
Dynamic Agent Ordering in Distributed
Constraint Satisfaction Problems ?

Lingzhong Zhou, John Thornton, and Abdul Sattar

School of Information Technology,
Gri�th University Gold Coast, Southport, Qld, Australia, 4215

{l.zhou, j.thornton, a.sattar}@griffith.edu.au

Abstract. The distributed constraint satisfaction problem (CSP) is a
general formalisation used to represent problems in distributed multi-
agent systems. To deal with realistic problems, multiple local variables
may be required within each autonomous agent. A number of heuristics
have been developed for solving such multiple local variable problems.
However, these approaches do not always guarantee agent independence
and the size of problem that can be solved is fairly limited.
In this paper, we are interested in increasing search e�ciency for dis-
tributed CSPs. To this end we present a new algorithm using unsatis�ed
constraint densities to dynamically determine agent ordering during the
search. The independence of agents is guaranteed and agents without
neighbouring relationships can run concurrently and asynchronously. As
a result of using a backtracking technique to solve the local problem,
we have been able to reduce the number of nogoods stored during the
search, leading to further e�ciency gains. In an empirical study, we show
our new approach outperforms an equivalent static ordering algorithm
and a current state-of-the-art technique both in terms of execution time
and memory usage.

1 Introduction
The constraint satisfaction paradigm is a well recognised and challenging �eld
of research in arti�cial intelligence, with many practical and important applica-
tions. A constraint satisfaction problem (CSP) is a problem with a �nite number
of variables, each of which has a �nite and discrete set of possible values, and a
set of constraints over the variables. A solution of a CSP is an instantiation of
all variables for which all the constraints are satis�ed.

When the variables and constraints of a CSP are distributed among a set of
autonomous and communicating agents, this can be formulated as a distributed
constraint satisfaction problem (distributed CSP), where agents autonomously
and collaboratively work together to get a solution. A number of heuristics have
been developed for solving distributed CSPs, such as synchronous backtracking,
asynchronous backtracking (ABT) [4], asynchronous weak-commitment search
? The authors gratefully acknowledge the �nancial support of the Australian Research
Council, grant A00000118, in the conduct of this research.

(AWC) [4] and the distributed breakout algorithm (DB) [5]. However, these al-
gorithms can only handle one variable per agent. In [1], Armstrong and Durfee
use dynamic prioritisation to allow agents with multiple local variables in dis-
tributed CSPs. Here, each agent tries to �nd a local solution, consistent with the
local solutions of higher priority agents. If no local solution exists, backtrack-
ing or modi�cation of the prioritisation occurs. The approach uses a centralised
controller, where one agent controls the starting and ending of the algorithm,
and a nogood processor which records all nogood information. However, these
centralised mechanisms are often not appropriate for realistic distributed CSPs.
In [6], Yokoo and Hirayama extended AWC search to deal with multiple local
variables in distributed CSPs. However, their approach requires a large space to
store nogoods during the search.

In this paper, we propose a new Dynamic Agent Ordering (DAO) algorithm,
which uses constraint density measures to locally compute a degree of unsatisfac-
tion for each agent. These values are used to dynamically set the order in which
agents are allowed to change their particular variable instantiations. In e�ect,
the agents' orders are decided naturally by their unsatis�ed constraint densities
during the search. As each local computation is independent from other agents,
the bene�ts of parallelism are retained, resulting in an approach that is suitable
for agent oriented design and e�cient in terms of memory cost.

In the rest of the paper, we formalise the de�nition of a distributed CSP.
Then, we describe the new algorithm and investigate its performance in an em-
pirical study. Finally, we discuss the possibility of using the new algorithm to
solve other variants of distributed CSPs.

2 Distributed Constraint Satisfaction Problems
A distributed constraint satisfaction problem is de�ned as a CSP, in which vari-
ables and constraints are distributed among multiple autonomous and commu-
nicating agents. The agents may be distributed in di�erent locations or in the
same location but among di�erent processes. Each agent contains a subset of the
variables and tries to instantiate their values. Constraints may exist between the
variables of one agent or between di�erent agents. The instantiations of the vari-
ables must satisfy all constraints. In this paper, we consider that all constraints
are binary.

