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Abstract. Recent research has shown that it is often preferable to encode real-
world problems as propositional satisfiability (SAT) problems, and then solve
using general purpose solvers. In this way the efficiencies of SAT technology
can be exploited, and the development of specialised solution techniques can be
avoided. However, in the interval algebra (IA) domain of temporal reasoning,
the state-of-the-art still involves the use of specialised techniques that exploit the
particular structure of interval relations.
In this paper we investigate the feasibility of representing and solving IA prob-
lems as SAT problems. We firstly introduce two methods of representing IA as a
constraint satisfaction problem (CSP), and then use three SAT-encoding schemes
to produce six different IA to SAT representations. In an empirical study, we
examine the performance of existing SAT local and complete search solvers on
these SAT representations, and perform a comparison with solvers that operate on
native IA representations. Our results show that the best performance over a range
of algorithms is produced using a support SAT encoding of a point algebra-based
CSP. The results also show that a state-of-the-art complete SAT solver (zChaff)
can solve these instances significantly faster than existing IA solvers working on
equivalent native IA representations.

1 Introduction

Representation and reasoning with time information, or temporal reasoning, is a fun-
damental research area in computer science and artificial intelligence. Basic tasks in
this domain include the design and development of efficient reasoning methods for de-
termining consistency of temporal representations, and effectively answering temporal
queries. More generally, results from temporal reasoning research have been success-
fully applied in many real world AI applications such as planning, plan recognition,
natural language understanding, and medical diagnosis [1].

In this paper we are specifically concerned with the interval algebra (IA) representa-
tion of the temporal reasoning problem [2]. This is firstly because IA offers considerable
expressivity in terms of representing qualitative information and secondly because it is
the most popular and well studied temporal reasoning formalism. Existing IA temporal
reasoning techniques are generally based on the backtracking approach (proposed by
? We would like to thank Peter van Beek and Jochen Renz for helpful comments on the earlier
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Ladkin and Reinefeld [3]), which uses path consistency as forward checking. Although
this approach has been further improved [1, 4], it and its variants still rely on path con-
sistency checking at each step to prune the search space. This native IA approach has the
advantage of being fairly compact, but is disadvantaged by the overhead of continually
ensuring path-consistency. Additionally, the native IA representation of variables and
constraints means that state-of-the-art local search and complete search heuristics (such
as unit propagation look ahead in Satz [5] or no-good recording and non-chronological
backtracking in Chaff [6]) cannot be easily transferred to the temporal domain.

In practice, existing native IA backtracking approaches are only able to find con-
sistent solutions for relatively small general IA instances [7, 8]. This has motivated
research in applying stochastic local search techniques (SLS) to the IA problem, to
see if performance increases over complete search observed in other SAT and CSP do-
mains can be translated to IA. The first step in this direction was taken by Thornton
et al. [8], with the development of the end-point ordering model, specifically designed
to represent IA problems in a form suitable for processing by SLS. In this research
the TSAT local search algorithm was shown to significantly outperform an existing
complete search technique on a set of larger, more difficult IA problems. However, the
end-point ordering model, like the native IA model, has a specialised structure that is
carefully exploited by the TSAT algorithm. This means it is not a suitable representation
for the application of general purpose techniques.

In this paper we ask the question whether the representation of IA problems us-
ing specialised models that require specialised algorithms is necessary in the general
case. Given the development of such approaches takes considerable effort, we would
expect significant performance benefits to result. To answer this question, we look at
expressing IA as a propositional satisfiability problem. This enables us to apply a range
of state-of-art SAT solvers and to compare the performance of these with the existing
native IA approaches. According to our understanding, it appears that no explicit and
thorough work has tried to formulate temporal problems as SAT instances. Nebel and
Bürckert [9] pointed out that qualitative temporal instances can be translated to SAT in-
stances but that such a translation causes an exponential blowup in problem size. Hence,
no further investigation was provided in their work.1

A second issue addressed by the paper is the discovery of the best SAT representa-
tion for IA. This question divides into two parts: firstly the development of an appro-
priate CSP representation of IA (i.e. one suitable for the efficient application of general
purpose solution techniques), and secondly the best choice of a CSP to SAT encoding.
One of the main contributions of the paper is the development of a point-based CSP
encoding of the IA problem which uses point algebra-based relations [11] but retains
the full expressivity of IA. This is compared to a more straightforward interval-based
model. We also extend the literature on the relative performance of existing CSP to SAT
encodings by giving an empirical comparison of three encodings for each of our CSP
models and for both complete and local search approaches.

