
A Two Level Local Search for MAX-SAT
Problems with Hard and Soft Constraints ?

John Thornton, Stuart Bain, Abdul Sattar, and Duc Nghia Pham

School of Information Technology,
Griffith University Gold Coast, Southport, Qld, Australia, 4215
{j.thornton,s.bain,a.sattar,duc.pham}@mailbox.gu.edu.au

Abstract. Local search techniques have attracted considerable interest
in the AI community since the development of GSAT for solving large
propositional SAT problems. Newer SAT techniques, such as the Dis-
crete Lagrangian Method (DLM), have further improved on GSAT and
can also be applied to general constraint satisfaction and optimisation.
However, little work has applied local search to MAX-SAT problems
with hard and soft constraints. As many real-world problems are best
represented by hard (mandatory) and soft (desirable) constraints, the
development of effective local search heuristics for this domain is of sig-
nificant practical importance.
This paper extends previous work on dynamic constraint weighting by
introducing a two-level heuristic that switches search strategy according
to whether a current solution contains unsatisfied hard constraints. Us-
ing constraint weighting techniques derived from DLM to satisfy hard
constraints, we apply a Tabu search to optimise the soft constraint vio-
lations. These two heuristics are further combined with a dynamic hard
constraint multiplier that changes the relative importance of the hard
constraints during the search. We empirically evaluate this new algo-
rithm using a set of randomly generated 3-SAT problems of various sizes
and difficulty, and in comparison with various state-of-the-art SAT tech-
niques. The results indicate that our dynamic, two-level heuristic offers
significant performance benefits over the standard SAT approaches.

1 Introduction

Problems containing hard and soft constraints are very common in real world
situations. For example, a typical university timetabling problem contains hard
constraints specifying that only one class can be scheduled in a particular room
at a particular time, with additional soft constraints expressing preferences for
class times (e.g. a lecturer may prefer not to teach on Fridays). The addition of
soft constraints changes the standard formulation of a Constraint Satisfaction
Problem (CSP) into an over-constrained optimisation problem, where the ob-
jective is to satisfy all hard constraints and maximise the level of satisfaction of
the soft constraints (according to some predefined metric).
? The authors gratefully acknowledge the financial support of the Australian Research

Council, grant A00000118, in the conduct of this research



1.1 Representing and Solving Over-Constrained Problems

Various approaches have been proposed to represent over-constrained problems
within the constraint satisfaction literature, including Freuder and Wallace’s
seminal paper on partial constraint satisfaction [5]. Here the objective is to
maximise the total number of satisfied constraints (rather than to satisfy the
hard constraints and then maximise the number of satisfied soft constraints).
In [2] the idea of a two-level distinction between hard and soft constraints is
extended to a multiple level constraint hierarchy, where constraints are classified
into separate levels, such that the constraints of each succeeding level are strictly
less important than any one constraint of the previous level. More recently, [1]
proposed the more general semiring framework for representing over-constrained
problems, which is capable of modelling traditional CSPs, constraint hierarchies,
fuzzy CSPs and probabilistic CSPs.

Although these formalisms for representing over-constrained problems are in-
dependent of the algorithms used to solve these problems, most of the work in the
area has concentrated on the use of complete techniques. For example, in [5] the
standard backtracking approach for CSPs is extended to solve over-constrained
problems using branch-and-bound and in both [1] and [2] arc-consistency tech-
niques are developed, with [1] introducing extensions to the Davis-Putnam algo-
rithm for use with semirings, and [2] detailing linear programming methods for
use with constraint hierarchies. However, more recent work [7] has successfully
applied local search to hierarchical constraint satisfaction.

1.2 Local Search with Hard and Soft Constraints

In this paper we are interested in applying local search techniques to over-
constrained problems with hard and soft constraints. While local search can be
trivially applied to the problem of maximising the total number of satisfied con-
straints, little work has been done in extending local search to over-constrained
problems with hard and soft constraints. A start in this direction was made in
[9] where the well known WalkSAT local search technique was applied to the
weighted MAX-SAT problem. In this paper, the hard constraints were repre-
sented by making the weighted cost of each hard constraint exceed the sum of
the weighted cost of all soft constraints. In this way the search always prefers a
solution that satisfies all hard constraints regardless of the level of soft constraint
violation. In [3] this work was taken further by recognising that the larger the
weight differential between hard and soft constraints, the slower the search. This
insight was factored into a constraint weighting algorithm by setting the hard
constraint weight differential to a hand-tuned optimal level (generally slightly
exceeding the average count of soft constraint violations during the search). Par-
allel work on Tabu search [14] looked at dynamically adjusting the weight on
constraint subclasses according to whether all constraints in the subclass are
satisfied (so reducing weight) or unsatisfied (so increasing weight) during a fixed
period of iterations. This work was combined in [18], which introduced a dynamic



constraint weighting technique capable of both adding weights to frequently vi-
olated constraints and maintaining a dynamic weight differential between the
hard and soft constraints.

