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Abstract. To date, several types of structure for finite Constraint Satisfaction
Problems have been investigated with the goal of either improving the perfor-
mance of problem solvers or allowing efficient problem solvers to be identified.
Our aim is to extend the work in this area by performing a structural analysis in
terms of variable connectivity for 3-SAT problems. Initially structure is defined in
terms of the compactness of variable connectivity for a problem. Using an easily
calculable statistic developed to measure this compactness, a test was then cre-
ated for identifying 3-SAT problems as either compact, loose or unstructured (or
uniform). A problem generator was constructed for generating 3-SAT problems
with varying degrees of structure. Using problems from this problem generator
and existing problems from SATLIB, we investigated the effects of this type of
structure on satisfiability and solvability of 3-SAT problems. For the same prob-
lem length, it is demonstrated that satisfiability and solvability are different for
structured and uniform problems generated by the problem generator.

1 Introduction

Non-randomness in Constraint Satisfaction Problems (CSPs) has generated consider-
able interest in the CSP community [1]. This has resulted in a number of alternative
models for generating CSPs with more realistic structures than using random models
[2]. However it is still not possible to provide conclusions other than straight-forward
ones such as: sometimes structured problems differ from non-structured in their char-
acteristics. Partially such uncertainty is explained by the lack of a clear definition of
structure. Although there has been some work on statistically classifying problem struc-
ture using symmetry [3], the level of interchangeability [4], clustering coefficient [5]
and backbone size ([6], [7]) and approximate entropy [8], generally a problem is called
structured if it is not uniformly random. As a consequence, research in the field has pro-
duced polar conclusions: in [4] it was noted that real-world structured problems have
greater simplicity than randomly generated problems, while in [6] it was suggested that
harder problems can be constructed by perturbations of regular problems. In [9] it was
demonstrated that structure affects algorithm performance, while in [10] no noticeable
effects were reported. It is important to note here that in this previous work, no statisti-
cal tests of specific structure have been proposed. Therefore, conclusions on structured



problems were generally conclusions on the properties of generators, as problems were
not tested independently for the structure investigated ([3], [4], [6]).

This study focusses on the k-SAT problem which is a special class of the Conjunc-
tive Normal Form (CNF) problem with precisely k variables per clause, and has become
a popular test-class for the properties of random problems ([11],[12]). Many important
characteristics of k-SAT problems such as cross-over points, phase transition regions
and satisfiability points have been studied experimentally and analytical [13].

A simple uniform binary model allows one to analyse some phenomena of k-SAT
problems. The uniform binary model is a composition of two processes, one which
randomly builds or selects clauses and a second which randomly negates the variables
[11]. Therefore it is possible to induce a structure, in the sense of non-uniformity, for
either the first or the second processes. In this paper we develop a test of non-uniformity
in selecting clauses, and investigate the influence of such a structure on the satisfiability
and solvability of 3-SAT problems. Satisfiability is the generic property of a problem
to have at least one solution, while solvability is solver specific and is the property that
the problem is able to be solved by that solver within a certain number of steps.

The remainder of this paper is structured as follows: Section 2 discusses uniform
and non-uniform models for random 3-SAT problems and shows that a problem can
be considered as a realization of a certain random process. Section 3 introduces a test-
statistic for uniformity and investigates the distribution of the statistic for a uniformly
generated 3-SAT problem, which is treated as a realization of a non-decreasing, tran-
sient discrete Markov chain. We then show examples of applications of the test to groups
of problems taken from the SATLIB library [14]. Section 4 presents a structured 3-SAT
problem generator using the random process developed in Section 3, introduces parame-
ters into the problem generator and derives testable ranges for these parameters. Section
5 discusses the results obtained for two groups of tests: firstly, a test for differences in
satisfiability for uniform and structured problems generated by the problem generator
and, secondly, a test on differences in solvability (i.e. effort required to find a solution
by a particular solver) for uniform and non-uniform problems. In Section 6 we discuss
the effects of structure, in terms of variable connectivity, on the satisfiability and solv-
ability of problems and outline the most important characteristics of the test-statistic
and problem generator. Finally some directions for future research are presented.

