
Neighbourhood Clause Weight Redistribution in Local
Search for SAT

Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar and Duc Nghia Pham

Institute for Integrated and Intelligent Systems
email:{a.ishtaiwi, j.thornton, a.sattar, d.n.pham}@griffith.edu.au

Abstract. In recent years, dynamic local search (DLS) clause weighting algo-
rithms have emerged as the local search state-of-the-art for solving propositional
satisfiability problems. This paper introduces a new approach to clause weighting,
known as Divide and Distribute Fixed Weights (DDFW), that transfers weights
from neighbouring satisfied clauses to unsatisfied clauses in order to break out
from local minima. Unlike earlier approaches, DDFW continuously redistributes
a fixed quantity of weight between clauses, and so does not require a weight
smoothing heuristic to control weight growth. It also exploits inherent problem
structure by redistributing weights between neighbouring clauses.
To evaluate our ideas, we compared DDFW with two of the best reactive lo-
cal search algorithms, AdaptNovelty+ and RSAPS. In both these algorithms, a
problem sensitive parameter is automatically adjusted during the search, whereas
DDFW uses a fixed default parameter. Our empirical results show that DDFW
has consistently better performance over a range of SAT benchmark problems.
This gives a strong indication that neighbourhood weight redistribution strategies
could be the key to a next generation of structure exploiting, parameter-free local
search SAT solvers.

1 Introduction

The propositional satisfiability (SAT) problem is at the core of many computer science
and artificial intelligence problems. Hence, finding efficient solutions for SAT has far
reaching implications. In this study, we consider propositional formulae in conjunctive
normal form (CNF):F =

∧
m

∨
n lmn in which eachlmn is a literal (propositional

variable or its negation), and each disjunct
∨

n lmn is a clause. The problem is to find an
assignment that satisfiesF . Given that SAT is NP complete, systematic search methods
can only solve problems of limited size. On the other hand, relatively simple stochastic
local search (SLS) methods have proved successful on a wide range of larger and more
challenging problems [1].

Since the development of the Breakout heuristic [2], clause weighting dynamic local
search (DLS) algorithms have been intensively investigated, and continually improved
[3, 4]. However, the performance of these algorithms remained inferior to their non-
weighting counterparts [5], until the more recent development of weight smoothing
heuristics [6–9]), which currently represent the state-of-the-art for SLS methods on SAT
problems. Interestingly, the two best performing DLS algorithms (SAPS [8] and PAWS
[9]) have converged on the same underlying weighting strategy: increasing weights on



false clauses in a local minimum, then periodically reducing weights according to a
problem specific parameter setting. PAWS mainly differs from SAPS in performing
additive rather than multiplicative weight updates. A key weakness of these approaches
is that their performance depends on problem specific parameter tuning. This issue was
partly in the development of a reactive version of SAPS (RSAPS [8]) which used the
same adaptive noise mechanism developed in AdaptNovelty+ [10].

The question addressed in the current study is whether there are alternative weight-
ing schemes that can produce further performance gains in the SAT domain. In par-
ticular, we are interested inweight redistributionschemes, that move around a fixed
quantity of weight between clauses. Such an approach offers the advantage of not ex-
plicitly reducing weights, thereby avoiding considerable computational overhead, and
the need for a problem specific weight reduction parameter. Secondly, we are inter-
ested in exploiting structural information contained in the weight distributions between
neighbouring clauses. As adding weight to a clause can only immediately affect those
clauses with which it shares a variable, it appears promising to connect weighting de-
cisions with the relative level of weight on neighbouring clauses. We combine both
weight redistribution and consideration of neighbourhood relationships in the Divide
and Distribute Fixed Weights (DDFW) algorithm, which implements weight redistribu-
tion between neighbouring clauses.

In the remainder of the paper we introduce DDFW in more detail, and provide an
empirical comparison between DDFW, RSAPS and AdaptNovelty+.

2 Divide and Distribute Fixed Weights

DDFW introduces two new ideas into the area of clause weighting algorithms for SAT.
Firstly, it evenly distributes a fixed quantity of weight across all clauses at the start of the
search, and then escapes local minima bytransferring weight from satisfied to unsatis-
fied clauses. The existing state-of-the-art clause weighting algorithms have all divided
the weighting process into two distinct steps: i) increasing weights on false clauses in
local minima and ii) decreasing or normalising weights on all clauses after a series of
increases, so that weight growth does not spiral out of control. DDFW combines this
process into a single step of weight transfer, thereby dispensing with the need to decide
when to reduce or normalise weight. In this respect, DDFW is similar to the predeces-
sors of SAPS (SDF [7] and ESG [11]), which both adjustand normalise the weight
distribution in each local minimum. Because these methods adjust weight across all
clauses, they are considerably less efficient than SAPS, which normalises weight after
visiting a series of local minima.1 DDFW escapes the inefficiencies of SDF and ESG by
only transferring weights between pairs of clauses, rather than normalising weight on
all clauses. This transfer involves selecting a single satisfied clause for each currently
unsatisfied clause in a local minimum, reducing the weight on the satisfied clause by an
integer amount and adding that amount to the weight on the unsatisfied clause. Hence
DDFW retains the additive (integer) weighting approach of DLM [6] and PAWS, and

1 Increasing weight onfalseclauses in a local minimum is efficient because only a small pro-
portion of the total clauses will be false at any one time.



combines this with an efficient method of weight redistribution, i.e. one that keeps all
weight reasonably normalised without repeatedly adjusting weights on all clauses.