1.3 Recent Applications of Local Search to MAX-SAT

More recently, state-of-the-art local search SAT techniques, such as the Discrete
Lagrangian Method (DLM) [16] and Guided Local Search (GLS) [12] have been
successfully applied to the DIMACS benchmark over-constrained jnh MAX-SAT
problems. The jnh problems are (mostly) over-constrained, with each constraint
having a weight between 1 and 1000, and the search objective being to find a
minimum weighted cost solution. Both DLM and GLS are constraint weighting
techniques that add weight to unsatisfied constraints while simultaneously keep-
ing track of original jnh problem weights. In the reported studies, GLS marginally
outperformed DLM on the jnh problems but was unable to match DLM on the
larger DIMACS challenge problems [11].

The motivation of this study is to advance the state-of-the-art in solving large
hard and soft constraint problems. Given that constraint weighting heuristics
(such as DLM and GLS) represent the state-of-the-art for SAT and weighted
MAX-SAT problems [19], we decided to use a weighting heuristic as the basis
for a new approach. As existing work in the area indicates that the simple fixed
hard constraint multiplier used by DLM and GLS (on the weighted MAX-SAT
problems) is not the best way to deal with hard constraints, we further decided
to incorporate the dynamic hard constraint multiplier proposed in [18] into our
new approach.

In the remainder of the paper we explain in more detail the principles un-
derlying constraint weighting and introduce a modified constraint weighting al-
gorithm based on DLM. We then explain and combine the dynamic constraint
weighting heuristic from [18] into the modified algorithm. As a result of empirical
testing of this technique on a range of randomly generated MAX-SAT problems
with hard and soft constraints, we further introduce a second level Tabu search
heuristic [6] that controls the search in areas where only soft constraints are vio-
lated. Finally, this two level dynamic constraint weighting heuristic is evaluated
against the original one-level heuristic, a pure Tabu search and the well known
NOVELTY+ SAT algorithm.

2 Constraint Weighting Local Search

The basic idea of constraint weighting is to change the cost of the solution space
by adding weights to frequently violated constraints. In the SAT domain, a
constraint weighting algorithm (such as [13]) will start with a complete random
instantiation of variables and proceed to take local cost improving moves (i.e.
flipping or changing the variable that causes the greatest decrease in the number
of false clauses) until a local minimum is reached where no more cost improving
moves are available. The algorithm will then add weight to all currently false



constraints (i.e. clauses) and continue the search. In this way the local minimum
is ”filled in” [13] and the search can progress to new areas. Constraint weighting
continues visiting local minima and adding weights until either a global minimum
is reached (with cost zero) or the algorithm is timed out.

2.1 Weight Reduction Heuristics

Although simple constraint weighting techniques met with success on smaller
SAT problems, other non-weighting local search techniques (such as RNOV-
ELTY [10]) proved superior on larger and more difficult problems. It was rea-
soned that the deterioration of weighting techniques on these problems was due
an excessive build up of weights, making the addition of weight in the later stages
of the search less and less effective [4]. Therefore various weight reduction or nor-
malisation schemes were proposed, most notably DLM [16] and later GLSSAT
[11] and Smoothed Descent and Flood (SDF) [15]. Of these, SDF opted for a
continuous normalisation of weights after each weight increase and adopted a
multiplicative weight increment scheme, whereas both DLM and GLSSAT used
an additive scheme with periodic weight reduction. On the basis of the published
empirical results for these techniques, SDF proved promising on smaller prob-
lems but due to the large overhead of continuous weight adjustments was unable
to match the overall performance of DLM. Similarly GLSSAT proved competi-
tive on small problems, but not on the larger DIMACS instances (for instance
compare the par problem results in [11] with [19]). On this basis we decided to
use DLM as the starting point for our own work.

