On dual encodings for non-binary constraint
satisfaction problems

S. Nagarajan', S. Goodwin', A. Sattar?, and J. Thornton?

! Department of Computer Science, University of Regina,
Regina, Saskatchewan, Canada
[shiv, goodwin]@cs.uregina.ca
2 School of Information Technology,
Griffith University, Gold Coast, Queensland, Australia
j.thornton@gu.edu.au, sattar@cit.gu.edu.au

Abstract. In [Walsh and Stergiou, 1999] enforcing arc consistency (AC)
in the dual encoding was shown to strictly dominate enforcing AC on the
hidden or GAC on the original problem. We introduce a dual encoding
that requires only a small subset of the original constraints to be stored
in extension, while the remaining constraints can be stored intensionally.
In this paper we present a theoretical comparison between the pruning
achieved by enforcing AC on this dual encoding, versus enforcing GAC
and dual arc consistency on the standard encoding. We show how the
covering based encoding retains the dominance over enforcing GAC on
the original problem, while using less space than the existing dual en-
coding.

1 Introduction

In this paper we present a new dual encoding that is based on the construction
of constraint coverings from the original CSP. We show how this covering based
dual encoding can be used to address the space complexity issue of the dual
encodings, while still retaining the soundness and completeness of the solution
procedures. A new form of local consistency based on this dual encoding called
covering arc consistency (CAC), is defined. The amount of pruning achieved by
enforcing CAC on the new encoding is compared theoretically to GAC on the
original problem, AC on the hidden encoding, and AC on the standard dual
encoding.

2 Preliminary definitions

Given below are a few definitions. Let (V, D,C) be a CSP where V is the set of
variables, D are their domains, and C' is the set of constraints. Furthermore, we
can assume that each constraint C; = (V;,S;) € C consists of a list of variables
Vi = (Vi1,---,v) C V and a predicate on these variables, S; C D,,, X-+-X D,,,.
A binary CSP is one in which all the constraints are defined over pairs of
variables. Associated with every binary CSP is a constraint graph with a node
for every variable and an edge between two nodes if their variables share a
constraint [2, 3].

Definition 1. Given a binary CSP, the primal constraint graph associated
with it is o labeled constraint graph, where N=V, (v;,v;) € A iff 3AC;; € C |
Vij = {vi,v;}. Also the label on arc (v;,v;) is Cij. Given an arbitrary CSP,
the dual constraint graph associated with it is a labeled graph, where N=C,
(C;,Cj) e AT VNV, # 0. Also the label on arc (C;,C;j) is V; N'Vj.

Definition 2. IfV; and V; are sets of variables, let S; be an instantiation of the
variables in V;. S;[V;] is the tuple consisting of only the components of S; that
correspond to the variables in V;. This is also called the projection of tuple S;
on the variables in V;. Let C;,C; be two constraints € C. The join of C;,C},
denoted by C; X C; = Cjj, is the set {t |t € Si; A (t[Vi] € Si) A (t[V;] € S;)}.

Definition 3. Consider o tuple t; as a consistent instantiation of variables in
Vi;- An extension of t; to variables in Vi, UVy; is a tuple t;; where t;; is an
instantiation to variables in Vi, UVy,. The two tuples t; and t; are compatible
if ti[Vi, N Vi, 1=tV N V], d.e., the two tuples agree on values for all common
variables.! The tuple t;j = t; X t; is a consistent extension of ¢; iff t; and t;
are compatible and YC; such that V; C Vi, t:;[Vi] € S;.

Definition 4. Given a constraint C;j, the value b in Dj, is called a support
for value a in Dj, if the pair (a,b) € S;;. A value a for a variable i is viable
iff for every variable j such that a constraint C;; exists, a has a support in D;.
The domain D of a constraint network, is arc consistent if for every variable
i in the network, all the values in d; are viable.

Definition 5. [5] A tuplet on (vi,,...,v;,) is valid iff t € D(vy,)X ... XD(v;,).
A CSP is said to be generalised arc comsistent (GAC) if Vv; € V', Yval; €
D(v;),¥C; € C,3t € S; such that t is valid and t[v;] = val;. A CSP is said to be
pair-wise consistent, iff VC;, C;, S;[C; U C;]=S;[C; U C;] and VS;,S; # 0 [4].

The notion of arc consistency can be defined for tuples and dual variables in the
dual encoding as follows.

