
Estimating Problem Metrics for SAT Clause Weighting
Local Search

Wayne Pullan, Liang Zhao, and John Thornton

School of Information Technology,
Griffith University, Gold Coast,

Qld., 4215, Australia
Email: �w.pullan, j.thornton�@griffith.edu.au

Keywords: Constraints, Search

Abstract. Considerable progress has recently been made in using clause weight-
ing algorithms to solve SAT benchmark problems. While these algorithms have
outperformed earlier stochastic techniques on many larger problems, this im-
provement has generally required extra, problem specific, parameters which have
to be fine tuned to problem domains to obtain optimal run-time performance. In
a previous paper, the use of parameters, specifically in relation to the DLM clause
weighting algorithm, was examined to identify underlying features in clause weight-
ing that could be used to eliminate or predict workable parameter settings. A sim-
plified clause weighting algorithm (Maxage), based on DLM, was proposed that
reduced the parameters to a single parameter. Also, in a previous paper, the struc-
ture of SAT problems was investigated and a measure developed which allowed
the classification of SAT problems into random, loosely structured or compactly
structured. This paper extends this work by investigating the behaviour of Max-
age with regard to the structural characteristics of SAT problems. The underlying
motivation for this study is the development of an adaptive, parameterless clause
weighting algorithm.

1 Introduction

The propositional satisfiability (SAT) problem is fundamental in solving many practi-
cal problems in mathematical logic, inference, machine learning, constraint satisfaction,
and VLSI engineering. Theoretically, the SAT problem is the core of a large family of
computationally intractable NP-complete problems. Several such NP-complete prob-
lems have been identified as central to a variety of areas in computing theory and en-
gineering. Therefore, methods to solve the satisfiability problem play an important role
in the development of computing theory and systems.

In this paper, as with most other work on SAT algorithms, we only consider propo-
sitional formulae in conjunctive normal form. That is, formulae of the form � ��
�

�
� ��� where each ��� is a propositional variable or its negation. The � �� are termed

literals while the disjunctions
�
� ��� are the clauses of � . The goal of all SAT algo-

rithms is to find an assignment of the truth values to the propositional variables in �
that results in no unsatisfied (false) clauses.

Algorithms for solving SAT problems can be divided into two categories: complete
and incomplete. Complete SAT algorithms perform a systematic traversal of the search



space and will always find a solution if one exists. Incomplete SAT algorithms are
stochastic algorithms in that they may find a solution but, if they fail, it cannot be
concluded that no solution exists.

Some of the best known incomplete SAT algorithms are local search algorithms
that, while they differ in detail, all basically implement a local search strategy which
starts with an initial random assignment of truth values to all propositional variables.
In each subsequent search step, the algorithm selects a variable using some heuristic
and negates the truth value of that variable (i.e. true to false or false to true). Variable
negations are typically performed with the goal of minimising an objective function
based on the currently unsatisfied clauses.

A version of local search, that has recently become very effective in SAT problem
solving, modifies the objective function by associating a weight with every clause of
the given formula. These algorithms then aim to minimise the total weighted objective
function rather than the number of unsatisfied clauses. By appropriate manipulation of
clause weights, these clause weighting algorithms are able to escape from local minima
and other attractive non-solution areas in the underlying search space. The major, inher-
ent disadvantage in these algorithms is that additional, problem dependent, parameters
are required to control the clause weights.

In 1993, clause weighting local search algorithms for SAT were simultaneously pro-
posed in [5] and [8]. Various enhancements to clause weighting followed in the mid-
90s, particularly Jeremy Frank’s work on multiplicative weighting and weight decay
[1]. Early clause weighting algorithms avoided plateau search by adding weight to all
unsatisfied clauses as soon as a plateau was encountered [5]. However, it was not until
the development of DLM [9] that these insights were translated into significant perfor-
mance improvements. The main differences between Discrete Lagrangian Multiplier
(DLM) and earlier clause weighting techniques are in the use of a tabu list [2] to guide
the search over plateau areas, and a weight reduction heuristic that periodically reduces
clause weights. The Smoothed Descent and Flood (SDF) algorithm [6] uses multiplica-
tive weighting and a continuous renormalisation of relative weights after each increase.
While SDF produced some improvement over DLM in terms of the number of variable
negations required on smaller sized problems, there is a significant run-time overhead
in maintaining SDF’s real valued weights. SDF subsequently evolved into the Expo-
nentiated Sub-Gradient (ESG) method [7] which has been improved on by the Scaling
and Probabilistic Smoothing (SAPS) [3] method.