2.1 Formalisation
In a distributed constraint satisfaction problem:
1. There exists an agent set A:

A = {A1, A2, ..., An}, n ∈ Z+;

2. Each agent has a variable set Xi and domain set Di,
Xi = {Xi1, Xi2, ..., Xipi};
Di = {Di1, Di2, ..., Dipi}, ∀i ∈ [1, n], pi ∈ Z+;

3. There are two kinds of constraints over the variables among agents:
(a) Intra-agent constraints, which are between variables of same agent.
(b) Inter-agent constraints, which are between variables of di�erent agents.
Agent Ai knows all constraints related to its variables. A variable may involve
both intra-agent and inter-agent constraints.

4. A solution S, is an instantiation for all variables that satis�es all intra-agent
and inter-agent constraints.

Since agents are distributed in di�erent locations or in di�erent processes, each
agent only knows the partial problem associated with those constraints in which
it has variables. A global solution then consists of a complete set of the overlap-
ping partial solutions for each agent. Communication among agents is necessary
and important in distributed CSPs, since each agent only knows its variables,
variable domains and related intra-agent and inter-agent constraints. Hence, to
evaluate a search algorithm, we not only need to measure the search speed but
also to consider the communication cost.

Example:

Consider the following distributed CSP, shown in Figure 1:

1. Agents: A1 and A2;
2. Variable sets: {X1, Y1, Z1} in agent A1and {X2, Y2, Z2} in agent A2;
3. Domain sets: {DX1 = {1, 3}, DY1 = {1, 2, 3}, DZ1 = {2, 4}} in agent A1and
{DX2 = {1, 2, }, DY2 = {2, 3}, DZ2 = {2, 3}} in agent A2;

4. Intra-agent constraints: {X1 6= Y1, Y1 = Z1} and {X2 = Y2, Y2 6= Z2};
5. Inter-agent constraints: {X1 6= X2, Y1 6= Z2};
6. Solution: S = {X1 = 1, Y1 = 2, Z1 = 2, X2 = 2, Y2 = 2, Z2 = 3}

In this example, each arc represents one constraint. If we reduce the number
of the agents to one, a distributed CSP would become a local CSP. So we may
consider a distributed CSP as a combination of several local CSPs. Compared
with local CSPs, a distributed CSP has to deal with communication costs and de-
lay, privacy, cooperation, extra computation, consistency, asynchronous changes,
in�nite processing loops, and all the basic problems of distributed computing.

3 The Dynamic Agent Ordering Algorithm

3.1 Motivation

In a CSP, the order in which values and variables are processed signi�cantly
a�ects the running time of an algorithm. Generally, we instantiate variables
that maximally constrain the rest of the search space. For instance, selecting
the variable with the least number of values in its domain tends to minimise the
size of the search tree. When ordering values, we try to instantiate a value that
maximises the number of options available for future instantiations.

A1

A2

X1

X2

Y1

Z1

Y2

Z2

Fig. 1. An example of a distributed CSP

The e�ciency of algorithms for distributed CSPs is similarly a�ected by the
order of value and variable selection. In the case where agents control multiple
variables, the order in which agents are allowed to instantiate shared variables
also becomes important. Agent communication and external computation (in-
stantiating variables to be consistent with inter-agent constraints) is more costly
than local computation (instantiating variables to be consistent with intra-agent
constraints), and wrong or redundant computation can occur as a result of in-
appropriate agent ordering. It is therefore worth investigating agent orderings in
order to develop more e�cient algorithms.

The task of ordering agents is more complex than ordering variables, as more
factors are involved, i.e. not only constraints and domains but also the structure
of neighbouring agents. Deciding on agent ordering is analogous to granting a
priority to each agent, where the priority order represents a hierarchy of agent
authority. When the priority order is static, the order of agents is determined
before starting the search process, and the e�ciency of the algorithm is highly
dependent on the selection of variable values. If the priority order is dynamic,
this can be used to control decision making for each agent and the algorithm is
more able to �exibly exploit to the current search conditions.

We propose a new algorithm which uses constraint density (related to both
intra-agent and inter-agent constraints) to order agents in a distributed CSP.
When a search becomes stuck (i.e. an inconsistency is found), the algorithm
calculates the unsatis�ed constraint densities and the degree of unsatisfaction for
each agent, and the agent that is most unsatis�ed is reassigned. As a backtracking
search is used for each local computation, agents can still run asynchronously
and concurrently. The algorithm also reduces the size of the nogood store (in
comparison to AWC), and so allows larger problems to be solved.