2 Uniform and Non-Uniform Binary Models for 3-SAT Problems

2.1 A Uniform Binary Model as a Two-Step Model

A 3-SAT problem is a constraint formula in conjunctive normal form with 3 variables
(literals) per clause. We denote the number of clauses in a 3-SAT problem by � and
the number of variables by � . The uniform binary model (often referred to as the uni-
form random model [15], or as the exact l-SAT model [10], or as the uniform model
[14]) uniformly selects � clauses from N3 possible combinations of variables, and
then uniformly negates variables in each selected clause. The uniform binary model
can be considered as a realization of two random processes: one governs adjacency of
variables and another the negation of variables. By utilising non-uniform rules for how



to group or negate variables, we can induce structure in either or both of the processes.
In this paper we focus only on the induction of structure into the process of grouping of
variables (i.e. the selecting of clauses).

2.2 Definition of a Non-Uniform Binary Model

In the uniform binary model, all clauses are selected uniformly. That is, there is no un-
derlying reason why any particular group of clauses will be selected in preference to
any other group of clauses. Consequently we can define a non-uniform problem as a
problem in which there are underlying reasons that cause the condition of unifor-
mity for selecting clauses to be violated. We will categorise non-uniform problems as
either loose or compact. A problem is loose if there is a tendency for any two clauses
to share at most one variable. A problem is compact if there is a tendency that any two
clauses share at least two variables. These definitions of structure can be formalized as
follows. Let us denote by n��� � ��� the number of common elements in two clauses
��� �� ������� � �� �. In a compact problem, the probability P��� that any two clauses in-
tersect in more than one variable, is greater than the same probability under the uniform
model �P���. In a loose problem, the probability that any two clauses intersect in no less
than two variables is greater than the same probability for the uniform binary model.
Fig. 1 illustrates both loose and compact problems according to this definition.

compact: P�n��� � ��� � �� � �P�n��� � ��� � ��� (1)

loose: P�n��� � ��� � �� � �P�n��� � ��� � ��� (2)
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Fig. 1. Planar representation of both loose and compact problems where � � � (������ �
��� � � � �� � �� � �� � �� � �� � 	 � ��� � ��
 � � � ���� � ��� � ��� � ��� �
���� � �� � ��� � ���� � ��� � ��	�� ����� � ��) (�������� � �� � � � �� � ��� � � �
��� � �� � �� � �� � �� � �� � �� � �� � � � �	� �
��� � � � 	� � �
 � � � ����� ����� � ��)



The definitions in (1) - (2) can be used to develop a non-uniform model. In the non-
uniform model, to construct a compact problem containing � clauses, starting from
the ��� clause (� � �� � � � ), in the formula, we will, with high probability, add a
clause to the formula if it intersects with at least one already selected clause in no less
than two variables. Similarly, for the loose problem of size � , starting from the � ��

clause, (� � �� ��� ), we will, with high probability, add a clause to the formula if it
intersects with any selected clause in no more than one variable.

In the following section we develop a test on uniformity of 3-SAT problems which
detects structure of the type defined by (1) - (2).

3 Testing for Uniformity

In Section 2, we have defined non-uniformity in random problems. To detect the struc-
ture defined by (1) - (2) requires a test which classifies a problem as either compact,
loose or uniform. Therefore, for the test of uniformity, we have the following set of
hypotheses:

Null hypothesis: The problem is uniformly randomly generated.
Compact alternative: The problem is not uniform but rather possesses a structure as
defined by the compact model (1).
Loose alternative: The problem is not uniform but rather possesses a structure as de-
fined by the loose model (2).

Note that, as for any statistical test, we are looking for some specific type of non-
uniformity. If there is another reason for a problem to be non-uniform, our test may not
detect this.

