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Abstract. Clause weighting local search methods are widely used for
satisfiability testing. A feature of particular importance for such methods
is the scheme used to maintain the clause weight distribution relevant
to different areas of the search landscape. Existing methods periodically
adjust clause weights either multiplicatively or additively. Tie breaking
strategies are used whenever a method’s evaluation function encounters
more than one optimal candidate flip, with the dominant approach being
to break such ties randomly. Although this is acceptable for multiplica-
tive methods as they rarely encounter such situations, additive methods
encounter significantly more tie breaking scenarios in their landscapes,
and therefore a more refined tie breaking strategy is of much greater
relevance. This paper proposes a new way of handling the tie breaking
situations frequently encountered in the landscapes of additive constraint
weighting local search methods. We demonstrate through an empirical
study that when this idea is used to modify the purely random tie break-
ing strategy of a state-of-the-art solver, the modified method significantly
outperforms the existing one on a range of benchmarks, especially when
we consider the encodings of large and structured problems.

Content Areas: Search, Constraint Satisfaction

1 Introduction

Local search methods are of considerable interest to the AI community due to
their ability to efficiently find solutions to combinatorial problems that are be-
yond the reach of complete search methods. The satisfiability (SAT) problem is
of significant practical and theoretical interest as many application domains can
be formulated in this way. The SAT problem consists of finding an assignment
for the Boolean variables in a propositional formula that makes the formula
true. Typically, local search methods for SAT work by iteratively changing (flip-
ping) the value of one Boolean variable in the problem in order to minimise an
evaluation function that maps any given variable assignment to the number of
unsatisfied clauses under this assignment. This heuristic is followed until a sat-
isfying assignment is found (all clauses are satisfied) or until either a maximum
run-time or number of flips is reached.



2

Clause weighting local search methods (CWLS) modify a basic local search
by having individual weights assigned to all clauses in the problem, thus dynam-
ically changing the evaluation function and the search landscape as the search
progresses. As a consequence, successful CWLS methods need efficient ways to
adjust clause weights, so they can maintain the clause weight distribution rel-
evant to the context in which they are searching. To this end, most methods
can be divided into those that adjust weights multiplicatively, and those that
do so additively. Multiplicative methods use floating point clause weights and
increase/decrease multipliers that give the clause weight distribution a much
finer granularity. Additive methods, on the other hand, assign integer values
to clause weights and increase/decrease amounts, resulting in a coarser weight
distribution.

Since their introduction [1, 2], several improvements have been proposed to
CWLS methods, such as DLM [3] and SAPS [4]. While DLM uses additive
weighting, SAPS adjusts clause weights multiplicatively. Recently, the pure ad-
ditive weighting scheme (PAWS) was introduced [5] and shown to give significant
performance improvements over SAPS on a range of challenging SAT problems
from the SATLIB1 and DIMACS2 libraries, as well as on a set of SAT-encoded
random binary CSPs from the phase transition region.

2 Tie Breaking and Search Landscapes

Consider a search landscape L for an instance π, L(π) := (S, N, g), where S is the
space of all candidate solutions, N is a given neighbourhood relation, and g is an
evaluation function. Now consider the following definitions of landscape position
taken from [6]. For a position s ∈ S the following functions determine the number
of upwards, sideways, and downwards flips from s to its direct neighbours3,
respectively: upw := #{s′ ∈ N(s) | g(s′) > g(s)}, sidew := #{s′ ∈ N(s) |
g(s′) = g(s)}, and down := #{s′ ∈ N(s) | g(s′) < g(s)}; and the following
landscape positions of interest: SLMIN(s) :⇔ downw(s) = sidew(s) = 0, and
LMIN(s) :⇔ downw(s) = 0 ∧ sidew(s) > 0 ∧ upw(s) > 0.

It is well known that multiplicative methods encounter negligible numbers of
tie breaking situations in their search landscapes [7, 5] due to the finer granular-
ity of their clause weight distributions. Furthermore, by not taking equal-cost
flips, multiplicative methods make no distinction between strict local minima
(SLIMN ) and local minima (LMIN ), treating such positions as generic local
minima. Specifically, SAPS randomly breaks ties amongst cost-improving flips,
but if the candidate flips are either cost-increasing, or equal-cost, then it per-
forms a random walk step with 1% probability by randomly selecting a variable
for flipping from the domain of all variables in the problem.