The remainder of the paper is structured as follows: in the next section we review
the basic definitions of IA, and in Section 3 we introduce the two methods to transform

1 Recent independent work [10] has proposed representing IA as SAT, but the authors do not
specify the transformation in detail, and fail to provide an adequate empirical evaluation.



IA instances to CSP instances. Using these two transformation methods, combined with
three CSP to SAT encodings, six IA to SAT encodings are presented. In Section 4.1 we
describe the generation of our test set instances and in Sections 4-4.5 we present an em-
pirical study to evaluate the performance of these SAT encodings relative to each other,
and the performance of existing complete and SLS SAT solvers in comparison to the
native IA backtracking and TSAT solvers. Finally, Section 5 presents the conclusions
and the future research suggested by this study.

2 Interval Algebra

Interval Algebra [2] is the most commonly used formalism to represent temporal in-
terval events. It consists of a set of 13 atomic relations between two time intervals:
I = {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi} (see Table 1). Indefinite information be-
tween two time intervals can be expressed as a subset of I (e.g. a disjunction of atomic
relations). For example, the statement “Event X can happen either before or after event
Y” can be expressed as X{b, bi}Y . Hence there are a total of 2|I| = 8,192 possible
relations between pairs of temporal intervals.

Atomic relation Symbol Diagram of PA

meaning representation

X before Y b X¾- Y¾- X− < Y −, X− < Y +

Y after X bi X+ < Y −, X+ < Y +

X meets Y m X¾ - Y¾ - X− < Y −, X− < Y +

Y met by X mi X+ = Y −, X+ < Y +

X overlaps Y o X¾ - X− < Y −, X− < Y +

Y overlapped by X oi Y
¾ -

X+ > Y −, X+ < Y +

X during Y d X¾ - X− > Y −, X− < Y +

Y includes X di Y
¾ -

X+ > Y −, X+ < Y +

X starts Y s X¾ - X− = Y −, X− < Y +

Y started by X si Y
¾ -

X+ > Y −, X+ < Y +

X finishes Y f X¾ - X− > Y −, X− < Y +

Y finished by X fi Y
¾ -

X+ > Y −, X+ = Y +

X equals Y eq X¾ - X− = Y −, X− < Y +

Y
¾ -

X+ > Y −, X+ = Y +

Table 1. The thirteen IA atomic relations

The four operators of IA: union (denoted by ∪), intersection (denoted by ∩), inver-
sion (denoted by −1), and composition (denoted by ◦), can be defined as follows:

∀ X, Y : X(R1 ∪R2)Y ↔ (XR1Y ∨XR2Y )

∀ X, Y : X(R1 ∩R2)Y ↔ (XR1Y ∧XR2Y )



∀ X,Y : X(R−1
1 )Y ↔ Y R1X

∀ X,Y : X(R1 ◦R2)Y ↔ ∃ Z : (XR1Z ∧ ZR2Y ).

Hence, the intersection and union of any two temporal relations (R1, R2) are simply
the standard set-theoretic intersection and union of the two sets of atomic relations
describing R1 and R2, respectively. The inversion of a temporal relation R is the union
of the inversion of each atomic relation ri ∈ R. The composition of any pair of temporal
relations (R1, R2) is the union of all results of the composition operation on each pair of
atomic relations (r1i, r2j), where r1i ∈ R1 and r2j ∈ R2. The full composition results
of these IA atomic relations are available in [2].

