy-
potheses) of its current and future states. Predictive coding [19, 4] has emerged as
the most promising interpretation of this theory, with top-down and lateral pre-
dictions suppressing the responses of feature encoding error-units. This flow of
information and forming of hypotheses has since been generalised as free-energy
minimisation by Friston [8].

Our model attempts to reconcile attentional filtering with predictive sup-
pression of stimuli. Lateral predictions (formed in the same neocortical region)
suppress the feedforward output of that region. Surprising stimulus (not pre-
dicted) are communicated as feedforward output to the higher regions. This
forms an exogenous (bottom-up) attentional mechanism based on the Bayesian
surprise theory of exogenous attention, where the least predictable stimulus is
the most salient [11] (note that free-energy can also be formulated as Bayesian
surprise [8]). Endogenous (top-down) attention is modulated by feedback that
causes a targeted disruption in the learned representations. This disruption in-
hibits predictions on attended stimuli, and thus the attended stimuli is output
from the region using the same feedforward pathway as endogenous attention.

For simplicity, and to focus on the mechanisms of extracting information us-
ing attention, we implement our model in a single layer system. The foundational
algorithm for this system is the Temporal Pooler (TP) [9]. TP is a connectionist
algorithm that has been shown to perform strongly in the domain of on-line
learning anomaly detection [15]. To the TP we add feedback connections, new
types of neurons, and place it in a predictive framework inspired by predictive
coding; we refer to this system as Temporal Pooler plus Attention (TP+A).

The TP algorithm is based on the Hierarchical Temporal Memory (HTM)
model of the neocortex [10], a predictive model similar to predictive coding,
and employs a number of components directly based on neocortical biology. TP
neurons self-organise using a Hebbian learning inspired method to form synapses
to a subset of other neurons, in contrast to many deep learning systems that use
less biologically plausible methods, such as backpropagation on fully connected
neurons [2]. To implement attentional mechanisms we use the same basic learning
policies and structures as TP, thereby inheriting the biological plausibility of the
HTM approach. In this way TP+A provides a model for how attention may be
implemented in the neocortex, while simultaneously providing a proof-of-concept
for a system that could be incorporated into future AI systems.

2 Related work

In recent years there have been an increasing number of studies applying atten-
tional mechanisms to connectionist systems, with much of this work focusing
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on visual attention. One such approach is to select only part of an image to be
processed at high resolution [24]. This method has been successfully applied to a
number of domains, including object tracking [5], recognition [24, 5], and image
caption generation [1]. Another method applied to connectionist systems is to
use attentional mechanisms to modulate representational nodes in the system.
Wang et al. [25] used two separate neural networks, one encoding the input and
the other encoding top-down prior beliefs of the input’s class; the output vectors
of both networks were combined to produce a modified representation of the
output. This approach was applied to classifying and de-noising handwritten
digits. Attention inspired techniques have also been used to improve the classi-
fication of images using convolutional neural networks [23]. Here feature nodes
of the network were modulated over successive time-steps using a reinforcement
learning policy.

There have been a number of models that attempt to reconcile various atten-
tion related phenomena with predictive coding. Rao and Ballard [20] expanded
their earlier work on predictive coding in the visual cortex [19] by showing
how attentional visual search may work. They applied an outlier mask that
suppressed stimuli which least conformed to a generative model, while making
stimuli that were more likely under the generative model to be more salient.
Subsequently Spratling [22] also expanded Rao and Ballard’s original work by
showing that their equations are mathematically identical to some models of
bias competition, a theory that attention emerges through the modulation of
representational nodes by bias weighting [6]. To demonstrate this model, feed-
back signals, which simulated endogenous attention, were fed into the system
and resulted in phenomena consistent with binding. Perhaps the most prevalent
theory of attention in predictive coding is that of precision weighting [7, 4]. This
is achieved by increasing the ‘gain’ on error units that are predicted to provide
the most precise information vis-à-vis the current environment.

Applying TP to a framework based on predictive coding is similar to work of
McCall and Franklin [16], who embedded TP in a predictive coding framework
and tested it for robustness to noise on random temporal sequences. Their sys-
tem uses two hierarchical layers, where the feedforward output from the bottom
layer is the prediction-error. This is formed by subtracting the state of the bot-
tom layer from feedback sent from the top layer. Feedforward and feedback use
bi-directional connections, in contrast to a method introduced by Kneller and
Thornton [12] which uses separate, more biologically plausible, uni-directional
connections. Here, feedback connections are learned using TP’s learning method,
while feedforward connections use the HTM spatial pooler algorithm.