1 http://www.satlib.org
2 http://dimacs.rutgers.edu/Challenges/Seventh/PC
3 A neighbour s

′ of s is a position that differs from s on at most one variable assign-
ment.
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In contrast, additive methods such as DLM and PAWS tend to encounter sig-
nificantly more LMIN positions in their landscapes, and hence having an efficient
mechanism to deal with such positions appears to be of crucial importance for
their performance. Additionally, they distinguish between SLMIN and LMIN,
and execute an equal-cost flip strategy whenever the latter is encountered. Like
SAPS, PAWS also randomly breaks ties amongst cost-improving and equal-cost
flips, but in the equal-cost case it will take such a flip with 15% probability,
otherwise it will adjust the clause weights4. It never takes a cost-increasing flip.

This work’s main motivation is to investigate an alternative way for breaking
the ties frequently encountered in the landscapes of additive CWLS methods.
After observing that a vast proportion of flips are randomly selected from a list
of tied candidates, we hypothesise that the performance of these methods can be
significantly enhanced by replacing the purely random tie breaking mechanism
with one that also incorporates a heuristic that considers information about
the landscape being searched. This paper reports on the implementation of this
idea on a state-of-the-art additive CWLS method. We will demonstrate that our
resulting method is able to significantly outperform the original one on a range
of benchmark SAT problems.

3 Random versus Heuristic Tie Breaking

Figure 1 shows the PAWS method extended to accommodate heuristic tie break-
ing (HTB). Of interest here are its two parameters: Pflat (line 17) and WDP
(line 25). The former controls the probability with which PAWS takes an equal-
cost flip, while the latter determines the number of weight increases (line 24) al-
lowed before a weight decrease takes place (lines 25-26). In practice only WDP
has its value set on a problem-per-problem basis, whereas a Pflat setting of
0.15 was found to generally work well for all problems [5]. PAWS is suitable
as a host method as it achieves state-of-the-art performance for satisfiable SAT
instances, and because it represents the purest implementation of an additive
CWLS method. As a result, the insights gained from this study are sufficiently
general and thus can be of practical relevance for the design of new methods.

In a preliminary study only partially reported here, we developed twenty
alternatives to PAWS’s purely random strategy for breaking ties of equal-cost

candidate flips (Figure 1 lines 17-22). We chose to initially only deal with equal-
cost flips for two reasons. Firstly, recent methods’ reliance on purely random
tie breaking mechanisms to achieve current levels of performance has meant
that little attention has been given to the investigation of novel heuristic-based
alternatives for dealing with equal-cost flips. Secondly, as the setting of Pflat

regulates the frequency of equal-cost flips, we were able to place an upper bound
on the usage of candidate heuristics without having to introduce and tune a new
parameter.

4 Both SAPS’s random walk and PAWS’s equal-cost probabilities are parameters in
the corresponding algorithms, but are in practice set to 0.01 and 0.15, respectively.
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Fig. 1. The pure additive weighting scheme extended to accommodate heuristic tie
breaking for equal-cost and cost-improving flips. This pseudo-code corresponds to the
HTB method used in our empirical study.

We implemented each alternative tie breaking heuristic and tested the re-
sulting method using a diverse problem set. The experimental conditions were
identical to those reported later in the main part of this study. Control data was
obtained by running the unmodified PAWS under the same conditions.

In order to estimate the performance variation arising from the introduc-
tion of each candidate heuristic, we computed the average median run-time for
PAWS and each of the variants across all problems. A measure of variation in
performance was then calculated as a percentage of PAWS’s performance, and
a ranking of candidate heuristics was obtained based on this measure. Scores
for the best, median, and worst performing heuristics were 86.25%, 94.87%, and
110.18%, respectively. The main idea behind our best performing heuristic, TB
(Figure 2(a)), lies on biasing the selection towards those candidates appearing
in clauses that have been most rarely weighted during the search. For example,
consider the CNF formula: (a∨¬b∨ c)∧ (¬a∨¬b∨ c)∧ (a∨ b∨ c)∧ (a∨¬b∨¬c),
the corresponding clause weight Cw = {3, 3, 3, 4}, and number of weight up-
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(a) TB. (b) BOCM.