3.2 Agent Ordering

To develop a dynamic agent ordering algorithm requires the speci�cation of those
features of the search space that should determine the ordering. In this study we
develop a measure of the degree of unsatisfaction for each agent, such that the
agent with the highest degree of unsatisfaction has the highest priority. In a stan-
dard CSP, the degree of unsatisfaction can simply be measured as the number of
constraints unsatis�ed divided by the total number of constraints. However, in a
distributed CSP, we have the additional consideration of the relative importance
of intra- versus inter-agent constraints. As inter-agent constraints a�ect variables
in more than one agent, and these variables in turn can a�ect the intra-agent
problems, we decided to develop separate measures for the intra- and inter-agent
problems, such that the inter-agent constraints are given greater importance. To
do this we looked at two problem features: (i) the degree of interconnectedness
between constraints (or constraint density) and (ii) the degree of interconnect-
edness between inter-agent constraints and the intra-agent local problem.

To measure constraint density, we �rstly divided the problem for a particu-
lar agent into an intra-agent constraint problem and an inter-agent constraint
problem:

Intra-Agent Constraint Density: For the intra-agent problem, the maximum
constraint density is simply de�ned as the ratio of the number of constraints over
the number of variables, i.e. for agent i:

intraDensityi =
|intraCi|
|intraVi|

where intraCi is the set of intra-agent constraints for agent i and intraVi is
the set of variables constrained by intraCi. Assuming that each constraint has
the same tightness1, then we would expect a larger density to indicate a more
constrained and hence more di�cult problem.

Inter-Agent Constraint Density: The constraint density measure for the
inter-agent problem contains two additional features which increase the relative
importance of the inter-agent measure in comparison to the intra-agent mea-
sure. Firstly, for agent i, instead of dividing by the total number of variables
constrained by i's inter-agent constraints interCi, we divide only by the number
of variables that are constrained by interCi and controlled by i, i.e. |interVi|.

In addition, when counting agent i's jth inter-agent constraint, ci,j , we also
count the number of intra-agent constraints mi,j that share a variable with ci,j .
This means the more interconnected ci,j is with the intra-agent problem, the
larger the value of mi,j and the greater the e�ect of ci,j on the overall inter-
agent constraint density, given by:
1 i.e. the ratio of the number unsatisfying assignments over the total number of possible
assignments.

interDensityi =
|interCi|+

∑|interCi|
j=1 mi,j

|interVi|
The sum staticDensityi = intraDensityi + interDensityi now provides a

general measure of the overall density of the problem for a particular agent. The
greater this measure, the more constrained or di�cult we would consider the
problem to be.

Dynamic Constraint Density: The dynamic constraint density for a partic-
ular agent is based on the static density measure, except that only unsatis�ed
constraints are counted in the numerator. In this way the density of a current
level of constraint violation during a search can be measured. Using the functions
intraUnsat(i, j), which returns one if the jth intra-agent constraint for agent
i is unsatis�ed, zero otherwise, and interUnsat(i, j), which returns one if the
jth inter-agent constraint for agent i is unsatis�ed, zero otherwise, we de�ne the
following measures:

intraUnsati =

∑|intraCi|
j=1 intraUnsat(i, j)

|intraVi|
and

interUnsati =

∑|interCi|
j=1 (interUnsat(i, j)× (mi,j + 1))

|interVi|
These measures then range from a value of zero, if all constraints are satis-

�ed, to intraUnsati = intraDensityi and interUnsati = interDensityi if all
constraints are unsatis�ed. Combining these measures, we de�ne:

dynamicDensityi = intraUnsati + interUnsati

and

degreeUnsati =
dynamicDensityi

staticDensityi

degreeUnsati now ranges from a value of zero, if all constraints for agent i are
satis�ed, to one, if all constraints are unsatis�ed, while embodying the increased
importance of inter-agent constraints in the overall evaluation. It is this measure
we use to dynamically decide agent priority in our proposed algorithm.