Another recent algorithm is Maxage [10], which is based on DLM and has compa-
rable performance but the problem dependent parameters have been reduced from 14 to
just a single parameter, the DECREASE parameter, which controls the frequency with
which clause weights are decayed. The major objective of this paper is to determine if
an estimate of the optimal value of the Maxage DECREASE parameter can be deter-
mined from characteristics of SAT problems. The underlying motivation for this study
is the development of an adaptive, parameterless clause weighting algorithm, based on
Maxage, that determines an initial estimate for DECREASE and then, using measur-
able characteristics of the search process, adaptively modifies DECREASE to produce
an effective search.



This paper is structured as follows. Section 2 presents a more detailed discussion of
clause weighting, particularly with reference to Maxage, while Section 3 contains a de-
scription of SAT problem characteristics. An analysis of four benchmark SAT problems,
with regard to these characteristics, is presented in Section 4 and Section 5 presents an
analysis of how these characteristics influence the Maxage DECREASE parameter. Fi-
nally, Section 6 contains a conclusion and suggestions for future research.

2 Local Search

At a high level, a local search algorithm can be viewed as a mechanism for traversing a
highly multi-dimensional hyper-surface with the objective of locating a global minima.
While features of the hyper-surface may be extremely complicated, the perception of
the hyper-surface by the local search algorithm is very limited in that it only knows
the hyper-surface immediately adjacent to its current position and has no memory or
knowledge of the hyper-surface in any other location. In fact, its knowledge is limited to,
for a single step in any given direction, the rate at which the hyper-surface is changing.
To efficiently traverse the hyper-surface the local search algorithm must avoid:

– Search Cycles which are basically some configuration of closed paths on the hyper-
surface. They arise because of the presence of local minima or some combination
of other hyper-surface features.

– Unguided Travel which occurs when the hyper-surface is locally flat (plateau) and
there is no basic, under-lying guidance for the search.

Search cycles that have short path lengths can be successfully handled by mechanisms
such as Tabu lists [2], which prevent re-selection of a variable before some number of
other variables have been modified. However, search cycles with longer path lengths or
a variety of paths are much more difficult to detect and escape from. Tabu lists can also
have a beneficial effect when traversing a hyper-surface plateau as they tend to provide
an underlying direction for the search.

2.1 Non-clause Weighting Local Search Algorithms

The hyper-surface traversed by non-clause weighting local search algorithms for SAT
problems is generally that formed by evaluating the number of false clauses for each
assignment of variables identified during the search. That is, the local search is perform-
ing the global optimisation problem (for a SAT problem with � variables �� �� � � � � ���
and � clauses ���� � � � � ���):

��� 	���� � � � � ��� �

��

���


� (1)

where 
� � � if clause �� is true and 
� � � if clause �� is false. At each step in the
search, these algorithms evaluate the effect of negating each variable in terms of the
reduction in the number of false clauses and will generally select the variable which
causes the largest decrease in 	 . The fundamental differences in these algorithms are



typically in the tie-breaking rules, if more than one variable gives the best decrease,
and how they handle search cycles and plateaus on the hyper-surface (random moves,
random restarts and Tabu lists).