3 Temporal Pooler plus Attention

TP+A is designed to perform five tasks: 1) form predictions on temporal se-
quences; 2) output prediction errors; 3) output temporal sequences that are the
target of attention (attentional filtering); 4) learn temporal sequences; 5) learn
relationships between attention signals and the temporal sequences. Tasks 1 and
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4 are performed using the TP algorithm (described in subsections 3.1 and 3.4),
task 2 is accomplished by embedding the TP in a framework inspired by predic-
tive coding (described in Subsection 3.2), and tasks 3 and 5 are achieved using
our attentional feedback mechanism (described in subsections 3.3 and 3.4).

3.1 Predicting temporal sequences

TP+A forms predictions on feedforward input formatted as sparse temporal
sequences; we use the TP algorithm to make these predictions. TP was initially
developed as part of the Cortical Learning Algorithms package (CLA) [9], which
also included the HTM spatial pooler. TP compromises a number of structures
named columns, which are based on mini-columns found in the neocortex [18].
Columns can be set into an active-state by feedforward boolean input. The
resulting activation and deactivation of the columns over successive time-steps
forms the temporal sequences on which the system learns and predicts.

Each column contains a number of artificial neurons called prediction-cells [9].
Prediction-cells have a number of dendrite segments, and each segment contains
a number of synapses. Synapses are uni-directional connections to prediction-
cells in other columns that become active when the prediction-cell they are
connected to is in an active-state. When the number of active synapses in a
segment is greater than the value of parameter actiThreshold the segment en-
ters an active-state. This, in turn, sets the prediction-cell into a predictive-state.
When a column enters an active-state and one of its prediction-cells was in a
predictive-state, that prediction-cell enters an active-state. If, however, a col-
umn is in an active-state and no prediction-cell was in a predictive-state then
all prediction-cells in that column enter an active-state, representing that any
number of temporal features could have activated the column. It is through this
method that TP encodes and produces predictions on temporal sequences; for a
more in-depth discussion of the algorithm see the CLA white paper [9].

3.2 Outputting the prediction error

TP+A applies the TP within a framework based on predictive coding. Our
method differs somewhat from McCall and Franklin [16] who used bi-directional
connections between levels to form and communicate errors and predictions. Be-
cause our study only concerns a single level we rely on only the lateral predictions
(formed by TP) to detect errors. The errors are output by adding a new type
of cell to the TP called an error-cell. Each column has one error-cell. When a
column is active and this activity was not predicted by a prediction-cell then
the error cell will be in an active-state. The state of each error-cell will comprise
the feedforward output of TP+A. In Figure 1b we provide a diagram of a TP
column and its connections embedded in this system.

3.3 Attentional filtering

Our model uses top-down signals to elicit endogenous attention. In TP+A we
achieve this using feedback axons that input sparse codes into the system. A
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Fig. 1. Diagram of connections within columns. P: prediction-cell, I: input, O: output,
E: error-cell, FB: feedback input, A: attention cell. Arrows indicate direction of infor-
mation flow. (a) TP column; excitatory connections between prediction-cells can put
them into a predictive state, if placed into an active state when in a predictive state,
they will inhibit other prediction-cells in their column. (b) TP column embedded in
a predictive architecture; output is produced by an error-cell, which is set into an ac-
tive state by a connection to the input, active prediction-cells inhibit this connection.
(c) TP+A column; an attention-cell is excited by feedback axons. When active, the
attention-cell inhibits the inhibitory connections to the input/error-cell connection and
also the dendrite segments of that synapse to prediction-cells in its column.

new type of cell, the attention-cell, associates this sparse code with activation of
it’s column. Each column has a single attention-cell and these have a number of
segments with a number of synapses that can connect to an axon. The activity
of these synapses and segments determine whether or not the attention-cell is
placed into an active state using the same method that determines the predictive-
state of prediction-cells (outlined in Subsection 3.1). The method we use for
connecting to feedback is the same as Kneller and Thornton [12], however in
experiments they used the Spatial Pooler algorithm and not the TP (so time-
steps were not a factor); the feedback also did not elicit endogenous attention.