The second and more original idea developed in DDFW, is the exploitation of neigh-
bourhood relationships between clauses when deciding which pairs of clauses will ex-
change weight. We term clauseci to be a neighbour of clausecj , if there exists at least
one literallim ∈ ci and a second literalljn ∈ cj such thatlim = ljn. Furthermore, we
term ci to be asame signneighbour ofcj if the sign of anylim ∈ ci is equal to the
sign of anyljn ∈ cj wherelim = ljn. From this it follows that each literallim ∈ ci

will have a set of same sign neighbouring clausesClim
. Now, if ci is false, this implies

all literals lim ∈ ci evaluate to false. Hence flipping anylim will cause it to become
true in ci, and also to become true in all the same sign neighbouring clauses oflim,
i.e. Clim . Therefore, flippinglim will help all the clauses inClim , i.e. it will increase
the number of true literals, thereby increasing the overall level of satisfaction for those
clauses. Conversely,lim has a corresponding set of opposite sign clauses that would be
damagedwhenlim is flipped. The DDFW heuristic adds weight to each false clause in
a local minimum, by taking weight away from the most weighted same sign neighbour
of that clause. However, the weight on a clause is not allowed to fall belowWinit − 1,
whereWinit is the initial weight distributed to each clause at the start of the search. If
no neighbouring same sign clause has sufficient weight to give to a false clause, then
a non-neighbouring clause with sufficient weight is chosen randomly. Lastly, if the do-
nating clause has a weight greater thanWinit then it donates a weight of two, otherwise
it donates a weight of one. The program logic for DDFW is otherwise based on PAWS,
and is shown below:

Algorithm 1 DDFW(F , Winit)
1: randomly instantiate each literal inF ;
2: set the weightwi for each clauseci ∈ F to Winit;
3: while solution is not found and not timeoutdo
4: find and return a listL of literals causing the greatest reduction in weighted cost∆w when flipped;
5: if (∆w < 0) or (∆w = 0 and probability≤ 15%) then
6: randomly flip a literal inL;
7: else
8: for each false clausecf do
9: select a satisfied same sign neighbouring clauseck with maximum weightwk;

10: if wk < Winit then
11: randomly select a clauseck with weightwk ≥ Winit;
12: end if
13: if wk > Winit then
14: transfer a weight of two fromck to cf ;
15: else
16: transfer a weight of one fromck to cf ;
17: end if
18: end for
19: end if
20: end while

The intuition behind the DDFW heuristic is that clauses that share same sign literals
should form alliances, because a flip that benefits one of these clauses will always ben-
efit some other member(s) of the group. Hence, clauses that are connected in this way
will form groups that tend towards keeping each other satisfied. However, these groups



are not closed, as each clause will have clauses within its own group that are connected
by other literals to other groups. Weight is therefore able to move between groups as
necessary, rather than being uniformly smoothed (as in existing methods).2

3 Analysis of Results and Conclusions

DDFW AdaptNovelty+ RSAPS DPLL
Problem SuccessMean Time SuccessMean Time SuccessMean Time Time

bw large.a 100 0.00 100 0.01 100 0.01 0.01
bw large.b 100 0.04 100 0.13 100 0.06 *0.01
bw large.c 100 0.49 61 7.50 84 19.85 0.53
bw large.d 100 1.31 18 19.96 4 109.00 2.01
ais10 100 1.10 100 2.00 100 0.02 0.06
logistics.c 100 0.67 100 0.08 100 0.01 0.08
flat100-med 100 0.01 100 0.00 100 0.00 0.01
flat100-hard 100 0.03 100 0.03 100 0.02 *0.01
flat200-med 100 0.11 100 0.08 100 0.13 0.12
flat200-hard 100 0.99 37 4.32 78 5.04 *0.03
uf100-hard 100 0.00 100 0.00 100 0.00 0.01
uf250-med 100 0.02 100 0.00 100 0.02 1.25
uf250-hard 100 0.65 97 1.09 100 0.18 0.32
uf400-med 100 0.06 100 0.11 100 0.13 57.81
uf400-hard 100 0.57 45 12.30 100 4.07 178.92
f800-med 100 0.97 100 0.25 16 15.20 timed out
f800-hard 100 2.81 72 3.70 8 15.50 timed out
f1600-med 100 3.44 95 1.88 0 timed out timed out
f1600-hard 100 17.38 96 18.86 70 16.70 timed out
par16-med 100 96.13 49 53.30 91 11.70 *1.52
par16-hard 100 93.13 21 26.30 71 20.60 *0.57
30v10d80c 100 1.52 100 0.01 100 0.15 0.26
30v10d40c 100 2.86 100 0.02 100 0.12 0.02
50v15d80c 100 130.00 100 0.45 47 60.66 timed out
50v15d40c 100 529.76 98 169.55 3 57.70 timed out