3.1 Zero Step Related Variable Pairs as a Test Statistic

Definition of Step Related Variable Pairs To carry out the proposed test of uniformity,
we require a statistic that is independent of the order of clauses. In this study we have
used the number of zero step related variable pairs, �����, as the test statistic which
is simply the count of the number of pairs of variables that appear at least once in the
same clause in the problem. That is, ����� is the number of edges, counted without
repetitions, which appear in the adjacency graph for the problem. The expected value
for ����� for a uniform binary 3-SAT problem is given by the recurrence relation
shown in Eq. (3) (where ����� � �) and is illustrated by Fig. 2. ����� is the first in
a family of statistics ����� which could be used to classify problems in terms of the
step relationships between variables. For example, in Fig. 1, 	 ��������, variables 1 and
2 are zero step related, 2 and 4 are one step related while 2 and 6 are two step related.
The general recurrence relation for ������ � 
 � � is given by (4) and shown in Fig.
2 for �����, ����� and �����.

������	 ��
 � ����� 	 ��
������

��� � ����
� � � (3)
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����� is the most suitable statistic from the����� family to be used as a test statistic
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Fig. 2. Counts of step related variable pairs for uniform binary model for �����, �����,
����� and ����� where � � ���

because ����� and ����� quickly diminish and would require sampling techniques
if used for moderate size problems.

For a problem of size � , we consider how ����� is distributed under the null
hypothesis that the problem is uniformly generated. Knowing this null-distribution we
can reject or accept the hypothesis of uniformity with a certain level of confidence,
measured by the probability to have the given value for� ���� from the uniform model.

Null-distribution of����� We consider a uniform problem as a realization of a non-
decreasing transient discrete Markov chain, so that when uniformly selecting a clause,
we can add to the collection of zero step related pairs 
 (
 � 	�� �� �� �
) new pairs
from 
 �N2 pairs. Then the distribution of ����� is completely determined by the
matrix of transient probabilities on the chain. By the nature of � ����, the larger the
problem, the less the distinction between non-structured and structured problems. In



the limit, when all pairs of variables are selected, ����� converges to 
, regardless
of how the problem was generated. However when � � �� and � � � �N3, the
transient probability ��� to move from state �, � � ���

, to state �	 
 at the ��	����,
� � �����, added clause is:

��� � � �����	 �� � �	 
������ � �� �
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(5)

For a reasonable problem size, the probability to have at least � zero-related pairs in a
problem of size � , �P������ � �� can be calculated by enumeration, and we use this
method for calculations in this study.

The cumulative probability of ���
���, shown in Fig. 3, demonstrates the symme-
try of the distribution that makes ����� appropriate for many statistical tests.
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Fig. 3. Cumulative probability of ������� where � is zero step related pairs. The median is at
1138 pairs, the critical region is ��� ����� � ����, ��

� ����� � ����.

For the purpose of our test, we first determine a critical region for � ����. This
is the domain of values of ����� where the probability of occurring under the null
distribution is less than some value �. For our classification of problems as loose and
compact, we denote ��

� ��� and ��� ��� as the boundaries (loose and compact) of
this critical region, and define the boundaries as follows:

�P������ � ��� ���� 
 ��
�P������ � ��

� ���� 
 ��
(6)

where � is a given confidence level that determines the error we allow for our conclu-
sions. In all experiments reported in this study we use the approximate 5%-confidence



level for both alternative hypotheses. The boundaries of the critical region for � �

�� and a confidence level of 5% are shown in Fig. 3 where � �

� �
��� � ���� and
��� �
��� � ����.

Uniformity test procedure For a given problem, the test is performed as follows:

1. Determine the number of variables (� ) and the number of clauses (� ) in the prob-
lem;

2. For the pair(� , � ), calculate the critical region for the chosen confidence level �;
3. Determine the number of zero related pairs ����� in the given problem;
4. Reject the hypothesis of uniformity if ����� is in the critical region, otherwise,

accept the uniformity.

At this point, we have only discussed the test in application to a problem in de-
termining whether the problem is uniformly generated or compact/loose. However,
����� could also be utilised for the more general question of problem classification
of 3-SAT problems. That is, is a proposed classification of 3-SAT problems justifiable
(rather than just a random grouping of problems).