Example: To further clarify the details of these measures, we use a distributed
3-colouring problem shown in Figure 2. The goal of the problem is to assign
colours to each node so that nodes connected by the same arc have di�erent

colours2. In Figure 2 (a), Agent 1 has three inter-agent constraints (interC1 =
{C25, C24, C34}) and two intra-agent constraints (intraC1 = {C12, C23}). When
Agent 1 attempts to satisfy the inter-agent constraint C25 by changing variable
V2, its instantiation a�ects two other intra-agent constraints C12 and C23. Using
de�nition of interDensityi, this equates to m1,1 = 2. Similarly, Agent 1's second
inter-agent constraint C24 is also connected to both of Agent 1's intra-agent
constraints (C12 and C23), making m1,2 = 2, and �nally Agent 1's third inter-
agent constraint C34 is connected to a single intra-agent constraint C23, making
m1,3 = 1, and giving:

3∑

j=1

m1,j = 2 + 2 + 1 = 5

As Agent 1 has three inter-agent constraints (|interC1| = 3), two intra-agent
constraints (|intraC1| = 2), three intra-agent variables (intraV1 = {V1, V2, V3},
|intraV1| = 3) and two inter-agent variables (interV1 = {V2, V3}, |interV1| = 2),
Agent 1's intra- and inter-constraint densities are given by the following:

intraDensity1 =
|intraC1|
|intraV1| =

2
3

and

interDensity1 =
|interC1|+

∑3
j=1 m1,j

|interV1| =
3 + 5

2
= 4

Now considering Figure 2 (b), we can see that all Agent 1's intra-agent con-
straints are satis�ed (i.e. each pair of colours on each arc is di�erent) and all inter-
agent constraints are satis�ed except C24 where V2 = V4 = Y. This means the
expression

∑2
j=1 intraUnsat(1, j) evaluates to zero, (i.e. intraUnsat(1, 1) = 0 as

C12 is satis�ed and intraUnsat(1, 2) = 0 as C23 is satis�ed). Similarly each term
in

∑3
j=1 interUnsat(1, j) will evaluate to zero, except interUnsat(1, 2), corre-

sponding to the unsatis�ed inter-agent constraint C24. In this case m1,2 + 1 = 3
as C24's variable V2 is connected to two intra-agent constraints. From this it
follows:

intraUnsat1 =

∑2
j=1 intraUnsat(1, j)

|intraV1| =
0
3

= 0

and

interUnsat1 =

∑3
j=1 interUnsat(1, j)× (m1,j + 1)

|interV1| =
3
2

Putting these measures together we can now determine the degree of unsat-
isfaction for Agent 1:
2 B = blue, R= red, Y = yellow.

V2 V3

V1

V5 V6

V4

Agent 1

Agent 2

C12

C23

C56

C45 C46

C25 C24 C34

Agent 1

Agent 2

C12

C23

C56

C45 C46

C25 C24 C34

R

R

R

Y

Y

B

(a) (b)

Fig. 2. A Distributed 3-colouring Problem

degreeUnsat1 =
intraUnsat1 + interUnsat1

intraDensity1 + interDensity1
=

0 + 3
2

2
3 + 4

=
9
28

Performing the same series of calculations for Agent 2, we obtain a degree of
unsatisfaction of:

degreeUnsat2 =
intraUnsat2 + interUnsat2

intraDensity2 + interDensity2
=

0 + 3
2

3
3 + 9

2

=
3
11

As 9
28 > 3

11 , it follows that degreeUnsat1 > degreeUnsat2, giving Agent 1
priority over Agent 2, and hence the authority to perform the next instantiation.
In this case that would mean setting V2 to B and hence �nding a global solution
to the problem. Note that the alternative of allowing Agent 2 to move would
have resulted in several further instantiations before a global solution could be
found. The reason for preferring Agent 1 in this situation can be expressed
as follows: both Agent 1 and 2 have a single inter-agent constraint unsatis�ed
(C24) for which their dynamicDensity measures are equal (3

2). However, Agent
1's overall static density measure is less than Agent 2 (4 2

3 versus 51
2), because

Agent 1's intra-agent problem is easier. Consequently the dynamicDensity value
of 2

3 has a greater e�ect on Agent 1, giving it priority. In e�ect, Agent 1 was
preferred because its sub-problem was less dense (i.e. less constrained), meaning
it would have the greater probability of �nding a satisfying instantiation.

Overall, the degreeUnsat measure has the ability to show the complexity of
the problem and the constraint strength in each agent. This further allows au-
tonomous agents make decisions about who should change their variable values,
without relying on a centralised evaluation mechanism.