An IA network can be modelled as a temporal CSP (TCSP), where each interval
event is a CSP variable with a domain of ordered pairs of real numbers and each binary
constraint Cij is labelled with the interval relations between the ith and jth intervals
[1]. In general, the solution for a standard CSP is an assignment of domain values to
all variables such that all the constraints are satisfied. Unfortunately, as the domain of
an IA interval is infinite, this representation is not appropriate for a discrete domain
CSP or SAT solver. However, the problem can be relaxed such that an I-instantiation
of a given IA network is an assignment of interval relations to all binary constraints in
the corresponding TCSP. An I-instantiation is singleton, also known as a scenario, iff
each binary constraint is assigned with exactly a single atomic relation. An IA network
with n interval variables is globally consistent iff it is strongly n-consistent [12]. Hence,
the ISAT problem of determining whether a given IA network is satisfiable, becomes
the problem of determining whether a globally consistent I-instantiation of the corre-
sponding TCSP exists [2, 1]. ISAT is the fundamental reasoning task in the temporal
reasoning community because all other interesting reasoning problems can be reduced
to it in polynomial time [13] and it is one of the most important tasks in practical appli-
cations [4].

Figure 1(a) shows an example of an IA network expressing the situation: “Fred was
reading the paper while eating his breakfast. He put the paper down and drank the last
of his coffee. After breakfast he went for a walk.”.2 In this example, variables Xp, Xb,
Xc and Xw represent the interval that Fred is reading the paper, eating the breakfast,
drinking coffee and walking respectively. Figure 1(b) shows a consistent solution of this
network on the timeline and figure 1(c) shows the corresponding I-instantiation of that
solution.

As ISAT is known to be NP-complete [11], the application of some sort of ex-
haustive search method is generally required to determine the satisfiability of a full IA
network. Ladkin and Reinefeld [3] proposed an efficient backtracking approach to solve
the ISAT problem by enforcing path consistency as forward checking at every branching
node. This allows the elimination of relations that are path inconsistent with the current
partial solution. They also pointed out that the instantiation of each constraint can be
extended from atomic relations to any set of relations for which path consistency guar-
antees global consistency, and hence considerably reduced the branching factor of the
algorithm. In addition, various variable and value ordering techniques were developed
and empirically shown to significantly improve overall performance [7, 14, 1].

2 This example was originally used in [7].
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Fig. 1. An example of an IA network and its consistent solution.

Given the implicit constraints of the current IA formalism can only be enforced
by path consistency, state-of-the-art search techniques from the CSP and SAT domains
cannot be easily employed, i.e. it would require the embedding of a path consistency
heuristic in the reasoning mechanism of the solver. To address this issue, Thornton et
al. [8] developed a new transformation method, called end-point ordering, that refor-
mulates IA networks into CSPs. In this model the variables are interval end-points and
the constraints are the end-point relations as defined in Table 1. The domain of each
end-point variable is defined as the integer value position or rank of that variable within
the total ordering of all end-points [8]. To solve these problems, a specialised TSAT
local search algorithm was developed that exploits the structure of the end-point do-
mains and constraints. The main difficulty with this approach is the generation of very
large variable domains (representing all possible orderings of each interval). Without
the special TSAT pruning heuristics a standard general purpose solver would not prove
competitive. Therefore, neither native IA or the end-point ordering models are appro-
priate for use with a general purpose SAT or CSP solver. For this reason we decided
to explore the development of alternative representations that could produce variables
with reasonable domain sizes and easily represented constraints.

3 Encoding IA into SAT

Recent research has shown that modelling and solving hard combinatorial problems
as SAT instances can produce significant performance benefits over solving problems
in their original form [15–17]. This at least indicates that encoding and solving IA
problems as SAT instances using state-of-the-art SAT solvers is a promising line of
enquiry.

A common approach to encode combinatorial problems into SAT is to divide the
task into two steps: (i) modelling the original problem as a CSP and (ii) mapping the
new CSP into SAT. In the next two subsections, we propose two transformation methods
to model IA networks as CSPs such that these CSPs can be feasibly translated into
SAT. We then discuss three SAT encoding schemes to map the CSP formulations of IA
networks into SAT. This results in six different approaches to encode IA networks into
SAT.



3.1 The Interval-Based Transformation Method

A straightforward method to formulate IA networks as CSPs is to represent each arc
between a pair of intervals in the original IA network as a CSP variable. We then limit
the domain values of each CSP variable to the set of permissible IA atomic relations
for that arc, rather than the set of all subsets of I used in existing IA approaches. This
allows us to reduce the domain size of each CSP variable from 213 to a maximum of 13
values. In addition, an instantiation of the new model is now a singleton I-instantiation,
as a property of a CSP is that one and only one value can be assigned to a variable at
any given time. Hence, the global constraint that an I-instantiation has to be globally
consistent becomes equivalent to it being path consistent, as a singleton I-instantiation
is globally consistent iff it is path consistent [7].