Test of Randomness Procedure As we know the distribution of �����, we know
the median of the distribution (Fig. 3). Having a group of problems of the same size
from the same number of variables, we can test whether the group is a random selection
by applying the standard test of randomness [16]. For every problem in the group, the
probability to have ����� greater or less than the median is equal to 0.5. Therefore, if
in the group we have an unusually large or small number of problems having � ����
above (or below) the median, we can conclude that the group is not a random selection
but has been selected using some criteria related to our definition of problem structure.

3.2 Tests on problems from SATLIB

Uniform 3-SAT problems This test was performed using 3-SAT problems taken from
SATLIB (Uniform Random 3-SAT, phase transition region, unforced filtered). From
the description given in SATLIB of the model generator for this set of problems, we
would expect no regularity in the problems so the test should not conclude any evidence
that a problem is non-uniformly generated. In other words, if there is any difference in
the behaviour of problem solvers, such a difference cannot be explained by problem
structure (1) - (2). As shown in Fig. 3, the critical region for uniform problems where
� � 
�� and� � ��� is ��� �
��� � ����� ��

� �
��� � ���� that corresponds to the
5% confidence level. The median of���
��� is ����. Table 1 shows that a sample from
the library (uf100-430) is in a very good agreement with our expectations: no structure
is demonstrated, and the random sample is indeed random (i.e. there are approximately
the same number of problems above and below the median).



Table 1. ������� for a random sample from Uniform Random 3-SAT from SATLIB, the uf100-
430 series, format uf100-0###.cnf; and acceptance (A) or rejection (R) of the null-hypothesis
under the critical region: ��� ����� � ���� or ��

�
����� � ����; and the sign test on random-

ness.

### 107 108 119 122 125 132 146 151 170 180 187 216 224 225 228

�� 1147 1139 1140 1149 1147 1136 1132 1133 1130 1117 1139 1153 1135 1139 1138
�� A A A A A A A A A R A A A A A
Sign + + + + + - - - - - + + - + 0

Random 3-SAT models with controlled backbone size We tested 3-SAT models
taken from the SATLIB library with Controlled Backbone Size (CBS) where the back-
bone of a problem is basically the intersection of all solutions of the problem [7]. It is
stated in SATLIB that every CBS problem was uniformly generated. Therefore, sim-
ilar to what has been discussed for uniform random problems from the SATLIB, we
do not expect any detection of structure under the test for any particular CBS prob-
lem. However, if we believe that the size of backbone is an informative statistic which
is somehow connected to problem structure, we would expect that the group of CBS
problems is not a random selection from uniformly generated problems. Table 2 shows
that it is unlikely for the group of CBS problems to be a randomly selected group from
uniformly generated problems, and therefore, with high confidence (� � ����), it can
be concluded that a backbone size is a valid criteria for the problems’ classification.

Table 2. ������� for a random sample from problems with controlled backbones for the
CBS k3 n100 m429 b90 ###.cnf series from SATLIB; acceptance (A) or rejection (R) of the
null-hypothesis of uniformity under the critical region: ��� ����� � ���� or ��

� ����� � ����;
and the sign test on randomness of the sample from uniformly generated problems (the median
of ������� is 1136).

### 107 108 119 122 125 132 146 151 170 180 187 216 224 225 228

�� 1123 1135 1141 1130 1129 1125 1123 1137 1133 1132 1107 1121 1124 1120 1125
�� A A A A A A A A A A R A A A A
Sign – – + – – – – + – – – – – – –

4 Problem Generator with Prescribed Non-Uniformity

4.1 Markov Chain Underlying the Problem Generator

The uniform model can be considered as a realization of a random process of adding
pairs into zero step relationships for every new clause selected. The process is a non-
decreasing discrete Markov chain with finitely many states. Starting from some group
of selected clauses, the chain can be considered as homogeneous, with transition prob-
abilities given by (5).



4.2 Problem Generator

Problem Generator Algorithm The problem generator performs the following steps
to generate a problem of � clauses from � variables:

1. Uniformly selects a clause from all possible clauses.
2. Uniformly negates variables in the clause.
3. If the clause has not already been added, with some probability � (see below) add

the clause.
4. Repeats Steps 1 - 4 until � clauses have been selected.