Table 1.Comparison of runtimes with best local search performance in bold. The DPLL results
are the best of either Satz or zChaff, with dominating DPLL times indicated with a ‘*’. DDFW
was run with a fixedWinit value of8. The problems are taken from the earlier PAWS study [9],
where bwlarge = blocks world planning, ais = all-interval-series, flat = graph colouring, f and uf =
randomly generated hard 3-SAT problems, and the 30v and 50v problems are randomly generated
hard binary CSPs, where v = number of variables, d = domain size and c = constraint density. All
experiments were performed on a Sun supercomputer with 8× Sun Fire V880 servers, each with
8× UltraSPARC-III 900MHz CPU and 8GB memory per node. Problems with a mean flip count
of less than one million were tested on 1,000 runs, otherwise tests were over 100 runs, with all
runs having a 20 million flip cut-off, except 50v15d40c, which used 50 million.

2 To the best of our knowledge the only other SAT local search techniques to exploit neigh-
bourhood relationships were [3] and [12]. These approaches used opposite sign relationships
to generate new clauses by resolution, and so are not directly related to the work on DDFW.
DDFW’s weight transfer approach also bears similarities to the operations research subgradi-
ent optimisation techniques discussed in [11].



The results in Table 1 show that overall DDFW dominates AdaptNovelty+ and
RSAPS, having the best performance on 13 of the 25 problems, with AdaptNovelty+
having the better performance on 7 and RSAPS on 6 of the remaining problems. In addi-
tion, DDFW is the only method that achieved a 100% success rate over the whole prob-
lem set. As versions of AdaptNovelty+ have won the SAT 2004 and 2005 local search
competitions, the superior performance of DDFW is a significant achievement. In fur-
ther tests (not reported here), DDFW was not able to match the performance PAWS
or SAPS on the Table 1 problem set, when problem specific parameter tuning was al-
lowed. Nevertheless DDFW showed the best performance on default parameter settings,
and, when tuning was allowed, it was significantly better on all bwlarge problems and
several graph colouring and random 3-SAT problems.

In conclusion, DDFW represents a powerful general purpose SAT solver for prob-
lem domains where extensive parameter tuning is not practical. The work on DDFW
also represents a first step in the development of a weight redistribution approach to
clause weighting, and shows a simple way that neighbourhood structure can be used to
guide weight redistribution decisions.

In future work we consider it will be promising to extend a DDFW-like approach
to handle MAX-SAT problems with hard and soft constraints. Here the natural division
between mandatory and optional clause satisfaction can be exploited by redistributing
weight from hard to soft clauses, and vice versa, according to whether all hard clauses
are currently satisfied.

References

1. Hoos, H., Stulze, T.: Stochastic Local Search. Morgan Kaufmann, Cambridge, Mas-
sachusetts (2005)

2. Morris, P.: The breakout method for escaping from local minima. In: Proceedings of 11th
AAAI. (1993) 40–45

3. Cha, B., Iwama, K.: Adding new clauses for faster local search. In: Proceedings of 13th
AAAI. (1996) 332–337

4. Frank, J.: Learning short-term clause weights for GSAT. In: Proceedings of 15th IJCAI.
(1997) 384–389

5. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceed-
ings of 14th AAAI. (1997) 321–326

6. Wu, Z., Wah, B.: An efficient global-search strategy in discrete Lagrangian methods for
solving hard satisfiability problems. In: Proceedings of 17th AAAI. (2000) 310–315

7. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures. In:
Proceedings of 10th AAAI. (2000) 297–302

8. Hutter, F., Tompkins, D., Hoos, H.: Scaling and Probabilistic Smoothing: Efficient dynamic
local search for SAT. In: Proceedings of 8th CP. (2002) 233–248

9. Thornton, J., Pham, D., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause
weighting for SAT. In: Proceedings of 19th AAAI. (2004) 191–196

10. Hoos, H.H.: An adaptive noise mechanism for walk-sat. In: Proceedings of 19th AAAI.
(2002) 655–660

11. Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm for heuris-
tic boolean programming. In: Proceedings of 17th IJCAI. (2001) 334–341

12. Pullan, W., Zhao, L.: Resolvent clause weighting local search. In: Proceedings of 17th
Canadian AI. (2004) 233–247