3.3 Algorithm Implementation

The Dynamic Agent Ordering (DAO) algorithm was implemented as follows:

1. In the initial state, each agent concurrently instantiates their variables to
construct a local solution, while checking consistency to guarantee that all
intra-agent constraints are satis�ed. Each agent then sends its local solution
to its neighbouring agents (i.e. those with which it shares at least one inter-
agent constraint);

2. Each agent then starts to construct a local solution which attempts to satisfy
both intra- and inter-agent constraints. Assuming the overall problem is
satis�able, if an agent is unable to satisfy its partial solution, an inter-agent
constraint must be involved. In this case, the two agents that share the
constraint compare their degreeUnsat values, and the agent with greater
value has priority and is allowed to reassign its variable. If the values are
same3, we randomly assign priority; if an agent's degreeUnsat is less than
its neighbours and its local problem is satis�ed, then it simply waits for
messages. If there is no suitable value for a local variable, the local agent tries
to satisfy as many constraints as possible. This state will then be recorded as
a nogood and sent to the related agents for the completeness of the algorithm;

3. After assigning its own variables, an agent sends messages to neighbouring
agents. These messages contain the degreeUnsat value and the local instan-
tiation for the agent.

4. The search will stop when each agent detects its and all its neighbouring
agents' degreeUnsat values are equal to zero. No extra consistency detection
method is needed.

The DAO algorithm is shown in more detail in Figure 3. Here, an opti-
mal_local_partial_solution is a partial solution for local variables that satisfy
a maximal number of intra-agent and inter-agent constraints. If all constraints
are satis�ed, the optimal local partial solution is equal to the local solution.
The culprit_variables are variables in unsatis�ed constraints that prevent a par-
tial solution from being expanded further. These culprit_variables may be in
di�erent agents.

3.4 Experimental Evaluation

We evaluated the Dynamic Agent Ordering algorithm on a benchmark set of
3-colouring problems and against two other algorithms. The �rst, Asynchronous
Weak-commitment (AWC) search, is recognised as the state-of-the-art for dis-
tributed CSPs, where each agent has control over multiple variables [6,2]. We
implemented the latest version of AWC which uses nogood learning and obtained
3 Normally, this rarely happens in a distributed CSPs, since the density value not only
depends on the number of unsatis�ed constraints and variables in a local agent, but
also on the structure of neighbours, the distribution of intra-agent and inter-agent
constraints, and so on.

when received(Sender_id, variable_values, degreeUnsat) do
if all neighbouring degreeUnsats = 0
then search is terminated;
else add (Sender_id, variable_value, degreeUnsat) to agent_view;

calculate local_degreeUnsat ;
if local_degreeUnsat > degreeUnsat
then assign_local_variables;

calculate degreeUnsat ;
send(Sender_id, variable_values, degreeUnsat) to
neighbouring agents;

endif
endif

enddo
Procedure assign_local_variables

sequentially assign variables using chronological backtracking to construct
optimal_local_partial_solution, which satis�es all related
intra-agent and inter-agent constraints within lower
degreeUnsat agents, and against local nogood_set ;
if optimal_local_partial_solution is not the local_solution
then assign remaining variables to satisfy as many constraints as possible;

add the culprit_variables with their values, degreeUnsat and
agent_ids to the nogood_set ;
if nogood_set is new
then record the new nogood;

send nogood_set messages to the related agents;
endif

endif

Fig. 3. The Dynamic Agent Ordering Algorithm

comparable results to those reported in [2]. In addition, we implemented a ver-
sion of DAO with the dynamic variable ordering switched o�, called Static Agent
Ordering (SAO). In this case, agent priority is determined statically before the
search is commenced using the staticDensity measure de�ned in Section 3.2.