In his original work, Allen [2] proposed a path consistency algorithm for a regular
I-instantiation that repeatedly computes

Rik = Rik ∩ (Rij ◦Rjk)

for all triples of intervals (i, j, k) until no further change occurs or until Rik = ∅.
These operations remove all the relations that cause an inconsistency between any triple
(i, j, k) of intervals. If Rik = ∅, then the original I-instantiation is path inconsistent.

For a singleton I-instantiation, the algorithm can be simplified, without loss of com-
pleteness, so that we only need to check

Rik ⊂ (Rij ◦Rjk)

for all triples of interval (i < j < k) once. The intersection (∩) operation is unnecessary
as Rik is instantiated with exactly one atomic relation.

Formally, using this interval-based reduction method, the corresponding CSP of a
given IA network is defined as follows:

Definition 1. Given an IA network with n intervals, the corresponding interval-based
CSP is (X, D, C), where X = {υij | i, j ∈ [1..n], i < j}; each variable υij represents
a relation between two intervals i and j, having a domain Dij = Rij; and C consists
of the following constraints:

υij = x ∧ υjk = y =⇒ υik ∈ {z1, ..., zm}, (i, j, k ∈ [1..n], i < j < k) (1)

where {z1, ..., zm} = Dik ∩ (x ◦ y). Note that Rij is the IA relation between i and j;
and x, y ∈ Rij .

This complete interval-based reduction method requires O(n3) time, where n is the
number of intervals.

3.2 The Point-Based Transformation Method

Vilain and Kautz [11] proposed the Point Algebra (PA) to model qualitative informa-
tion between time points. PA consists of a set of 3 atomic relations P = {<,=, >}
and four operators defined in the similar manner to IA. As an interval event X can be



represented as an ordered pair of end-points (X−, X+) where X− < X+, it follows
that the relations between two intervals can be expressed as the relations between their
end-points.

Although each atomic IA relation can be uniquely represented by a combination of
relations on these points (see Table 1), representing non-atomic IA relations is more
complex, as not all IA relations can be translated into point relations. For example,
the following combination of point relations, (X− 6= Y −) ∧ (X− < Y +) ∧ (X+ 6=
Y −) ∧ (X+ < Y +), represents not only X{b, d}Y but also X{b, d, o}Y . Therefore,
PA can only cover 2% of IA [1].

However, we can simply introduce new constraints to prevent the representation of
undesired IA relations in the CSP model. Such constraints are formed using the negation
of the PA representation of the undesired atomic IA relation.3 For instance, to disallow
X{o}Y in the above example, we would include the constraint:

¬(X− < Y −) ∨ ¬(X− < Y +) ∨ ¬(X+ > Y −) ∨ ¬(X+ < Y +)

Formally, using this point-based reduction method, the corresponding CSP of a
given IA network is defined as follows:

Definition 2. Let µr
st be the PA representation for an atomic IA relation r between two

intervals s and t. Given an IA network with n intervals, the corresponding point-based
CSP is (X, D, C), where X = {υij | i, j ∈ [1..2n], i < j}; each variable υij represents
a relation between two points i and j, having a domain Dij ∈ P; and C consists of the
following constraints:

υij = x ∧ υjk = y =⇒ υik ∈ {z1, ..., zm}, (i, j, k ∈ [1..n], i < j < k) (2)

¬µr
st, (r /∈ Rst) (3)

where {z1, ..., zm} = Dik ∩ (x ◦ y). Note that x, y, z are PA atomic relations; s, t
are intervals in the original problem and Rst is the relation between them.

3.3 Mapping CSP Representations of IA into SAT

Using either of the above CSP formulations, an IA network can be easily encoded as
a SAT instance, where each Boolean variable υr

ij represents an assignment of domain
value r to a CSP variable υij . Two sets of at-least-one (ALO) and at-most-one (AMO)
clauses can then be used to ensure that each CSP variable can only be instantiated
with exactly one value at any time. It is common practice to encode a general CSP
into SAT without the AMO clauses, thereby allowing CSP variables to be instantiated
with more than one value [18]. A CSP solution can then be extracted by taking any
single SAT-assigned value for each CSP variable. However, our two CSP reduction
methods depend on the fact that each CSP variable can only be instantiated with exactly
one value at any time. This maintains the completeness of formulation by ensuring
not only the correctness of our translation of path consistency constraints but also the

3 Table 1 shows the PA representations of 13 IA atomic relations.



global consistency of the solution. Hence, the AMO clauses cannot be removed from
our translation.