Fig. 2. TB and BOCM.

dates distributions Cwu = {10, 20, 10, 10}; and a complete candidate solution
S = {a := false, b := true, c := false}.

In this example, only the first clause is falsified, so when selecting a literal
to flip, PAWS calculates ∆w for each literal appearing in it (Figure 1 line 7):
∆w = {a := 0,¬b := 0, c := 1}. At this point, PAWS would then randomly
break the tie amongst the two best candidates a and ¬b with 15% probability,
given this is an equal cost flip.

However, if TB is used, then the tie breaking is biased towards the selection
of those flips that appear in clauses that are (a) currently satisfied, and (b) have
had their weight updated the least number of times during the search. Continuing
with our example, the tie-breaker value for the two tied candidates is calculated
(Figure 2(a) lines 4-6), resulting in the tie being broken in favour of a, as its
tie-breaker value (20) is smaller than that of the other candidate (30). Although
space limitations preclude us from discussing the other candidate heuristics in
detail, we note that in some of the less successful variants the bias favoured
the candidate flips with the highest tie breaking value. We also tested versions
that took into account both satisfied and unsatisfied clauses in their tie breaking
computation. If after using TB there was still a tie between a and ¬b, then BOCM
(the procedure shown in Figure 2(b) for breaking ties on clauseMake5) would
have been used and the tie would have been broken in favour of the candidate
that, if flipped, would satisfy the greater number of clauses. Any remaining ties
would be broken at random.

5
clauseMake refers to a data structure introduced in the Walksat framework [8] and
now commonly used in CWLS methods that counts how many clauses would be
made true for any given variable flip.
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For all heuristics tested, we observed that the number of flips resulting from
heuristic tie breaking amounted to an average of approximately 3% of all search
flips. This corresponds to a reduction of the same magnitude in the number
of random flips performed by the host method. Therefore, the most striking
finding of this preliminary study was that the reduction in the number of random
flips resulted in a relatively larger improvement in overall performance when we
consider our best performing heuristics.

Hence, we investigated the effects of allowing the heuristic-to-random flip
ratio to increase by extending heuristic tie breaking to cost-increasing flips. In
an initial attempt to implement this, the TB heuristic was used to break ties of
cost-improving flips as well, with probability 1-Pflat. However, the improvement
in performance in terms of number of flips as observed for several problems
compared poorly against the decrease in run-time performance brought about
by the additional computational overheads. In other words, obtaining a further
decrease in randomness in this fashion proved to be too expensive.

In an alternative implementation, BOCM was used in place of TB for cost-
improving flips (maintaining the 1-Pflat setting), while continuing to use TB for
breaking ties of equal-cost flips. TB remained the chosen heuristic for equal-cost
flips because when we tested BOCM as a standalone heuristic for this purpose, its
performance was inferior to the performance obtained while using TB. Finally,
as we observed that TB’s usage of BOCM was almost negligible at 0.02%, we
decided to switch TB’s BOCM off in our resulting method.

As a result, we obtained a competitive method with which to test our hypoth-
esis that an increase in the heuristic-to-random flip ratio can result in significant
performance improvements for additive CWLS methods. We call this resulting
method PAWS with heuristic tie breaking, or HTB, and use the empirical study
reported next to compare its performance against the unmodified PAWS.