2.2 Clause Weighting Local Search Algorithms

Clause weighting local search algorithms traverse the weighted false clause hyper-
surface formed by the weighted cost of a problem solution. That is, a clause weighting
local search is addressing the global optimisation problem:

��� ����� � � � � ��� �
��

���

��
�� �� � � (2)

where �� is the weight associated with clause ��. At each step in the search, these
algorithms evaluate the effect of negating each variable in terms of the reduction in the
weighted cost of the false clauses and will generally select that variable which causes
the largest decrease in �. Clause weights act to deform the weighted false clause hyper-
surface (
�) from the false clause hyper-surface (
� ) and are typically incremented
whenever a local minimum or extended plateau is found by the algorithm. This action
tends to remove local minima [5] and plateaus from 
 � . To prevent 
� from becoming
too deformed and “rugged” (and thus losing any natural underlying guidance from 
 � ),
a clause weight reduction mechanism is normally incorporated into the search.

Clause weighting local search algorithms tend to focus on satisfying the more dif-
ficult clauses of a SAT problem as the weights for clauses that are difficult to satisfy
will, on average, be higher than those for clauses that are easier to satisfy. This will
make satisfying these clauses more attractive to the algorithm and is analogous to the
common problem solving heuristic of attacking the most difficult parts of a problem
first, and then addressing the less constrained resources until a solution is found. It is
also important to note that all global minima, corresponding to 	 � � � �, will be in
the same positions on 
� as they are on 
� . If this were not the case, clause weighting
local search algorithms would be at a considerable disadvantage to non-clause weight-
ing local search algorithms in that they would be trying to locate global minima that are
moving on 
� as clause weights change (as is the case when the global minima are such
that 	 � �).

There are some inherent disadvantages in clause weighting algorithms, namely that
additional, problem dependent parameters are required to control the clause weighting.
These include the amount by which to increase or decrease the clause weights and at
what point reweighting should occur. Also, the possibility of clause weighting cycles
exists where clause weights are repetitively increased and decreased causing a search
cycle in the sequence of variables to be negated.

2.3 Clause Weighting in Maxage

As shown in Fig. 1, Maxage [10] has only one parameter, the DECREASE clause
weighting parameter, which specifies how many clause weight increases must occur
before a clause weight reduction is performed. Unfortunately, as with the parameters



for DLM, the Maxage DECREASE parameter is problem dependent and must be pre-
determined for each particular class of problem. This typically requires performing
a large number of experiments, where DECREASE is systematically varied, to iden-
tify the optimal value of DECREASE for that class of problem. Another issue is that
these pre-determined values are a compromise in that they are the optimal, on average,
over the entire search. It is reasonable to assume that the actual optimal value for DE-
CREASE, at any point in the search, depends on the nature of 
 � at the current location
of the search and this varies, with most problems, during the search.

procedure MAX-AGE
begin

Generate a random starting point
Initialise counters and clause weights to zero
while solution not found and ����� � maxFlips do

� � set of best weighted cost single flip moves
if no improving � � � then

if oldest � � � has �	
��� � ����	
 then
� � �

����	
� ����	
� �
else if 
�������� � � then

� � �
end if

end if
if � �� � then

Randomly pick and flip � � �

�	
���� ++�����
else

Increase weight on all false clauses
if ++���

��
� % DECREASE = 0 then

Decrease weight on all weighted clauses
end if

end while
end

Fig. 1. The MAX-AGE Algorithm

When DECREASE is very close to one, clause weighting has little effect as clause
weights are rapidly returned to their default value. That is, � tends to be very close to 	
and there is relatively little influence on the search from clause weighting. When DE-
CREASE is large, clause weights tend to become large as the downward re-weighting
of clauses is performed less frequently. This tends to make the difference between 	
and � more significant and � becomes a more “rugged” function than 	 , in the sense
that there is greater potential for the change in � to be larger than that for 	 at each step
of the search.



2.4 Determination of Optimal DECREASE for Maxage

The benchmark problems that will be used in this study are four of the problem domains
for which existing Maxage parameters have already been developed, namely random 3-
SAT, parity learning, graph colouring and blocks world planning. Using the SATLIB 1

and DIMACS2 benchmark libraries, we selected f2000 for random 3-SAT, par16-1-c for
parity learning, bw large.c for blocks world planning and g125.17 for the graph colour-
ing problem. These problems provide a range of SAT problem types, from random to
structured. In addition, they provide the largest range for the Maxage DECREASE pa-
rameter and all have reasonable computational requirements (which ensures that clause
weighting becomes a relevant factor in the search).