A natural way to encode the path consistency constraints, i.e. constraints (1) and
(2) above, is to add the following support (SUP) clause for each pair of domain values
(x, y) for the two CSP variables (υij , υjk):

¬υx
ij ∨ ¬υy

jk ∨ υz1
ik ∨ ... ∨ υzm

ik

where {z1, ..., zm} = Dik ∩ (x ◦ y). Note that we use the IA composition table for
the interval-based reduction method and the PA composition table for the point-based
reduction method [11].

For the extra, but essential, constraints that forbid undesired IA relations in the
point-based model, i.e constraints of type (3) that cannot be excluded in a standard PA
representation, we add a forbidden (FOR) clause for each of undesired IA relations in-
volving the CSP variable in the original problem. The FOR clause of an atomic relation
r is defined based on the negation of the PA representation of that relation. For example,
given the PA representation of X{o}Y is

(X− < Y −) ∧ (X− < Y +) ∧ (X+ > Y −) ∧ (X+ < Y +)

then the forbidden clause to rule out the relation X{o}Y is

¬υ<
X−Y − ∨ ¬υ<

X−Y + ∨ ¬υ>
X+Y − ∨ ¬υ<

X+Y +

We call the above the support encoding scheme as it encodes the support values
of the original problem. In Gent’s support encoding scheme [19], the support clauses
are necessary for both implication directions of the CSP constraints. However, in our
scheme, only one SUP clause is needed for each triple of intervals (i < j < k), and not
for all permutation orders of this triple.

Formally, the SAT support encoding scheme for IA networks is defined as follows:

Proposition 1. The support SAT-encoded instance of a given interval-based represen-
tation of an IA network consists of appropriate ALO, AMO and SUP clauses. The sup-
port SAT-encoded instance of a point-based representation is defined in a similar man-
ner with the use of extra FOR clauses.

Another way of representing CSP constraints as SAT clauses is to encode the con-
flict values, e.g. nogoods, between any pair of CSP variables [16, 18]. This direct en-
coding scheme for IA networks can be derived from our support encoding scheme by
replacing the SUP clauses with the conflict (CON) clauses. If we represent SUP clauses
between a triple of intervals (i < j < k) as a 3D array of allowable values for the CSP
variable υik given the values of υij and υjk, then the CON clauses can be defined as:

¬υx
ij ∨ ¬υy

jk ∨ ¬υzm

ik

where zm ∈ {Dik − {x ◦ y}}. The multivalued encoding [17] is a variation of the
direct-encoding, where all AMO clauses are omitted. As discussed earlier, we did not
consider such an encoding because in the IA transformations the AMO clauses play a
necessary role.



Proposition 2. The direct SAT-encoded instance of a given IA network is derived from
the support SAT-encoded instance of that network by replacing SUP clauses with the
appropriate CON clauses.

A more compact version of the direct encoding is the log encoding [16, 18]. Here, a
Boolean variable xij is true iff the corresponding CSP variable Xi is assigned a value
in which the j-th bit of that value is 1. We can linearly derive log encoded IA instances
from direct encoded IA instances by replacing each Boolean variable in the direct en-
coding with its bitwise representation. As a single instantiation of the underlying CSP
variable is enforced by the bitwise representation, the AMO and ALO clauses can be
omitted. However, extra bitwise prevention (PRE) clauses are needed (if necessary) to
prevent bitwise representations of undesired Boolean variables from being instantiated.
For example, if the domain of variable X is 3 then we have to add the clause¬x30∨¬x31

to prevent the fourth value from assigning to X . As with the direct encoding, there is
a version of the log encoding that allows the original CSP variable to have more than
one instantiation in the SAT encoding. This binary encoding [20] was not considered
for the same reason that the multi-valued encoding was rejected previously.