To simulate an autonomous agent environment we used an agent oriented de-
sign, implementing threads in FreeBSD that allow agents to run asynchronously
and concurrently. All experiments were run on a Dell OptiPlex GX240 with a
1.6GHz P4 CPU and 256MB of PC133 DRAM. We used the same 3-colouring
problem generator described in [3] and improved in [6] to evaluate the perfor-
mance of our algorithms. We chose this domain as the 3-colouring problem has
been used in many other studies, and this type of problem is often used in con-
nection with scheduling and resource allocation problems. To build the problem
set, we randomly generated 100× 50 variable and 40× 100 variable problems in
the hard region of 3-colouring with a constraint to variable ratio of 2.7, assign-
ing 50% of constraints as inter-agent and 50% as intra-agent constraints (within
each problem). Each agent was also constrained to have at least one inter-agent
constraint.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

A
ve

ra
ge

 d
eg

re
eU

ns
at

Execution Time (seconds)

DAO
AWC
SAO

Fig. 4. The average degreeUnsat plotted against time

Figure 4 shows the average degreeUnsat for each of the three algorithms over
the 50 variable problem set, and Table 1 shows the the number of average checks,
the number of total nogoods produced, the number of total local instantiations
broadcasted and the total running time for all agents over the complete problem
set. From these results it is clear that the new algorithm is considerably more
e�cient than AWC and SAO in terms of execution time. Although DAO produces
more local instantiations, the size of its nogood store is signi�cantly smaller.
Also, unlike AWC, an optimal local solution can be sent by each agent during
the search. As a result, a local agent has more options to instantiate its variables.
The main disadvantage of DAO is that more communication costs are incurred,
nevertheless, these costs are more than compensated for by the smaller number
of nogoods recorded and the faster search times.

Problem Method Checks Nogoods Local Time
Instantiations (seconds)

50 variables DAO 1,860.3 87.6 138.8 1.7254
100 runs AWC 2,129.5 224.3 98.3 3.9624

SAO 3,928.2 175.8 349.5 6.2387
100 variables DAO 17,357.4 734.8 1,277.0 33.4567
40 runs AWC 23,617.6 1,927.2 825.4 56.9256

SAO 44,998.2 1,256.0 2,774.8 245.4677
Table 1. Results for distributed 3-colouring problems with 10 agents

4 Conclusion and Future Work

We have demonstrated a new algorithm that uses constraint density to dynami-
cally order agents and increase the search speed in distributed CSPs. We argue
that our algorithm is more feasible and o�ers greater agent independence than
the existing algorithms for distributed CSPs, especially for situations with mul-
tiple local variables in each agent.

Since agent independence is guaranteed, DAO can be used to solve dynamic
distributed CSPs and distributed over-constrained CSPs. Dynamic distributed
CSPs are common in realistic problems, where agents may be lost or added
over time. By using our algorithm, real-time calculations are able to build new
relations among agents, and constraints and/or variables in one agent will not
a�ect other agents' local computations. In fact, it is not necessary to modify
the algorithm to handle dynamic distributed CSPs. When a distributed CSP
has no solutions, it is over-constrained. To deal with this kind of problem, we
can setup a gate value (between 0 and 1) for the degreeUnsat values. After all
degreeUnsat values reach the gate value, the problem is solved.

Finally, for problems where individual constraints have varying degrees of
tightness, we can amend our constraint density measures to consider tightness
directly. Currently we count the number of intra- and inter-agent constraints
for each agent when calculating density. Alternatively, we can sum the tightness
of these constraints, where tightness is de�ned as the number of possible un-
satisfying assignments for a constraint divided by the total number of possible
assignments.

References
1. Aaron Armstrong and Edmund Durfee. Dynamic prioritization of complex agents

in distributed constraint satisfaction problems. In The Fifteenth International Joint
Conference on Arti�cial Intelligence, pages 620�625, 1997.

2. Katsutoshi Hirayama and Makoto Yokoo. The e�ect of nogood learning in dis-
tributed constraint satisfaction. The 20th International Conference on Distributed
Computing Systems (ICDCS 2000), April 2000.

3. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing con�icts: a
heuristic repair method for constraint satisfaction and scheduling problems. Arti�-
cial Intelligence, pages 161�205, 1992.

4. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The
distributed constraint satisfaction problem: Formalization and algorithms. IEEE
Transaction on Knowledge and Data Engineering, 10(5):673�685, 1998.

5. Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout algorithm for solving
distributed constraint satisfaction problems. Proceedings of the Second International
Conference on Multiagent Systems (ICMAS-96), pages 401�408, 1996.

6. Makoto Yokoo and Katsutoshi Hirayama. Distributed constraint satisfaction algo-
rithm for complex local problems. In the Third International Conference on Multi-
agent Systems (ICMAS-98), pages 372�379, 1998.