0 20 40 60 80 100
30

40

50

60

70

80

90

100

%

0 20 40 60 80 100
60

70

80

90

100

%

0 20 40 60 80 100
20

40

60

80

100

%

0 20 40 60 80 100
40

50

60

70

80

90

100

%

f2000 par16−1−c 

bw−large.c g125.17 

Fig. 2. The failure rate for Maxage as DECREASE varies from � � � � ��� . For each value of DE-
CREASE, Maxage was executed from 100 random starting points with a maximum of 1,000,000
steps allowed. The vertical axis records the number of times for which Maxage failed to find a
global minima.

The failure rate of Maxage, for a maximum of 1,000,000 steps, as DECREASE
varies in the range � � � � ��� is shown in Fig. 2 for each of the four benchmark prob-
lems. From the data presented in the graphs, we see that the optimal DECREASE is

1 http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
2 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/



large (46) for par16-1-c, is smaller (10) for the randomly generated f2000, is six 3 for
bw large.c and is smallest (four) for g125.17. Clearly some aspects of the structure of
SAT problems have an impact on the optimal value for DECREASE and this question
is investigated in the next section.

3 SAT Problem Characteristics

The overall goal of this section is, from a static analysis of a SAT problem, to identify
characteristics of 
� that are relevant to the optimal setting for the DECREASE param-
eter of Maxage. Using statistical characteristics from the uniformly randomly generated
SAT problem f2000 as a basis, we categorise other SAT problems by comparing their
statistical properties with those of randomly generated SAT problems. Random SAT
problems are constructed by first uniformly randomly selecting the variables for each
clause and then, with probability ���, negating each variable. This generation technique
ensures that the distributions of most characteristics will closely approximate the nor-
mal distribution.

Descriptions of the SAT problem characteristics used in this study are presented
in the following sub-sections while Section 4 contains an analysis of the four SAT
benchmark problems with regard to these characteristics.

– Distribution of Variable Usage For a randomly generated SAT problem, the ex-
pected number of times that �� will occur in clauses is �� � ��� where � is the
total number of literals in the problem (e.g.,� � �� for 3-SAT) and � is the num-
ber of variables. As variables are uniformly randomly selected, � � will be normally
distributed. A simple analysis of a SAT problem produces the distribution of � � for
that problem and a �� test with the normal distribution, median ���, produces an
estimate as to whether the usage of variables for the problem is random, with regard
to this measure.

– Independent Versus Dependent Variables By analysing the SAT problem and
looking for patterns in the relationships between variables, variables may be clas-
sified as either independent or dependent. For a SAT problem, dependent variables
are those whose values can be determined once all independent variables have been
assigned. In addition, clauses may be classified as consisting only of independent
variables, only of dependent variables or a combination. Randomly generated prob-
lems are extremely unlikely to contain dependent variables.
In addition to providing a test for randomness, this measure could also be used to
limit a local search to only the independent variables which, in some problems,
could provide improved search performance.

– Variable Relationships In a previous paper, [4], a classification of k-SAT prob-
lems as either uniform, compact or loose on the basis of variable connectivity was
described. This classification method was developed as a test on problem unifor-
mity based on a simple statistic, the count of the number of distinct variable pairs
that occur in clauses. With this test, problems can be classified uniform (random),
loosely or compactly structured.