Problem Generator Parameters The problem generator is a random generator with
six parameters ��������, where N is the number of variables, M is the number of
clauses, and� � ���� ��� ��� ��� are probabilities to add a clause if it, correspondingly,
adds 0, 1, 2, 3 new zero step related pairs (������ ��� �� �� ��� generates a uniform bi-
nary problem). By using appropriate probabilities � �� � � ��� �
, the problem generator
will either produce a loose or compact problem. The generated problem is then evalu-
ated using the test discussed in Section 3 to check that the problem is indeed structured.
From a sensitivity analysis performed on the generator, we have determined that when
�� � ����� ����� � � ��� �
, the generated problems are structured.

5 Tests on Properties of Uniform and Non-Uniform 3-SAT
Problems

In this section we analyze satisfiability and solvability of structured and uniform prob-
lems. For two classes of problems, we say that class A is more satisfiable than class B
if the probability for a randomly selected problem in class A to be satisfiable is greater
than the same probability for a randomly selected problem in class B. Similarly, we say
that class A has higher solvability under problem solver C than class B if the probability
for a randomly selected problem from class A to be solved in a fixed number of steps by
problem solver C is higher than the same probability for a randomly selected problem
from class B.

5.1 Test on Similarity of Satisfiability of Uniform and Non-Uniform Problems
from the Generator

We aim to test whether the structure as defined in (1) - (2) affects the satisfiability
of problems. For two samples � and �, we will test the hypothesis that there is no
difference in satisfiability of problems from � and � against the hypothesis that the
probability that an arbitrary unsatisfiable problem from the joined sample, � + �, be-
longs to � does not equal 1/2. We will apply the one-sided U-test with tied ranks [16],
on experimental data gathered in Table 3. This test allows one to reject the hypothesis
if sample �s distribution is shifted either left or right with respect to sample �s distri-
bution. That is, we reject the hypothesis of similarity because sample � is from more
(less) satisfiable class than sample �.



In other studies, for example [15], it has been noted that problem satisfiability
changes in the so-called transition region ���� 
 
���. To avoid this effect, our exper-
iments are for � � 
�� and � � ���. Five groups of problems were generated using
the parameters defined in Section 4 and all problems were tested for uniformity. The
problems were uniform������ 
��� ��� �� �� ���, compact������ 
��� ��� �� �� �����and
loose������ 
��� ��� �� �� ��� for which no trivial insolvability was allowed. To demon-
strate that the difference, if any, is not because of �� � �, additional compact
������ 
��� ��� �� �� ����� and loose ������ 
��� ��� �� �� ��� groups of problems were
used. The test was performed on random samples from the generated groups. Table 3
shows the counts of unsatisfiable problems, in groups of 10 problems generated with
different parameters of the generator. In Table 3, problems are classified loose, com-
pact and uniform for the critical region � �

� �
��� � ����� ��

� �
��� � ���
. With

Table 3. Number of unsatisfiable problems in series of 20 random samples in 10 problems of 400
clauses from 100 variables for different degrees of structure (��

� ����� � ��
�, ��� ����� �
����); and the rejection of the hypothesis of similarity because of lower (L) satisfiability.

� No unsatisfiable problems 
���� 
���� class test
1-1-1-1 0 1 0 1 2 3 0 1 0 1 0 0 0 0 0 0 1 1 4 0 1052 1081 uniform -

0-1-1-0.1 4 6 7 4 4 4 6 5 4 3 7 6 4 5 5 9 6 6 4 2 868 904 compact L
0-0-1-1 0 1 1 1 2 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1084 1100 loose -

1-1-0-0.1 1 2 2 1 1 2 3 3 4 2 3 4 1 1 3 1 3 0 4 2 914 951 compact L
1-1-0-1 0 0 0 1 1 0 0 0 1 0 2 0 0 0 0 0 0 0 1 1 1120 1161 loose -

� � ��, the test cannot reject the hypothesis of similarity between uniform and loose
problems. However, we would not expect unsatisfiability for problems of 400 clauses
from both the classes. At this size, it is more interesting to compare the compact class
with loose and uniform as well. With � � ��, the test rejected the hypothesis on sim-
ilarity between compact and uniform problems and between compact and loose prob-
lems. Therefore, we can say that our experimental data confirms that, for the same prob-
lem size, loose and uniform problems have greater satisfiability than compact problems.