If an attention-cell is in an active-state, then the error-cell of its column
will also be in an active-state whenever the column is active-state, even if this
activity was predicted. This causes attended sequences to be output by the error-
cells, where usually they would be suppressed. By using the error-cells to output
attended sequences we remove any need for adding new output channels or sep-
arate data representations. A second effect elicited by an attention-cell when
in an active-state is that it will inhibit (unable to become active) segments of
prediction-cells in other columns that have synapses to prediction-cells in its col-
umn. Columns which have prediction-cells that have been inhibited in this way
are more likely to be in an active-state that was not predicted, due to the disrup-
tion of the prediction process caused by the inhibition. This, counter-intuitively,
is of benefit as the segments that are inhibited are likely to be forming predictions
based on the attended sequence. Thus, column activations caused by an attended
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sequence can be output by the error-cells even if that column’s attention-cell has
not learned the feedback pattern, preserving the associations between column
activations learned by TP when outputting an attended sequence. Figure 1c
provides a diagram of a column with the attention-cell and its connections.

3.4 Learning

Both prediction-cells and attention-cells use the same TP Hebbian-based learn-
ing algorithm [9]. In prediction-cells this algorithm governs the creation and de-
struction of synapses to prediction-cells in other columns, while in attention-cells
it governs the connection of synapses to feedback axons. For improved clarity
we have also included pseudo-code in Algorithm 1 which has been generalised
for use with both prediction-cells and attention-cells.

Algorithm 1 Learning Under the Markov Assumption

Input: column //column learning is to be performed on
Input: t //current time-step
Input: newSyns,minThreshold, connThresh, permInc, permDec //parameters
1: if column.isActiveAndNotPredicted(t) then
2: potSyns← getActivePotentialSynapses(t− 1)
3: segment← findClosestSegment(column, potSyns,minThreshold)
4: if segment = null then
5: cell← getRandomCell(column)
6: createNewSegment(cell, potSyns, newSyns)
7: else
8: addNewSynapses(segment, potSyns, newSyns)
9: else if column.isActiveAndPredicted(t) then

10: for each cell in column where cell.inPredictiveState(t− 1) do
11: for each segment in cell where segment.active do
12: for each synapse in segment where synapse.active do
13: incrementPermanence(synapse, permInc, connThresh)
14: else if column.isInactiveAndPredicted(t) then
15: for each cell in column where cell.inPredictiveState(t− 1) do
16: for each segment in cell where segment.active do
17: for each synapse in segment where synapse.active do
18: decrementPermanence(synapse, permDec, connThresh)

Cells are initialised with no synapses or segments, these are first created in
response to column activity. Whenever a column is in an active-state and this
was not predicted by any of its prediction-cells (or, in the case of learning feed-
back, its attention-cell was not in an active-state), we add new synapses to a
cell (lines 1-8). We search all cells for a single segment that has the greatest
overlap with the set of potential synapses (other prediction-cells for prediction-
cell learning, or feedback axons for attention-cell learning) that were active in
the previous time-step; we then add a number of synapses up to the value of
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parameter newSyns to the chosen segment (line 8). If no segment had an over-
lap above parameter minThresh then we add a new segment to a random cell
(line 6), this segment will have the value of newSyns of the potential synapses.
Each synapse has a permanence value; when the permanence value is above pa-
rameter connThresh the synapse is connected and can affect their cell’s state,
otherwise it will be disconnected and cannot affect their cell’s state. Synapse
permanence is decremented by the value of permDec whenever the synapse
contributes to a cell falsely predicting its column will be active (lines 14-18; dis-
connecting of a synapse is handled by decrementPermanence()). Synapses have
their permanence incremented by the value of permInc whenever they were in
an active-state and their segment correctly predicts their column will be active,
even if they are disconnected (lines 9-13; connecting of a synapse is handled by
incrementPermanence()). This is the method that the TP uses for learning
under the Markov assumption (only the current time-step can predict the next),
but the TP can learn to predict further in time by engaging this method to
learn the cells which were active the time step prior to a successful prediction.
However, for efficiency we learn under the Markov assumption in this treatment.

4 Experiments and Analysis

To test whether the TP+A can successfully attentionally filter sequence input we
performed experiments using two separate input types: burst sequences (which
allows us to easily visualise the output) and frequent feature sequences (to test
filtering when a subset of columns in a sequence are persistently active).