Proposition 3. The log SAT-encoded instance of a given IA network is derived from the
direct SAT-encoded instance of that network by replacing each Boolean variable with
its bitwise representation, removing all AMO and ALO clauses and adding PRE clauses
as necessary.

4 Experimental Study

4.1 Generating SAT-encoded Test Instances

As a large collection of IA benchmarks is not available, the majority of work in the
area has relied on randomly generated IA problems [4, 1]. This reliance on randomly
generated problems has the advantage of allowing the average difficulty of a problem
set to be controlled. We therefore based our empirical study on random problems gener-
ated using Nebel’s A(n, d, s) model [1]. The resulting instances are temporal constraint
graphs with n nodes (i.e. intervals) and an average degree of d constrained arcs (i.e.
interval relations). Constrained arcs are then labelled with an average of s IA atomic
relations, where 1 ≤ s ≤ 12. Unconstrained arcs are labelled with all 13 IA atomic
relations.

Unlike the S(n, d, s) model used in earlier studies (e.g. [8]), the A(n, d, s) model
allows us to control the difficulty of generated problems. Nebel [1] suggested that the
problem instances can be generated in the phase transition using the A(n, d, s) model
with the values of d and s fixed to 9.5 and 6.5, respectively. It is worthy to note that
the phase transition of a problem type is the border between two regions: one is where
most of the problems have many solutions and it is relatively easy to solve; and one
is where most of the problems are unsatisfiable and it is also relatively easy to prove
[21]. In addition, research has empirically showed that instances in the phase transition
are harder to solve for both complete and incomplete search solvers. We therefore used
these settings to limit the study to only consider harder instances.



To investigate the performance effects of our six different SAT-encoding schemes,
we followed Nebel’s original study and randomly generated three test sets of 20, 30
and 40 nodes, each containing 100 satisfiable instances. We then pre-processed these
instances using the path consistency algorithm before encoding them into SAT. We
found this pre-processing significantly reduced the problem size of SAT-encoded IA
instances both in terms of the number of variables and clauses.

Table 2 shows the average problem size of these instances together with the average
time required to encode them into SAT instances. These results indicate the point-based
support encoding can produce the smallest SAT-encoded instances within the shortest
time window.

Problem Reduction Encoding #vars #clauses time (secs)

n = 20 Interval support 1, 685 75, 667 0.06

d = 9.5 based direct 1, 685 695, 713 0.19

s = 6.5 log 639 688, 180 0.43

Point support 1, 954 42, 157 0.02

based direct 1, 954 81, 094 0.03

log 1, 299 79, 264 0.03

n = 30 Interval support 4, 484 371, 486 0.19

d = 9.5 based direct 4, 484 3, 697, 416 0.83

s = 6.5 log 1, 577 3, 675, 095 2.37

Point support 4, 741 173, 746 0.06

based direct 4, 741 340, 366 0.10

log 3, 146 335, 800 0.14

n = 40 Interval support 8, 421 1, 019, 320 0.45

d = 9.5 based direct 8, 421 10, 415, 055 2.26

s = 6.5 log 2, 877 10, 351, 622 6.80

Point support 8, 637 443, 354 0.14

based direct 8, 637 873, 715 0.23

log 5, 744 865, 344 0.36

Table 2. Interval versus Point Based Encodings: A comparison on problem generation.

4.2 SAT Solver Selection

Table 3 shows the results of zChaff [6], PAWS [22] and MV-PAWS [23] for the three
test sets generated in Section 4.1.4 We ran PAWS and MV-PAWS for 1, 000 runs on
each 20 node instance and 100 runs on each 30 and 40 instance. All three methods were
timed out after 1, 200 seconds for each run.

4 All our experiments were performed on a Sun supercomputer with 8× Sun Fire V880 servers,
each with 8 × UltraSPARC-III 900MHz CPU and 8GB memory per node.