4 Empirical study

4.1 Problem Set and Parameter Setting

Our diverse test set draws problems from four different domains: uniform random
3-SAT, SAT-encoded graph colouring, parity learning, and planning. The -med
and -hard instances from the original SATLIB sets flat100, flat200, uf100 and
uf250 correspond to the median and hardest instances from these sets as found in
a previous study [5] . From DIMACS we use the two most difficult graph colour-
ing problems (g125.17 and g250.29) and the median and hardest 16-bit parity
learning problems (par16-2-c and par16-3-c). For the random 3-SAT problems,
3 sets of problems (400, 800 and 1600 variable sets) were generated from the
4.3 clause-to-variable ratio hard region. To these sets, the f400, f800, and f1600
problems from DIMACS were added and determined the median and hardest
instances, resulting in the 6 random 3-SAT problems (f400, f800 and f1600 -med
and -hard). A range of random binary CSPs (also from the accepted hard re-
gion) were generated and transformed into SAT instances using the multi-valued
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encoding procedure described in [9]. These problems were divided into 4 sets of
5 problems each according to the number of variables (v) the domain size (d)
and the constraint density (c) from the originating CSP, which resulted in the
30v10d40c, 30v10d80v, 50v15d40c, and 50v15d80c problem sets from which the
hardest problem in each set was chosen. We obtained three sets of balanced
quasigroup with holes (BQWH) problems with orders 30, 33, and 36, sampled
from the backbone phase transition region (number of holes/N 1.55 = 1.7) sug-
gested in [10], and using the encoding method proposed in [11]6. We then selected
the easy, median, and hard instances used in this study according to the number
of flips (averaged from 20 runs) taken by PAWS to find a solution.

PAWS and HTB only require the WDP parameter to be set in practice, as
Pflat can be treated as a constant and for all experiments reported here was set
to the suggested 0.15. The PAWS WDP settings were taken from [12], except
the settings for the BQWH problems, found according to the same thorough
empirical evaluation used for finding the optimal HTB WDP settings for each
problem.

4.2 Testing for Significance

Local search run-times on the same problem can vary greatly due to different
starting points and subsequent randomised decisions. For this reason, empirical
studies have traditionally reported statistics like mean, median and standard
deviation obtained from many runs on the same problem to ascertain one algo-
rithm’s superiority over another. As the standard deviation is only informative
for normally distributed data, and local search run-time and run-length dis-
tributions are usually not normally distributed, the non-parametric Wilcoxon
rank-sum test can be used to measure the confidence level of these assertions.
The test requires that the run-times or number of flips from two sets of obser-
vations A and B be sorted in ascending order, and that observations be ranked
from 1 to n. Then, the sum of the ranks for distribution A is calculated and its
value used to obtain, using the normal approximation to the Wilcoxon distribu-
tion, the z value giving the probability P that the null hypothesis H0 : A ≥ B
is true.

The Wilcoxon values presented below the mean time and number of flips for
each problem in Tables 1 and 2 give the probability P that the null hypothesis
A ≥ B is true, where A is the distribution of the run-times (or number of flips)
that has the smaller rank-sum value. We record the P value against distribution
A, and take P < 0.05 to indicate with an asterisk that A is significantly less
than B. Significant performance difference is granted if the Wilcoxon test on run-
times and number of flips is significant for P < 0.05. Using run-time and flips
in combination allows us to capture any significant performance degradation in
run-time arising from the introduction of the heuristic tie breaking that would
otherwise be missed if we only used the Wilcoxon test on the distribution of
flips.

6 The authors would like to thank Duc Nghia Pham for generating these instances.
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5 Results and Analysis

All statistics were obtained from 1,000 runs (100 runs for the bqwh-33-384-hard
and bqwh-36-440-med and -hard) with a 20 million flip cut-off (50 million for
50v15d40c, and 250 million for all BQWH problems). We used a Sun supercom-
puter with 8 Sun Fire V880 servers, each with 8 UltraSPARC-III 900 MHz CPU
and 8 GB memory per node.

Table 1. Random instances.

An initial inspection of Tables 1 and 2 reveals two interesting results. Firstly,
HTB was significantly better on sixteen problems, whereas PAWS gave signifi-
cantly better performance on five. Secondly, all five problems where PAWS was
superior are randomly generated instances shown in Table 1. Should our analy-
sis be restricted to the arguably more relevant domain of structured encodings
shown in Table 2, then HTB is significantly better in twelve problems, whereas
PAWS fails to give significant performance improvements over HTB on any of
the twenty-six structured problems. Our results also show the number of ran-
dom flips as a percentage of the total number of flips, performed by each method
on each problem. HTB used approximately 18% less random flips, on average,
across the whole problem set.

These observations indicate that the reduction in the number of random
flips introduced by HTB may not be as useful for random problems, i.e., ran-
domly generated search landscapes may be more efficiently searched by a method
that utilises proportionally more random flips. However, the significant perfor-
mance improvement afforded by the heuristic tie breaking method on the two
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Table 2. Structured instances.

largest random problems, 50v15d40c and f1600-hard, suggests that in addition
to problem structure, problem size also plays a significant part in determining
the usefulness of heuristic tie breaking for additive CWLS methods.