2.2 Simplifying DLM

There have been several versions of DLM, mainly developed to solve the larger
and more challenging DIMACS par and hanoi problems. In this study we decided
to remove the specialised heuristics from DLM and concentrate on the core
effectiveness of the technique. We therefore retained the DLM weight reduction
scheme but removed the Tabu list and Flat Moves parameters that are used
to help DLM explore plateau areas1. This resulted in the development of the
MAX-AGE heuristic [17], which uses a simple random probability of taking a
zero cost move on a plateau (otherwise weight is added) and also has a bias to
accept infrequently used zero cost moves. In this way, the difficult to tune Tabu
list length and Flat Moves parameters from DLM are replaced by a fairly robust
zero cost move probability (set at 15% in the current study). Our empirical
studies have already shown MAX-AGE to be comparable to DLM on a range
of the larger DIMACS problems, trading slightly fewer moves for the slightly
increased overhead of adding and reducing weight more often [17] (an adapted
MAX-AGE algorithm for solving hard and soft constraint problems is shown in
Figure 1).

1 A plateau is an area where only equal or deteriorating cost moves are available.



procedure MAX-AGE
begin

Generate a random starting point
bestSolutionCost ← unweighted solution cost
hardMultiplier ← 1
Initialise counters and clause weights to zero
while bestSolutionCost < objective and flips < maxFlips do

B ← set of best weighted cost single flip moves
if no improving x ∈ B then

if oldest x ∈ B has age(x) ≥ maxAge then
B ← x
maxAge ← maxAge + 1

else if random(p) ≤ P then
B ← ∅

end if
end if
if B 6= ∅ then

Randomly pick and flip x ∈ B
age(x) ← ++flips
if unweighted solution cost < bestSolutionCost then

bestSolutionCost ← unweighted solution cost
else

Increase weight on all false clauses
if false hard clauses exist then ++hardMultiplier
else if hardMultiplier > 1 then −− hardMultiplier
if ++increases % DECREASE = 0 then

Decrease weight on all weighted clauses
end if

end while
end

Fig. 1. The MAX-AGE Algorithm for Hard and Soft Constraints

2.3 Dynamic Hard and Soft Constraint Weighting

The MAX-AGE algorithm was initially developed for solving satisfiable prob-
lems. However, it is a trivial exercise to adapt local search for over-constrained
problems, as it already searches in the space of inconsistent assignments. Hence
MAX-AGE also keeps track of the unweighted cost of each solution point vis-
ited in the search, in order to recognise when a new best cost solution has been
found2 (this is done using bestSolutionCost in Figure 1). As previously dis-
cussed (in Section 1.2), hard and soft constraints can be represented by giving
a weight penalty to the hard constraints. This can be incorporated into a con-
straint weighting algorithm by considering the hard constraint weight to be a
hard constraint multiplier, such that the weighted cost of a particular hard con-
straint is the product of the hard constraint multiplier and the actual weight
currently added to the constraint. In effect, using a hard constraint multiplier
with a value n is equivalent to solving a problem where each hard constraint is
repeated n times [3].

In [18] it was further demonstrated that performance gains could be obtained
by dynamically adjusting the value of the hard constraint multiplier during the
search. This idea is incorporated into Figure 1 using hardMultiplier. Here MAX-
AGE continuously increases hardMultiplier at each local minimum (from the

2 In practice a copy of the current best solution found would also be kept.



initial value of one) until a solution is found that satisfies all hard constraints.
In this way, the relative importance of the hard constraints is raised until they
are all satisfied. Then, in hard constraint satisfying local minima, the value of
hardMultiplier is decremented to bring the search back to the point where the
summed cost of the currently false soft constraints just balances the cost of
making a hard constraint false.

The use of a dynamic hard constraint multiplier also changes the problem
of measuring bestSolutionCost. In a system where each hard constraint is more
important than the sum of all soft constraints, a solution that satisfies all hard
constraints will always be preferred over a solution that does not. However allow-
ing the hard constraint multiplier to vary destroys this property. Hence, when
calculating the unweighted solution cost in Figure 1, we must reintroduce the
property that each hard constraint violation costs ns + 1 where n is the number
of soft constraints and s is the cost of violating a soft constraint.