3 The computational requirements when DECREASE is large for bw large.c are much greater
than when DECREASE is six.



– Distribution of Variable Signs If we define ��� as the absolute difference between
the number of positive occurrences (��� ) and the number of negated occurrences
(��� ) of �� in clauses then, for a random problem, the distribution of � �

� will ap-
proximate a normal distribution with median zero. By comparing the distribution
of ��� for a SAT problem with such a normal distribution, problems can be classified
as either random or non-random with regard to this measure.
In addition, the distributions of ��� and ��� are indicators of the structure of the

� being traversed by the search. They place a range on the maximum value of
	�, the change in 	 caused by negating � �. Clearly, ���� � 	�� � ��� , where 	��
denotes the change in the number of false clauses when � � goes from false to true.
Correspondingly,���� � 	�� � ��� , where 	�� denotes the change in the number of
false clauses when �� goes from true to false. Clearly, if ��� and ��� are small, both
	�� and 	�� will also be small. Of interest also is, how are 	�� and 	�� distributed
within these ranges. Our hypothesis is that if ��� is close to zero, then this will bias
both 	�� and 	�� towards the zero point of their ranges. The rationale for this is that
a small ��� states that there are potentially as many clauses which will go from true
to false as will go from false to true when �� is negated. Conversely, if ��� is not
close to zero, then this will bias both 	�� and 	�� towards one of the extremes of
their ranges.
Supporting the argument that the distribution of ��

� can be used as an estimator of
the structure of 
� is the degenerate 1-SAT case where all clauses only contain a
single variable. Clearly, the distribution of ��� directly reflects the characteristics
of 
� . For k-SAT (� � �), there are situations where negating a variable will not
falsify a clause (where both variables in the clause were true) so, in these cases, the
distribution of ��� is a worst case estimator of the characteristics of the 
� .

4 Structure of Benchmark Problems

As expected, f2000 approximated the normal distribution with a median of 12 while the
distributions for the other problems showed that there is a wide range in the usage of
variables in clauses. In addition, the counts of independent and dependent variables and
clauses for the four benchmark problems showed that both par16-1-c and bw large.c
are classified as non-random problems. With regards to the distributions of variable
signs and with reference to Fig. 3, the following points can be made for each of the
benchmark problems:

– f2000. For the randomly generated problem f2000, the distributions of � �

� and ���
have medians around 6.4 and there are no outliers. From the distribution of � �

� it
can be seen that for approximately 12% of variables, ��

� � �, the median is 0.045
and the variance is 13.2. From these observations it is reasonable to conclude that,

� for f2000 will have a relatively small proportion of plateaus and the other areas
will contain relatively small features. Accordingly, in this study, we classify 
 � for
f2000 as “choppy” and expect 	 � to be relatively small as each variable is negated.

– par16-1-c. With regard to ��� and ��� , their distributions have medians ���� and
it can be seen that there are just a few large outliers. From the distribution of � �

� it
can be seen that for approximately 80% of variables, ��

� � � and the variance is



−20 −10 0 10 20
0

10

20

%

Distributions of u
i
+ and u

i
−

−10 −5 0 5 10
0

5

10

15

%

Distribution of u
i
d

−50 0 50
0

20

40

%

−10 −5 0 5 10
0

50

100

%

−60 −40 −20 0 20 40
0

20

40

60

%

−50 −40 −30 −20 −10 0 10
0

20

40

%

−80 −60 −40 −20 0
0

50

100

%

−80 −70 −60 −50 −40
0

5

10

%

f2000 

par16−1−c 

bw−large.c 

g125.17 

Fig. 3. Distributions of ��
�

, ��
�

and ��� for each of the four benchmark problems. The vertical
axis is, in each plot, the percentage frequency for which the horizontal axis value appeared. For
the distributions of ��

�
and ��

�
, ��

�
is plotted as positive values and ��

�
as negative values.

0.17. Both these factors place a small range on 	 �� and 	�� resulting in a relatively
smooth 
� for par16-1-c. That is, 
� for par16-1-c contains a higher proportion
of plateaus than 
� for f2000 and also contains some areas with approximately the
same features as f2000. In this study, we classify 
� for par16-1-c as “flat” and
expect 	� to be predominantly zero, but not infrequently small, as each variable is
negated.

– bw large.c For the bw large.c problem, the distribution for ��� has a median of
-31.0 while that for ��� is 6.0. This gives a large range for both 	 �� and 	�� . From
the distribution of ��� it can be seen that it is has a median of -25.0 with a variance
of 62.0. This implies that 	�� and 	�� will be towards an extreme of their ranges.
From these observations it is reasonable to conclude that, 
� for bw large.c will
have virtually no plateaus and mainly consists of relatively large features. Accord-
ingly, in this study, we classify 
� for bw large.c as “moderate” and expect 	 � to
be relatively large as each variable is negated.