For all but three problems in our test set, heuristic tie breaking resulted in an
increase in the optimal setting of WDP . Therefore, the additional computational
overhead caused by the introduction of heuristic tie breaking is compensated
by the less frequent clause weight updates. Whether these higher settings are
indicative of a desirable increase in the robustness of the WDP settings is not
yet clear to us, and is therefore an issue that requires further investigation.

When comparing performance, it is also relevant to show that one method
can frequently give higher solution probabilities than the other. Such probabilis-
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tic domination can be ascertained by visually inspecting a plot of the run-time
distribution (RTD) data for the different methods on any given problem. If
these RTDs do not cross then the method whose RTD appears to the left of the
other probabilistically dominates for all solution probabilities [6]. In practice, we
normally relax this definition to allow for some crossing for low solution proba-
bilities, i.e., P ≤ 0.1. The RTD in Figure 3 (left) is an example of probabilistic
domination for all probabilities P > 0.05.
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Fig. 3. Run-time behaviour analysis of HTB and PAWS using the RTDs for problems
bqwh-33-384-med (left) and -hard (right).

Run-time and run-length distribution (RLD) plots are also useful for detect-
ing erratic run-time behaviour. For example, the RTD in Figure 3 (right) reveals
that although HTB dominates PAWS for all 0.05 ≤ P < 0.95, the crossing of the
distributions at P = 0.95 indicates that PAWS was faster on the 3 longest runs
sampled. This could be a symptom of search stagnation on HTB’s behalf. Stag-
nation invariably arises from poor search diversification. As additive methods
rely on the strong use of random flips to diversify their search [13], any changes
likely to result in a substantial reduction in the number of random flips must
also consider adjustments to the method’s diversification strategy. In our host
method, effective diversification relies on an adequate equal-cost flip strategy.
Consequently, we see two possible ways to address this problem in the HTB
method. One is to fine-tune the setting of Pflat. Another, to replace PAWS’s
equal-cost strategy with the random-walk mechanism typically found in imple-
mentations of less randomised multiplicative CWLS methods. We continue to
work on this problem and intend to report on our findings in forthcoming work.

As pointed out earlier, we initially considered using the TB heuristic for
breaking the ties of cost-improving flips as well, but opted for using BOCM
because it offered less computational overheads while still delivering a method
suitable for the goals of our study. However, given HTB’s performance in our
empirical evaluation, we became interested in investigating whether we could
obtain further gains by handling tied cost-improving flips with a more sophisti-
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cated heuristic. Using HTB, we replaced BOCM with TB for handling equal-cost
flips, naming the resulting method HTB+.

Figure 4 shows the performance of this method on the largest blocks world
problem. As expected, the run-time performance (Figure 4 (left)) is impaired by
the additional computational overheads, although this is only the case for solu-
tion probabilities below 25%. For higher solution probabilities (i.e. longer runs),
this difference is noticeably outweighted by the method’s superior performance.

An RLD analysis (Figure 4 (right)) shows that HTB+ clearly dominates
both HTB and PAWS for all solution probabilities above 5%, solving 80% more
instances than either of the other two methods within 1 million flips. Similar
results were also observed on the RTDs and RLDs for the bw large.c problem, as
well as on several BQWH instances. This evidence suggests that it is worthwile
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Fig. 4. RTD and RLD analysis of PAWS, HTB, and HTB+ on bw large.d, 1,000 runs.

investigating the use of more sophisticated heuristic tie breaking techniques,
although a more thorough investigation in this direction is needed before any
conclusive findings can be reached.

6 Conclusion

This study advances our understanding of the usefulness of heuristic tie breaking
for the performance of constraint weighting local search methods. We have used
an empirical study to demonstrate that when heuristic tie breaking is used in
combination with the random tie breaking mechanism of an existing state-of-
the-art solver, the resulting method gives significant performance improvements,
especially for the large and structured search spaces.

Our proposed approach is conceptually simple, and does not require the use of
any additional parameters. Our findings therefore serve to motivate the adoption
of heuristic tie breaking as a worthwhile avenue to be explored for the further
development of additive CWLS methods.
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