3 A Two-Level Heuristic for Hard and Soft Constraints

In order to evaluate the hard and soft constraint version of MAX-AGE we de-
veloped two non-weighting local search algorithms using NOVELTY+ [8] and
an augmented Tabu search (TABU) based on the SAT source code developed
in [15]. Starting with this code, we incorporated the hard constraint multiplier
(described in the previous section) into both algorithms and additionally incor-
porated a random move feature and aspiration condition [6] into TABU. Our
original SAT Tabu heuristic disallowed the undoing of a move during the search
until t subsequent moves have been made (i.e. simulating a Tabu list of length
t). To this we added an aspiration condition that always allows cost improving
moves and moves that improve on the best cost yet achieved for a given vari-
able value (otherwise tabu moves are disallowed). Then, in a situation where
all moves are tabu, we randomly select a move from those variables that are
involved in constraint violations.

Initial tests on TABU showed that it is relatively poor at finding hard con-
straint satisfying instantiations on problems where this task was in itself dif-
ficult. However, on problems where the hard constraint problem is relatively
easy, TABU proved very effective at optimising the level of soft constraint viola-
tions. These observations lead us to develop a two-level heuristic using constraint
weighting to satisfy the hard constraints and a Tabu search to satisfy the soft
constraints (shown in Figure 2). This TWO-LEVEL move selection heuristic re-
places the MAX-AGE heuristic that populates B in Figure 1. In MAX-AGE,
moves are selected according to the minimum cost given by the function:

solutionCost = α

n∑

i=1

w(hi) +
m∑

j=1

w(sj)

where α = the current value of hardMultiplier, n = the total number of hard
constraints, m = the total number of soft constraints, hi is hard constraint i, sj



is soft constraint j and w(xi) returns the weighted cost of constraint xi if xi is
false, zero otherwise. In the TWO-LEVEL cost function, the

∑m
j=1 w(sj) term is

replaced by
∑m

j=1 c(sj) where c(sj) returns one (rather than the weighted cost)
if soft constraint sj is false, zero otherwise.

function TWO-LEVEL MOVE SELECTION
begin

bestChange ← 0
hCount ← total false hard constraints in current solution
for each false constraint fi do

for each variable vj ∈ fi do
hChange ← change in weighted hard constraint cost from flipping vj

sChange ← change in unweighted soft constraint cost from flipping vj

costChange ← (hardMultiplier × hChange) + sChange
if costChange ≤ bestChange then

age ← number of flips since vj was last flipped
sCount ← total false soft constraints resulting from flipping vj

if age ≤ hardTabu then tabu ← true
else if hCount ≤ hChange and age ≤ sCount then tabu ← true
else tabu ← false
hBest ← least count of false hard constraints yet achieved by vj

sBest ← least count of false soft constraints yet achieved by vj

if hCount− hChange < hBest or
(hCount = 0 and sCount < sBest) then aspired ← true

else aspired ← false
if not tabu or aspired then

if costChange < bestChange then
B ← ∅
bestChange ← costChange

end if
B ← vj

end if
end if

end for
end for
if B = ∅ and hCount = 0 then

B ← randomly selected vj from randomly selected fi

return B
end

Fig. 2. The TWO-LEVEL move selection heuristic

The main principle of the TWO-LEVEL heuristic is that weight is only con-
sidered on violated hard constraints. For this reason a random move is required
in the Tabu heuristic to escape local minima in regions where all hard constraints
are satisfied (as adding weight in these areas will have no effect). Additionally,
a hardTabu constant (= 3) is used to avoid immediately undoing the random
move. As a major aim in developing MAX-AGE was to reduce the complexity
of the parameters used in DLM (see Section 2.2) the length of the soft Tabu
list in TWO-LEVEL was set equal to the current number of unsatisfied soft
constraints in the search (rather than introduce another Tabu list length param-
eter). This decision was based on empirical observations rather than a strong
theoretical justification, and may therefore have to be revised in the light of
further evidence.



Finally the DECREASE parameter from Figure 1 was augmented in TWO-
LEVEL so that the frequency of constraint weight decreases depends on the
proportion of time the search spends on satisfying soft constraints, according to
the following scheme:

AugmentedDecrease = DECREASE +
softMoves× 100

softMoves + hardMoves

where DECREASE has a constant value of 10 (taken from [19]), softMoves =
the number of moves taken with all hard constraints satisfied and hardMoves
= the number of moves taken with at least one hard constraint violated. The
AugmentedDecrease feature therefore slows the rate of decrease of the hard
constraint weights when the search remains in areas where all hard constraints
are satisfied.