We use a similar experimental design across all tests. The TP+A has 256
columns and at each time-step is fed a sparse binary input of length 256, where
one element activates one column. We use a single iteration of a 150,000 time-
step training set; between time-step 100,000 and 125,000 whenever a target se-
quence is active we apply feedback input that simulates top-down input from a
higher level. The feedback is a randomly generated sparse binary pattern with
256 elements where each element has 0.025 of been set to one. Each element
of this pattern corresponds to a single feedback axon, an element set to one
sets its corresponding axon to active. After training, we switch off learning and
use a 10,000 time-step test set that we apply both with attentional feedback
and without. We used the prediction error on the test set to tune the values of
permInc, permDec, connPerm, and actiThreshold for both prediction-cell and
attention-cell synapses. The number of cells used is 15; exploratory experiments
showed that this number performed robustly across both sequence types. The
quantitative results given are averaged across 10 experimental runs, using dif-
ferent random seeds for the TP+A. To quantify output for particular sequences
we use the sequence error metric, this is the number of activations of error-cells
divided by the number of column activations for each time-step after the first
(we exclude the first as a sequence begins at random in our experiments).
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Fig. 2. (a) A sample of a sequence used during the burst sequence tests; white squares
are active columns, black squares represent no column activity; the top image is the
first time-step, and the bottom image is the fifth and final time-step. (b) A sample of
five time-steps (running left to right) of testing; the first row is the input, second row
is the system without attention active, and the third row is the system with attention
on; the middle burst is target of attention.

4.1 Burst Sequences

For the first of our experiments we use feedforward input that comprises se-
quences which, when formatted in two dimensions, form a distinct visual ‘burst-
ing’ pattern. These type of sequences were used to allow us to better display the
attentional mechanisms; an example of the sequence is shown in Figure 2a. The
sequences are five time-steps long and can occur at 64 possible starting positions.
Given that a single TP/TP+A region is not translation invariant, each starting
position constitutes a separate sequence. We used the following methodology for
producing the input: at each time-step a sequence has a probability of 0.005 of
becoming active (unless it is already active, in which case the probability is 0.0);
if no sequence is currently active we randomly select one to become active (this
is done to ensure there is column activity on every time-step). We select one
sequence to be the target sequence for the attentional feedback mechanism.

A sample of the output from TP+A during testing is illustrated in Figure 2b;
where the sequence located in the centre is the target of endogenous attention by
way of feedback. In the second row we see that when there is no active feedback
TP+A suppresses the majority of input; as sequences begin at random, the first
instances will be mostly unpredicted. The third row displays similar suppression
as the second, except for the target burst which is output in its entirety. However,
some imperfections in the system are also illustrated; in the last time-step we
can see that one element of a newly beginning sequence is suppressed without
attention, while during attention it is not suppressed, as is an element of the
sequence beginning the previous time-step. These irregularities are caused by the
interactions between simultaneous sequences and the attention mechanism. The
predicted element in the newly beginning sequence would, had the sequence not
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started, be a false prediction. However, when attention is active the disruption
caused by the attention cell incorrectly causes output not associated with the
target sequence. This is reflected in a quantitative analysis: during testing when
attention is not active sequence error for the unattended sequences is 0.02, rising
to 0.22 when it is active. However countering this is the sequence error for the
attended sequences where the mean average for this set is a perfect 1.0 (i.e. the
entirety of the attended sequences is output). These results indicate that on this
set TP+A’s attention mechanisms have successfully learned to output attended
sequences, although there is some residual output of unattended sequences.

4.2 Frequent Feature Sequences

The frequent feature sequences experiments are designed to test TP+A’s at-
tentional mechanisms when the sequences contain frequently recurring features.
This is of interest as attended stimuli commonly has such features (e.g. a station-
ary object, or auditory frequencies). To build the target sequence we chose 15
distinct input elements at random; each of these elements we assign a probabil-
ity, p, that it will be active on any give time-step (8 have p = 0.2, 4 have p = 0.4,
2 have p = 0.6, 1 have p = 0.8). We also have five background sequence with 30
elements chosen at random (these each have p = 0.2), these five sequences are
concatenated to form a 100 time-step long background sequence that is fed into
TP+A and continuously looped during training and testing. The target sequence
will be fed into the system at random time-steps (with a probability of 0.01; or
0.0 if it is already active) and will overlap with the background sequences.

The results from these experiments show an improvement over the bursting
sequences vis-à-vis the sequence error for non-attended sequences (the back-
ground) during attention: with an average of 0.02; compared with 0.01 with no
attention. The target sequence averages 0.95 sequence error during attention,
compared with 0.02 when not attended. These results indicate that features oc-
curring frequently within a single sequence may improve the capability of TP+A
in separating the target sequence. In Figure 3a we have included a graph of error-
cell activity during endogenous attention, note that while error-cells related to
target sequence are very active, those for the background are much less so.