We chose PAWS as our SLS solver [22], as PAWS was recently shown to be one
of the most competitive SAT solvers on a range of larger and more difficult prob-
lems, while also requiring considerably less effort in terms of parameter tuning than
other comparable weighting schemes. For complete search, we chose zChaff [6] version
2004.11.25 as it has won the championship in the SAT competition for three consecu-
tive years. In addition, we included a recently developed version of PAWS, MV-PAWS
[23], which implements the same local search heuristic as PAWS, but is specifically
designed to exploit CSP structure in SAT-encoded instances. MV-PAWS does this by
automatically recognising the structure of CSP variables in a SAT problem and ensuring
that each underlying CSP variable is only ever instantiated with a single value during
the search. This built-in MV-PAWS mechanism means it can discard all ALO and AMO
clauses, as they are now redundant.

zChaff PAWS MV-PAWS

Problem Reduction Encoding mean
time Param mean

time
mean
flips Param mean

time
mean
flips

n = 20 Interval support 0.17 33 1.42 67, 441 100 0.85 15, 955

d = 9.5 based direct 2.66 29 18.04 133, 572 n/a n/a n/a

s = 6.5 log 1, 200 67 65.82 190, 436 n/a n/a n/a

Point support 0.07 52 1.13 124, 388 100 0.26 11, 696

based direct 0.17 50 3.53 246, 886 n/a n/a n/a

log 3.49 68 1.16 54, 734 n/a n/a n/a

n = 30 Interval support 2.17 40 42.83 533, 668 100 20.59 134, 887

d = 9.5 based direct 84.54 31 147.94 382, 124 n/a n/a n/a

s = 6.5 log 1, 200 69 271.55 278, 265 n/a n/a n/a

Point support 0.53 61 23.28 941, 819 100 3.53 67, 462

based direct 1.95 60 78.80 1, 691, 735 n/a n/a n/a

log 104.90 70 28.57 440, 037 n/a n/a n/a

n = 40 Interval support 14.61 40 210.38 1, 274, 465 100 120.13 389, 524

d = 9.5 based direct 354.99 n/a n/a n/a n/a n/a n/a

s = 6.5 log 1, 200 n/a n/a n/a n/a n/a n/a

Point support 3.58 80 179.14 2, 821, 202 100 34.36 287, 986

based direct 13.74 n/a n/a n/a n/a n/a n/a

log 914.36 n/a n/a n/a n/a n/a n/a

Table 3. A comparison of Interval versus Point Based Encodings.

4.3 Results for Different Encodings

Overall, the results in Table 3 and graphed in Figure 2 clearly show that the point-based
transformation produced better results that the interval-based encoding, regardless of
problem size, solver or the SAT encoding method employed. Similarly, the support



encoding produced the best performance of all three SAT encoding schemes, regardless
of problem size, solver5 or transformation method (this is consistent with earlier work of
[19]). Putting this together leads to the strong conclusion that a combination of point-
based transformation and support encoding produces the best results, at least for the
randomly generated IA problems considered.

The superior performance of the support encoding can be partly explained by the
significantly smaller number of clauses generated (on average about ten times less than
for direct or log encoded instances). However, it should be noted that the search space
(i.e. the number of variables) of support and direct encoded instances are the same,
whereas the search space of log encoded instances is O(n×(|s|−log|s|)) times smaller
[16]. A further possible reason for the superiority of the support encoding (suggested by
Gent [19]) is the reduced bias to falsify clauses, i.e. the numbers of positive and negative
literals in support encoding are more balanced than in direct encoding and hence this
may prevent the search from resetting variables to false shortly after they are set to true.

Although our experiments confirmed the superiority of direct over log encoding (as
per Hoos [16]) for the interval-based transformation, our results differed for the point-
based transformation, where log encoding was found to be better than direct encoding,
both in terms of runtimes and flips. To investigate this further, we used two features of
the search space originally developed in [16]’s study: the standard deviation of the ob-
jective function (sdnclu) and the local minima branching along SLS trajectories (blmin)
(we did not look at the solution density as this was the same for both encodings). In-
tuitively, the larger the sdnclu and blmin values are, the more effective the SLS solver.
However, this hypothesis did not fit with our results. This may be explained by the
reduced size of the point-based log clauses, resulting from the smaller number of PA
atomic relations (in comparison to IA).

4.4 Results for SAT Solvers

As with the encoding results, a comparison of the relative performance of the three
solvers produces a fairly unambiguous picture: zChaff outperforms MV-PAWS, and
MV-PAWS outperforms PAWS, with relative performance being fairly independent of
the transformation or SAT encoding method employed. The superior performance of
MV-PAWS over PAWS confirms the results of [23], where MV-PAWS had a similar
advantage on a range of SAT-encoded non-temporal CSP instances. This also confirms
the results of earlier studies showing that SAT algorithms which exploit CSP structure
generally produce better performance (e.g. [20, 24]).