4 Experimental Study

4.1 Problem Generation

In order to evaluate the TWO-LEVEL algorithm we decided to look at four
problem dimensions: problem size, overall problem difficulty, the hard constraint
problem difficulty and the ratio of hard to soft constraints. As we were unable to
find benchmark problems that vary in all these dimensions, we decided to sample
the space of randomly generated 3-SAT problems. While random problems do
not measure the effect of structure on algorithm performance they enable us
to control average problem difficulty by varying the clause to variable ratio. In
addition, using 3-SAT problems we can arbitrarily divide clauses into hard and
soft constraints and still have a measure of the relative difficulty of the hard
constraint sub-problem.

We based our empirical study on three sets of randomly generated 3-SAT
problems all sampled from the phase transition region (i.e. with a clause to
variable ratio of 4.3). To make the problems relatively challenging (in terms of
size) we generated 10 problems with 400 variables, 10 with 800 variables and
10 with 1600 variables, plus we used one f-series problem at each size from
the DIMACS SAT benchmark library. Then, for each problem, we randomly
generated and added a extra clause for each clause in the original problem (e.g.
for a 400 variable 1720 clause problem we added another 1720 clauses), resulting
in a second problem set with a clause to variable ratio of 8.6. This problem
set was further multiplied by dividing up the hard and soft constraints into
three ratios: 50%, 75% and 100%, where an n% ratio means the first n% of the
clauses in the original problem are defined as hard constraints (e.g. in a 400
variable 3440 clause problem, if n = 50, the first 50% of the 1720 clauses which
made up original problem are defined as hard). Using these problem generation
procedures we constructed 4 problem classes at each of the 3 problem sizes,
making a total of 12 data sets, each containing 11 individual problems. The
data sets are identified using the format hxhns, where x specifies the number



Solved Soft Cost Number of Flips Time

Problem Method % of 110 Mean Max Min Mean Median Std Dev Mean

h400h50s TABU 100.00 105.66 118 98 385499 358115 278057 9.98
NOVELTY+ 100.00 167.55 181 156 483528 455726 289826 7.04
MAX-AGE 100.00 135.08 146 123 412152 395993 344137 18.16
TWO-LEVEL 100.00 104.15 114 98 218261 111305 236683 8.53

h400h75s TABU 100.00 123.17 144 108 487509 463778 281986 13.48
NOVELTY+ 100.00 168.71 182 148 519810 520912 283110 7.01
MAX-AGE 100.00 148.19 158 131 355046 289414 291971 19.14
TWO-LEVEL 100.00 119.10 129 108 314484 264277 285989 10.07

h400h100s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 99.09 180.59 200 152 423190 385968 268140 3.56
MAX-AGE 46.36 180.51 200 156 453510 394879 279855 17.87
TWO-LEVEL 73.64 175.33 198 151 299752 162736 299894 8.36

orig400 TABU 98.18 0.00 0 0 95725 41601 135638 0.42
NOVELTY+ 100.00 0.00 0 0 97280 33417 144974 0.35
MAX-AGE 100.00 0.00 0 0 29682 14164 41978 0.16
TWO-LEVEL 100.00 0.00 0 0 41638 13217 92212 0.22

h800h50s TABU 9.09 245.00 259 214 524697 512840 235755 26.78
NOVELTY+ 100.00 359.32 377 330 451359 424782 270922 10.43
MAX-AGE 100.00 289.63 313 257 181927 1993 306001 16.75
TWO-LEVEL 100.00 201.45 212 193 391025 334046 258612 35.61

h800h75s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 100.00 371.39 391 347 503110 501893 277671 11.52
MAX-AGE 100.00 318.11 337 295 361073 352352 271479 39.10
TWO-LEVEL 100.00 241.75 258 228 398243 399929 303827 26.83

h800h100s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 90.91 369.62 412 339 505453 468170 287641 6.82
MAX-AGE 0.91 329.00 329 329 816356 816356 0.00 70.35
TWO-LEVEL 46.36 343.78 381 313 490876 514804 268261 30.98

orig800 TABU 41.82 0.00 0 0 361592 281072 247563 2.23
NOVELTY+ 90.00 0.00 0 0 225248 118765 226833 1.10
MAX-AGE 100.00 0.00 0 0 108463 68454 136127 0.69
TWO-LEVEL 100.00 0.00 0 0 87370 49610 108346 0.63