Definition 6. Given two constraints C; and Cj, the tuple t; € S; is called a
support for tuple t; € S;, if t;[V; NV;]=t;[ViNV;]. A tuple t; in a constraint
C; is viable iff for every constraint C;, tuple t; has support in C;. A constraint
network is dual arc consistent, if for every constraint C;, all the tuples in S;
are viable.

Definition 7. Let Ceoper = {C1,Ca,...,Cn}. Also Ceoper € C. Each C; €
Ceover is given as (V;, Si), where V; C V. Ceoper covers V iff ", Vi=V. Ceover
is o constraint cover of V. As well, Ccoper 15 @ minimal constraint cover of
V' if it is a constraint cover of V and no proper subset of Ceoper is a constraint
cover of V. If Ceover is a minimal constraint cover, |Ceoper| < |V].

LIf v, N Vi; = 0, t; and t; are automatically compatible.

3 Covering Arc Consistency

Consider a dual encoding of a CSP, where the nodes of the dual encoding are the
constraints in a constraint cover of the given CSP. We now define a new form of
arc consistency based on this dual encoding known as Covering Arc Consistency,
which is defined on constraints in a cover.

Definition 8. Let Ceoper = {C1,C, . ..,Cn}. Given two constraints C; € Ceoper
and Cj € Ceover, the tuple tj € S; is called a covering arc support for tu-
ple t; € S;, if ti[’U,' n 'Uj]:tj['l}i n ’U]‘] and VC, € {C-{Ci,Cj}}, (t,' X t]‘)[’U,']‘ n
Vg] € Sz[vij Nwg]. A tuple t; € C; € Ceover is viable iff for every constraint
C; € Ciover, tuple t; has covering arc support in C;. A constraint network is
covering arc consistent (CAC) w.r.t a covering Ceoper, if VC; € Ceoper, all
the tuples in S; are viable.

An arc consistency algorithm removes all arc inconsistent values from the do-
mains of the variables of the encoding. The following theorems are proven in [6].

Theorem 1. Achieving AC on the hidden variable encoding is equivalent to
achieving GAC on the variables in the original problem.

Theorem 2. Achieving AC on the dual encoding is strictly stronger than achiev-
ing GAC on the original problem.

Theorem 3. Achieving AC on the dual encoding is strictly stronger than achiev-
ing AC on the hidden variable encoding.

In the following we perform a similar theoretical comparison between enforcing
covering arc consistency (CAC), GAC and dual arc consistency. Consider the
following example taken from [1]. This CSP is already GAC, while enforcing
Dual AC removes some values from the domains. Enforcing CAC, reduces the
domains to singleton domains.

C123 C234 C123: C234: Cl4:
V1l V2 V3| V2 V3 V4| V1 V4

a a a a a a a c
a a b a a b b a
b b b b b b b b
b b c b b ¢ c a
c c a c c a c b
c14 c c b c c b c ¢

Fig. 1. Non-Binary CSP: An example
Theorem 4. Achieving CAC on the constraint covering based dual encoding is
strictly stronger than achieving GAC on the original problem.

Proof. If GAC on the original encoding removes a value val; from the domain of
variable v; then there exists some constraint C; that mentions variable v;, and
the assignment of val; to v; cannot be extended to a consistent assignment to

the rest of the variables in C;. Consider a covering based dual encoding. Either
the cover contains the previously mentioned constraint C;, or C; € {C-Croper }-
If C; € Ciover, then we can derive the nogood that removes val; from v; (since no
tuple in C; assigns val; to v;). Otherwise, if C; & Ceoper, then there is some other
constraint C;j € Ceoper that mentions v; (since Ceoper must cover all variables).
If C; contains no tuple that assigns val; to v;, then we can derive the same
nogood. If C; contains some tuples that assign val; to v;, then these tuples will
all be discarded when a consistent extension is verified against the constraint
projection of C; (since C; € C-Cipper). Hence we can derive the nogood that
val; cannot be assigned to v;. To show strictness we can consider the example
previously given in Figure 1. |

Theorem 5. Achieving CAC on the constraint covering based dual encoding is
strictly stronger than achieving AC on the hidden variable encoding.

Proof. From Theorem 1, enforcing GAC on the original problem and enforcing
AC on the hidden encoding are equivalent. Using this and Theorem 4, if follows
that enforcing CAC on the covering based dual encoding is strictly stronger than
enforcing AC on the hidden variable encoding. O

Theorem 6. Achieving CAC on the constraint covering based dual encoding is
is incomparable to achieving AC on the standard dual encoding.