– g125.17 For the g125.17 problem, the distribution for ��� has a median of -62 while
that for ��� is one. This gives a large range for both 	 �� and 	�� . From the distribu-
tion of ��� it can be seen that it is has a median of -61 with a variance of 27. This
implies that 	�� and 	�� will be towards an extreme of their ranges. From these
observations it is reasonable to conclude that, 
� for g125.17 will have virtually



no plateaus and mainly consists of large features. Accordingly, in this study, we
classify 
� for g125.17 as “rugged” and expect 	 � to be large as each variable is
negated.

To confirm the observations detailed above, random sampling of 
 � was performed
for the benchmark problems and the results are presented in Fig. 4. This random sam-
pling was performed by first generating uniformly random assignments for variables
and then evaluating the change in 	 as each variable is negated. This process was re-
peated 1,000,000 times for each problem. As can be seen, the results support the argu-
ments presented above in that 
� for f2000 contains a moderately small proportion of
plateaus (22% of variable negations resulted in 	 � � �) and �	�� � � in all other areas,

� for par16-1-c contains a larger proportion of plateaus (37% of variable negations
resulted in 	� � �) and �	�� � � in all other areas. For bw large.c, 
� has virtually no
plateaus and consists of moderately large features where �	 �� � 	�, while for g125.17,

� has no plateaus and consists only of large features where �
 � �	 �� � ��.

−10 −5 0 5 10
0

5

10

15

20

25

%

−5 0 5
0

10

20

30

40
%

−30 −20 −10 0 10 20 30
0

1

2

3

4

5

%

−50 0 50
0

1

2

3

4

5

%

f2000 par16−1−c 

bw_large.c 
g125.17 

Fig. 4. Distributions of sampled �� for each of the four benchmark problems. The vertical axis is,
in each plot, the percentage frequency for which the horizontal axis value appeared.

5 SAT Problem Characteristics and Maxage

The basic rationale for the analysis of SAT problems was to investigate characteristics
of the benchmark problems to identify if there is any relationship between the optimal



value for DECREASE and measurable properties of a SAT problem. If this can be
shown to be the case, then some form of estimate for the optimal value of DECREASE
could be programmatically determined at the start of a Maxage search by an analysis of
the SAT problem.

From Figs. 2 and 3 and the discussion presented above, our hypothesis is that a
larger value of DECREASE (i.e. more clause weighting) will be optimal for problems
where 
� is relatively smooth and a smaller value optimal when 
� is relatively rugged.

Intuitively, as traversing an predominantly flat 
� , takes some number of variable
assignments, clause weighting needs to be more aggressive (higher DECREASE) to
prevent unguided travel. Conversely, if there is a small proportion or no flat areas on

� , the main role for clause weighting is escaping from search cycles, in particular
local minima, which is a relatively localised phenomena of 
� and takes relatively fewer
variable assignments. Accordingly clause weighting needs to be less aggressive (lower
DECREASE) so that 
� stays close to 
� and the inherent features of 
� are used as
much as possible during the search.

The measures ��� � �
�

� and ��� ranked 
� for the benchmark problems as (smoothest
to most rugged) par16-1-c, f2000, bw large.c and g125.17. This is in accordance with
the ranking of their optimal DECREASE value (46, 10, 6, 4). This suggests the fol-
lowing algorithm for setting the DECREASE parameter: If all four tests classify the
SAT problem as random, then the optimal value for DECREASE is 10 otherwise, if
��� � � � � � � � � approximates a normal distribution with a median of zero, DECREASE
is a linear function of the frequency of the median, otherwise DECREASE is a linear
function of the median of the distribution.