h1600h50s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 100.00 788.71 822 740 470748 402339 297055 19.52
MAX-AGE 100.00 634.36 676 570 101848 4019 240074 28.39
TWO-LEVEL 100.00 410.84 427 393 571933 584322 252455 161.00

h1600h75s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 100.00 790.4 832 740 515291 553617 288798 21.28
MAX-AGE 100.00 681.71 715 642 396506 353132 289177 118.33
TWO-LEVEL 100.00 484.73 503 452 384046 350721 265745 78.59

h1600h100s TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 9.09 745.90 804 708 450650 399261 304313 10.76
MAX-AGE 0.00 n/a n/a n/a n/a n/a n/a n/a
TWO-LEVEL 2.73 674.33 693 637 523352 372545 289618 100.02

orig1600 TABU 0.00 n/a n/a n/a n/a n/a n/a n/a
NOVELTY+ 6.36 0.00 0 0 411237 264014 292473 3.21
MAX-AGE 35.45 0.00 0 0 398464 374962 253588 3.89
TWO-LEVEL 85.45 0.00 0 0 244216 180327 203094 2.53

Table 1. Experimental Results



of variables and n specifies the ratio of hard constraints. In addition, the origx
problems represent the original 3-SAT problems with the 4.3 clause to variable
ratio.

The data sets are designed to test the effects of problem size and difficulty by
varying the number of variables and constraints, and the effects of the proportion
of hard constraints and the relative difficulty of the hard constraint problem by
varying the proportion of hard constraints. For example, an h800h100s problem
represents a difficult hard constraint problem as all the clauses in the origi-
nal phase transition problem are defined hard, whereas in the corresponding
h800h50s problem the hard constraint problem will be easier, as 50% of the
clauses in the original phase transition problem have now become soft.

4.2 Experimental Analysis

The results in Table 1 compare the performance of TWO-LEVEL with the
three control algorithms introduced in Section 3 (MAX-AGE, TABU and NOV-
ELTY+), giving averages of 10 runs on each problem (i.e. 110 runs per data set)
with each run timed out after 1,000,000 flips. As TABU and NOVELTY+ both
perform flips in significantly less time than the clause weighting algorithms, we
performed further experiments allowing TABU and NOVELTY+ extra time to
see if further cost reductions were possible. These CPU time results are sum-
marised in the two graphs of Figures 3 and 4 showing anytime curves for each
algorithm on the h400h75s and h1600h75s data sets respectively.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400
Violated Constraints (h400h75s) vs Time

CPU Time (seconds)

A
ve

ra
ge

 V
io

la
te

d 
C

on
st

ra
in

ts

Tabu
NOVELTY+
MAX−AGE
TWO−LEVEL

Fig. 3. h400h75s Results

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600
Violated Constraints (h1600h75s) vs Time

CPU Time (seconds)

A
ve

ra
ge

 V
io

la
te

d 
C

on
st

ra
in

ts

NOVELTY+
MAX−AGE
TWO−LEVEL

Fig. 4. h1600h75s Results

Overall the results in Table 1 confirmed our expectations that TWO-LEVEL
would outperform both the MAX-AGE and TABU heuristics on which it is
based. While TABU performed well on the smallest problems with the easi-
est hard constraint sub-problem (h400h50s), it was uncompetitive on the larger
and harder problems, timing out completely on the h1600 problems. Conversely,
MAX-AGE showed a fairly consistent ability to find solutions across all data



sets (only falling back somewhat on the larger, hardest problems h800h100s
and h1600h100s). Also, as expected, MAX-AGE performed well on the origi-
nal under-constrained data sets (orig400-1600), although TWO-LEVEL proved
better on the larger orig800 and orig1600 problems. This suggests that TWO-
LEVEL’s use of a hard Tabu list (see Figure 2) is also beneficial on larger
under-constrained problems. Overall, however, MAX-AGE was consistently out-
performed by TWO-LEVEL both in terms of average soft cost and in terms of
average flip count and average CPU time.