5.2 Test on Similarity in Solvability for Uniform and Non-Uniform Problems

Our goal is to determine if problem structure, as defined by (1) - (2), affects problem
solvability. For two samples � and � from two classes of problems, we test the hy-
pothesis that there is no difference in solvability of these problem classes against the
hypothesis that either of the problem classes is more difficult, i.e. the probability that
a problem from sample � is harder than an arbitrary problem from sample � does not
equal 0.5. By applying the one-sided U-test, [16], on experimental data gathered in Ta-
ble 4 we will be able to state that the hypothesis of similarity can be rejected because
sample � is from a more difficult (easier) class than sample �.

For the reasons given in the test on similarity in satisfiability, we tested this hypothe-
ses on five groups of problems: ������ 
��� ��� �� �� ���, ������ 
��� ��� �� �� �����,



������ 
��� ��� �� �� ���, ������ 
��� ��� �� �� �����, and ������ 
��� ��� �� �� ���, test-
ing uniform problems against compact and loose problems, and compact problems
against loose problems.
Table 4 shows the average number of flips performed by MaxAge, a local search al-
gorithm introduced in [17], for the five groups of problems. Even at ��� confidence,
the test cannot reject the hypothesis of similarity between uniform and loose problems.
However, the test concludes, with ��-confidence, that there is a difference between
compact and uniform and also between compact and loose problems. We can say that
our experimental data rejects the hypothesis of similarity in solvability between com-
pact and loose or uniform problems because compact problems are more difficult to
solve.

Table 4. Average number of flips for MaxAge [17] in random samples of 15 problems of 400
clauses from 100 variables for different degrees of structure (��

� ����� � ��
�, ��� ����� �
����); and the rejection of the hypothesis of similarity because of lower (L) solvability.

� Average No of flips class test
1-1-1-1 276 500 569 1794 269 485 1800 305 152 158 315 2437 174 1260 327 uniform -

0-1-1-0.1 312 617 256 271 257 110 231 413 321 99 324 2149 415 156 1077 compact L
0-0-1-1 172 306 71 130 715 476 307 114 227 241 155 433 199 524 455 loose -

1-1-0-0.1 67 1441 3511 355 369 168 584 337 479 93 364 168 727 557 156 compact L
1-1-0-1 558 624 278 1380 798 443 1614 129 1031 93 717 100 318 912 408 loose -

6 Discussion and Conclusions

In this paper we have started to address the question of the effects of structure on the
properties of SAT problems. A classification of k-SAT problems as either uniform or
compact or loose on the basis of variables connectivity has been introduced and jus-
tified. This classification method has been developed as a test on problem uniformity
based on a simple statistic, the count of the number of zero step related variable pairs.
With this test, for problems of moderate size, we have shown that compact problems
have low satisfiability and they are more difficult to solve than uniform or loose prob-
lems for a local search algorithm. Also, there is no significant difference in solvability
and satisfiability between loose and uniform problems. It has been discussed that the
same statistic may be used to justify different classifiers. In particular, we have shown
that, in terms of variable connectivity, the size of a backbone is a proper classifier for
SAT problems.

Non-uniformity in a SAT problem can be induced either through connections be-
tween variables or through restrictions on values in the variable domain. We have in-
troduced possible candidates for classifying structures that are of a higher order than
the one used in this paper and feel that more sensitive structural analysis could be built



using such classifiers in a manner similar to that used in this paper. Addressing struc-
ture within the domain of variables would also seem to be a logical extension for the
structural analysis of SAT problems.

Another goal is to be able to identify problem structure that consists of a combi-
nation of both loose and compact substructures. Such structure should allow the appli-
cation of more generic problem solvers, such as Genetic Algorithms, which should be
able to identify and utilise substructures within a SAT problem.
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