To ascertain the exogenous attention capabilities of the system, we inserted
an extra sequence (constructed with the same methodology as the target se-
quence) during testing. There was no training on this sequence, so the system
should be ‘surprised’ by the sequence and output it as error. We graph these
results in Figure 3b, as can be seen this sequence is highly active, while the
background sequence is largely suppressed. The average sequence error for the
surprising sequence is 0.97, while the background is >0.01. This shows that the
TP+A outputs surprising input, while suppressing predictable input.

5 Discussion

In this work we have presented a model implemented as a connectionist system,
TP+A, which is based on two separate theories of neocortical function, HTM
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Fig. 3. Graph of error-cell activity, normalised so maximum possible activity is 1.0;
solid line is target sequence, dashed line is background sequences, vertical dotted lines
designate beginning and end of sequence. (a) Error-cell activity during endogenous
attention. (b) Error-cell activity with a surprising sequence (exogenous attention).

and predictive coding. This system is designed to attentionally filter sequences
using biologically plausible methods such as feedback, inhibition, and Hebbian
learning. Results from our experiments, provided in Section 4, show that TP+A
is capable of filtering out mundane (predicted) input sequences while simultane-
ously outputting sequences that are attended to. This paradigm of attention is in
line with results from cognitive studies that show early levels of perception filter
out unattended stimulus while conveying attended stimulus [13]. The use of feed-
back connections to illicit this type of attention makes this mechanism akin to
endogenous attention, where the higher levels of cognition (or, in our case, higher
levels of the hierarchy) control the attentional mechanisms of the lower levels.
As well as endogenously attended input, TP+A will also relay any input that is
surprising (unpredicted). Because TP+A uses the same output channel for both
surprising and attended input, higher levels of the hierarchy would treat these
signals identically. This is advantageous because a surprising stimulus should,
and does, attract attention; studies have shown that in free viewing exercises
participants attention is directed to the most ‘surprising’ features of scenes [11].

TP is designed to be a general purpose algorithm, capable in operating under
any temporal modality. TP+A inherits this and adds to it mechanisms for both
exogenous and endogenous attention. This goal of generality sets aside TP+A
from many other connectionist attention systems which are specific to visual
attention [5, 14]. We also use biologically inspired learning methods that exist in
the original TP in contrast to systems which apply the less biologically plaus-
bile backpropagation (such as [25]), or systems that require the combination of
divergent techniques (such as backpropagation and reinforcement learning [23]).

TP+A offers two advantages over the precision weighting accounting of atten-
tion in predictive coding [7]. Firstly, TP+A has the internal resources to calculate
the precision of error signals without predictive coding’s need of a secondary sys-
tem that learns to predict such precisions. This can be achieved by an analysis of
the state of the TP (within a HTM hierarchy): here, a high precision error state
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is indicated by a small number of temporally extended sequences, whereas a low
precision state is indicated by a larger number of shorter sequences. Secondly,
the TP+A approach does not require that we only attend to those aspects of a
feature that are associated with high precision error signals. So, for example, we
can endogenously attend to features that are perfectly predicted (and so emit no
error signals), or we can attend to aspects of a feature associated with relatively
low precision and ignore aspects with high precision errors. The phenomenology
of ordinary experience suggests that we can endogenously attend in this way, but
existing predictive coding models have difficulty explaining this. Our model of
attention matches more closely to that of Spratling [22], who also used simulated
feedback to stimulate endogenous attention. However, this model was focused on
binding (where disparate features are ‘bound’ into a singular object), whereas
ours reconciles predictive suppression with filtering. Binding in our model, could
be achieved in a hierarchical system where associations between different input
streams are learned at higher levels of the hierarchy. However, with our use of the
TP algorithm, TP+A could be said to apply binding of locally encoded features,
which are then fed upward due to the dendrite inhibition mechanism.

Future work will focus on the incorporation of TP+A into a hierarchy, where
higher layers would need mechanisms to automatically elicit endogenous atten-
tion from lower layers, instead of simulating this feature as we did in this treat-
ment. A fully functioning HTM hierarchy that is capable of action, attention,
and recognition is still only theoretical. Through the inclusion of a mechanism
for attention we believe we have made a significant step towards this goal.

6 Conclusion

We have presented a model for attention in a framework where prediction errors
are suppressed. We proposed that endogenously triggered attentional filtering
could be achieved through the targeted disruption of predictions. To implement
this model we placed the neocortically inspired TP algorithm into a framework
inspired by predictive coding. We added feedback mechanisms and a new neu-
ron, the attention-cell; we refer to this connectionist system as TP+A. Our
experiments show that TP+A successfully displayed phenomena consistent with
both endogenous and exogenous attention. Future work will focus on integrating
TP+A into a hierarchical system.
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