The results for NOVELTY+ in comparison to TWO-LEVEL present a more
interesting case. While TWO-LEVEL consistently finds better soft cost solutions
on the over-constrained problem sets, NOVELTY+ is considerably more reli-
able in finding solutions to the hardest over-constrained problems (h400h100s,
h800h100s and h1600h100s). Also, as NOVELTY+ is significantly faster than
TWO-LEVEL in terms of flips per second, the question arises whether NOV-
ELTY+ could find better solutions given an equal amount of time. To this end,
we re-ran NOVELTY+ and TABU on the hnh75s data sets, allowing the same
time cut-off that was granted to the weighting algorithms. The graphs in Fig-
ures 3 and 4 show that these increased run-times do not alter the relative perfor-
mance of the algorithms, with TWO-LEVEL consistently achieving the lowest
soft cost, independently of the time cut-off point. Therefore, we can conclude
that TWO-LEVEL has the better average performance on all problems except
those where the problem of satisfying the hard constraints is itself difficult (i.e.
the hn100s problems). In these cases NOVELTY+ is preferred, as it shows a
superior ability to find a hard constraint satisfying solution in the presence of
soft constraints.

5 Conclusion

The paper has presented a new TWO-LEVEL algorithm for solving problems
with hard and soft constraints, based on an amalgamation of a constraint weight-
ing heuristic for satisfying hard constraints and a Tabu list with aspiration for
optimising soft constraints. Our empirical study has demonstrated the useful-
ness of the TWO-LEVEL algorithm for solving a range of randomly generated
MAX-SAT problems with hard and soft constraints and has shown the overall
superiority of TWO-LEVEL on these problems in comparison to three control
algorithms.

Of the three control algorithms, NOVELTY+ proved of greatest interest, as
it was able to achieve better results than TWO-LEVEL on those instances where
the problem of satisfying the hard constraints is itself difficult (i.e. the ratio of
hard clauses to variables = 4.3). This result suggests NOVELTY+ is the better
heuristic for satisfying hard constraints when soft constraints are also present.
Consequently, in our future work, we intend to investigate the combination of
NOVELTY+ and TABU into an alternative two-level heuristic.



References

1. U. Bistarelli, S. Montanari and F. Rossi. Semiring-based constraint solving and
optimization. Journal of ACM, 44(2):201–236, 1997.

2. A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies. Lisp and
Symbolic Computation, 5(3):223–270, 1992.

3. B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms
for partial MAX-SAT. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), pages 332–337, 1997.

4. J. Frank. Learning short term weights for GSAT. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI-97), pages 384–389, 1997.

5. E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1):21–70, 1992.

6. F. Glover. Tabu search: Part 1. ORSA Journal on Computing, 1(3):190–206, 1989.
7. M. Heinz, L. Fong, L. Chong, S. Ping, J. Walser, and R. Yap. Solving hierar-

chical constraints over finite domains. In Proceedings of the Sixth International
Symposium on Artificial Intelligence and Mathematics, 2000.

8. H. Hoos. On the run-time behavior of stochastic local search algorithms for SAT. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99), pages 661–666, 1999.

9. H. Jiang, Y. Kautz and B. Selman. Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In First International Joint Workshop
on Artificial Intelligence and Operations Research, 1995.

10. D. McAllester, B. Selman, and H. Kautz. Evidence for invariance in local search.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), pages 321–326, 1997.

11. P. Mills and E. Tsang. Guided local search applied to the satisfiability (SAT)
problem. In Proceedings of the 15th National Conference of the Australian Society
for Operations Research (ASOR’99), pages 872–883, 1999.

12. P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-
SAT problems. Journal of Automated Reasoning, 24:205–223, 2000.

13. P. Morris. The Breakout method for escaping local minima. In Proceedings of the
Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 40–45,
1993.

14. A. Schaerf. Tabu search for large high school timetabling problems. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages
363–368, 1996.

15. D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT
procedures. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00), pages 297–302, 2000.

16. Y. Shang and B. Wah. A discrete Lagrangian-based global search method for
solving satisfiability problems. J. Global Optimization, 12:61–99, 1998.

17. J. Thornton, W. Pullan, and J. Terry. Towards fewer parameters for SAT clause
weighting algorithms. In Proceedings of the Fifteenth Australian Joint Conference
on Artificial Intelligence (AI’2002), To appear, 2002.

18. J. Thornton and A. Sattar. Dynamic constraint weighting for over-constrained
problems. In Proceedings of the Fifth Pacific Rim Conference on Artificial Intelli-
gence (PRICAI-98), pages 377–388, 1998.

19. Wu Z. The Theory and Applications of Discrete Constrained Optimization using
Lagrange Multipliers. PhD thesis, Department of Computer Science, University of
Illinois, 2000.