Proof. To show that enforcing CAC on the covering based dual encoding and
enforcing AC on the standard encoding are incomparable, all that is required is
to show a) a problem where enforcing CAC on the covering based dual encoding
prunes more than AC on the standard dual encoding, and b) another problem
where AC on the standard dual encoding prunes more than CAC on the covering
based dual encoding. To show a) we can consider the example in Figure 1. For
b) consider a CSP with 6 variables with binary domains. The 6 constraints are
Ca,b:{(o’o)}a Cb,c:{(oao)}a Cd,e:{(oa 1)}’ Ce,f:{(lao)}

Ca,b,c,d,e:{(oa 07 O; 07 1)}; Ca,b,C,d,f:{(07 05]-7 05 0)7 (05 07 05 1) 0)5 (]-7 05 0; 05 0)}
Consider a constraint covering Ceoper= {Cyqp, Ch,c, Cd,e, Ce, 7 }- This CSP is cov-
ering arc consistent w.r.t the covering C.oye-. But enforcing AC on the standard
dual encoding, will prove that the problem is insoluble since pair-wise consistency
between Cop,c,q,e and Cqp,c,a,f Will fail. O

Theorem 7. When |Ceoper|=|C|, CAC on the covering based encoding prunes
at least as much as AC on the dual encoding.

Proof. When C.pper=C, CAC on the covering based encoding enforces pair-
wise consistency between all the constraints in the cover, and then verifies that
the relational join of all pairs of consistent constraints, satisfy all the other
constraints, on all common variables, by projection. Hence the pruning achieved
is at least as much as pair-wise consistency or dual AC. |

Theorem 8. If VC; & Ceover, ICp, Cq € Coroper such that V; C (V, UV,), pair-
wise consistency prunes at most as much as CAC on the covering based dual
encoding w.r.t Ceoper-

Proof. Pair-wise consistency find inconsistencies between pairs of constraints.
CAC performs pair-wise consistency on all the pairs of constraints in the cover-
ing. Given a constraint covering Ceoper, if VCi & Ceover, ICp, Cq € Cioper such
that V; C (V,UV,), the algorithm enforcing CAC will find all inconsistent tuples
in all C; & Ceoper by projection. Hence under this condition, pair-wise consis-
tency prunes at most as much as CAC on the covering based dual encoding w.r.t
a given Cioper- O

Theorem 9. IfVC;,C; & Ceover, such that 3C,, Cy € Ceoper, (ViNV;) C (VU
V), CAC on the covering based dual encoding w.r.t Ceoper prunes at least as
much as pair-wise consistency.

Proof. From the example in part b) of Theorem 6 it is clear that there exists
a problem that satisfies this condition where pruning using AC on the dual
encoding prunes more than CAC on the covering based dual encoding w.r.t
a given Cioper- To show that is precisely the condition when dual AC prunes
more than CAC w.r.t a Cecoyer, can be done as follows. If it is the case that
VC;i,C; & Ceover if 3C,,Cy € Ceoer, (Vi NV;) C (V, UV,), then CAC .w.r.t
Ceover derives all pair-wise inconsistent tuples that AC on the dual encoding
would derive. Hence this is precisely the condition when CAC w.r.t a cover is no
worse than dual AC. O

4 Conclusions

This paper presents a new dual encodings for CSPs based on constraint coverings.
We introduce a new form local consistency that is defined on this dual encoding
called covering arc consistency (CAC). It is shown that enforcing CAC dominates
GAC and hidden variable AC, and is incomparable to standard Dual AC. We
also present a precise characterisation of conditions under which the pruning
achieved by CAC is comparable to the pruning achieved by dual AC.

References

1. Bessiere C. Non-binary constraints. In Principles and Practice of Constraint Pro-
gramming, CP-99, Invited Lecture, 1999.

2. R. Dechter. Constraint networks. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, pages 276-285. Wiley, 1992. Volume 1, second edition.

3. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38:353-366, 1989.

4. Janssen P, Jegou P, Nouguier B., and Vilarem M.C. A filtering process for general
constraint satisfaction problems: achieving pair-wise consistency using an associated
binary representation. In Proceedings of the IEEE Workshop on Tools for Artificial
Intelligence, pages 420-427, Fairfax, USA, 1989.

5. Mohr R. and Masini G. Good old discrete relaxation. In Proceedings ECAI’8S,
pages 651-656, 1988.

6. Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satisfaction
problems. In Proceedings of the 16th National Conference on Artificial Intelligence,
pages 163-168, 1999.