The results obtained, using this algorithm, are compared to experimentally deter-
mined optimal values for DECREASE in Table 1 for the benchmark plus other rep-
resentative SAT problems from different SATLIB problem classes. For the 10 non-
benchmark problems, only the predicted DECREASE value for ais10 is not in the range
of optimal values. Being an under estimate, this will tend to increase the possibility of
Maxage search cycles for ais10 as it has a more “rugged” 
 � than those of random
problems. Experiments, not reported here, with an adaptive version of Maxage which
is able to identify search cycles, showed that under estimates of DECREASE for these
types of problems are usually corrected during the search.

6 Conclusion

The aim of this study was to move towards developing an adaptive clause weighting
algorithm, based on Maxage, that required no external, problem dependent parame-
ter(s). This algorithm will analyse the SAT problem to determine an initial value for the
DECREASE parameter and then adaptively modify this value during the search using
run-time characteristics that determine how effectively the search is proceeding. This
paper proposes a method for estimating the initial value for DECREASE.

We consider this study a step towards developing more intelligent, adaptive con-
straint solving technologies. Future research will include:

– the identification of structure sub-types within SAT problems to refine the initial
setting of the DECREASE parameter.



Problem Predicted Optimal Problem Predicted Optimal
DECREASE DECREASE DECREASE DECREASE

f2000 10 10 par16-1-c 46 46
bw large.c 6 6 g125.17 4 4
aim-200-6 0-yes1-1 56 � � ais10 6 � �

BMS k3 n100 m429 140 15 � � flat200-1 7 � �

CBS k3 n100 m449 b90 889 11 � � ii32a1 7 � 	

RTI k3 n100 m429 140 14 � 	 logistics.b 7 � 	

uf100-0953 9 � 	 sw100-1 7 � �


Table 1. Predicted DECREASE compared with the experimentally determined optimal DE-
CREASE values for benchmark and other SATLIB SAT problems.

– an investigation of why, for some SAT problems, there is a wide range of optimal
DECREASE values whereas for other problems it is unique.

– the development of adaptive control mechanisms so that the DECREASE parameter
can be adaptively adjusted during the search.

– an investigation to determine if clause weighting is able to identify clauses which
are “globally” difficult to satisfy or if it is a localised activity which simply gives
the search adequate mobility and the global minima is arrived at without any use of
“global” knowledge.

– an investigation to determine what makes clause weighting algorithms such effec-
tive global optimisation algorithms. Is it in the ability to escape search cycles and
the guided travel across plateaus or is it in the initial focus on satisfying the more
“difficult” clauses and then addressing the “easier” clauses?

– incorporating a parameterless clause weighting algorithm as the local search within
a hybrid genetic algorithm which will open the way to pool based parallel search
algorithms for SAT problems.

References

1. J. Frank. Learning short term weights for GSAT. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), pages 384–389, 1997.

2. F. Glover. Tabu search: Part 1. ORSA Journal on Computing, 1(3):190–206, 1989.
3. F. Hutter, D.A.D. Tompkins, and H.H. Hoos. Scaling and probabilistic smoothing: Efficient

dynamic local search for SAT. In LNCS 2470: Proceedings of Constraint Programming,
2002, pages 233–248, 2002.

4. O. Kravchuk, W. Pullan, J. Thornton, and A. Sattar. An investigation of variable relationships
in 3-SAT problems. In AI 2002: Advances in Artificial Intelligence, pages 579–590, 2002.

5. P. Morris. The Breakout method for escaping local minima. In Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93), pages 40–45, 1993.

6. D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT procedures.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-00),
pages 297–302, 2000.



7. D. Schuurmans, F. Southey, and R.C. Holte. The exponentiated subgradient algorithm for
heuristic boolean programming. In Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI-01), pages 334–341, 2001.

8. B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large structured
satisfiability problems. In Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence (IJCAI-93), pages 290–295, 1993.

9. Y. Shang and B. Wah. A discrete Lagrangian-based global search method for solving satis-
fiability problems. J. Global Optimization, 12:61–99, 1998.

10. J. Thornton, W. Pullan, and J. Terry. Towards fewer parameters for SAT clause weighting
algorithms. In AI 2002: Advances in Artificial Intelligence, pages 569–578, 2002.