However, the overall domination of zChaff is more surprising, as the earlier TSAT
study [8] indicated that local search has an advantage over complete search in the tem-
poral domain. In these results, zChaff is not only better across the board, but appears
to be scaling as well or better than both of the local search approaches. It should also
be considered that there is a version of zChaff [24] (analogous to MV-PAWS) that also
exploits underlying CSP structure, and we would expect this solver, when released, to
produce even better performance on these SAT-encoded instances.

5 As the support encoding was so strongly favoured by PAWS and zChaff we did not test MV-
PAWS on the other encodings.
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Fig. 2. Scalability of zChaff and PAWS on different SAT encodings.

4.5 SAT versus Existing Approaches

The experimental results in the previous section have clearly shown a point-based trans-
formation using a support SAT encoding is the better encoding, that MV-PAWS is the
better local search solver, and that zChaff is the better overall solver. The final ques-
tion to address is how these SAT approaches compare to the existing state-of-the-art
specialised IA solvers, namely TSAT and Nebel’s backtracking/path consistency algo-
rithm.

For this study we generated three test sets of 80, 90 and 100 nodes using the same
method discussed in Section 4.1 (with each set containing 10 satisfiable instances). In
addition to using zChaff and MV-PAWS on support encoded point-based transforma-
tions, we used TSAT on its end point ordering representation and used two variants
of Nebel’s backtracking algorithm (NBT+I and NBT+H), on the native IA represen-
tations. NBT+I instantiates each arc with an atomic relation in I, whereas NBT+H
assigns a relation in the setH of ORD-Horn relations to each arc. Other heuristics used
in Nebel’s backtracking algorithm were set to default.

The results in Table 4 provide strong evidence that the approach of modelling IA
problems as SAT has met with success. In particular, zChaff was the only method ca-
pable of solving all instances in the problem set within 1 hour. While Nebel’s NBT+H)
was superior on the 80 node problems, it failed to scale up on the 90 and 100 node
instances, and while TSAT remained competitive with zChaff in terms of median time,
it proved unable to consistently solve all instances (falling to 76% success on the 100
node problems). Of secondary interest is that TSAT does appear to have the advantage
over MV-PAWS, especially on the larger instances.

5 Conclusions and Future Work

In conclusion, the experiments indicate that our new point-based support encoding is
the most suitable scheme to encode IA problems into SAT instances. The results further
show that running a state-of-the-art complete SAT solver on such representations can



Success Time (secs)

Problem Solver 100% median mean

n = 80 zChaff 100 191.46 244.04

d = 9.5 MV-PAWS 90 416.41 925.41

s = 6.5 TSAT 87 27.01 594.66

NBT+H 100 64.81 210.06

NBT+I 50 3, 309.31 3, 024.78

n = 90 zChaff 100 393.77 576.67

d = 9.5 MV-PAWS 85 944.91 1, 364.66

s = 6.5 TSAT 82 539.88 915.25

NBT+H 60 1, 792.86 2, 238.46

NBT+I 30 3, 600.00 2, 581.89

n = 100 zChaff 100 1, 132.23 1, 120.03

d = 9.5 MV-PAWS 64 2, 059.51 2, 229.51

s = 6.5 TSAT 76 1, 307.80 1, 525.73

NBT+H 30 3, 600.00 2, 571.44

NBT+I 20 3, 600.00 3, 270.14

Table 4. A comparison of SAT versus Existing Approaches.

produce superior results to two of the fastest specialised IA solvers reported in the cur-
rent literature. This suggests that a SAT approach to solving larger and more difficult IA
problems may be preferable to developing specialised representations and algorithms.

In future work we anticipate that the performance of our SAT-based approach can
be further improved by exploiting the special structure of IA problems in a manner anal-
ogous to the work on TSAT. The possibility also opens up of integrating our approach
to temporal reasoning into other well known real world problem domains such as plan-
ning. Given the success of SAT solvers in many other real world domains, our work
promises to expand the reach of temporal reasoning approaches for IA to encompass
larger and more practical problems.
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