
Evolving Variable-Ordering Heuristics for Constrained
Optimisation

Stuart Bain, John Thornton, and Abdul Sattar

Institute for Integrated and Intelligent Systems
Griffith University

PMB 50, GCMC 9726, Australia
{s.bain, j.thornton, a.sattar}@griffith.edu.au

Abstract. In this paper we present and evaluate an evolutionary approach for
learning new constraint satisfaction algorithms, specifically for MAX-SAT opti-
misation problems. Our approach offers two significant advantages over existing
methods: it allows the evolution of more complex combinations of heuristics, and;
it can identify fruitful synergies among heuristics. Using four different classes
of MAX-SAT problems, we experimentally demonstrate that algorithms evolved
with this method exhibit superior performance in comparison to general purpose
methods.

1 Introduction

Algorithms to solve MAX-SAT problems encounter a number of additional challenges
to regular satisfiability testing: firstly, unless the optimal cost is known a priori, a lo-
cal search is unable to recognise the optimality of a solution. Secondly, for a complete
search to prove optimality, the search space of a MAX-SAT problem must be thoroughly
examined, being unable to terminate once a satisfying solution has been found. Addi-
tionally, until the current cost bound is exceeded, backtracking search must overlook
constraint violations that would have triggered immediate backtracking in satisfiability
testing.

To overcome these challenges recent work [1, 2] has adopted a two-phase approach,
using a greedy local search routine to determine an initial cost bound for a branch
and bound procedure, which then determines the globally optimal solution. Each of
these works relies on a single ordering heuristic that has been demonstrated to perform
well on a generalised range of benchmark instances. However, as good performance on
such instances is not necessarily indicative of superior performance on other specific
problems [3], how should the algorithm most suited to a specific problem of interest be
identified?

Adaptive problem solving methods [4] have been developed to address this and are
able to modify their behaviour to suit specific problems. Such methods permit efficient,
problem specific algorithms to be developed automatically without the involvement of
human problem solving expertise. The contribution of this paper is a method by which
new algorithms can be automatically evolved for particular classes of problems. In an
empirical study, we show that our evolved algorithms significantly outperform existing
approaches on a range of NP-hard MAX-SAT optimisation problems.



2 Existing Adaptive Methods

All of the methods considered here adapt by combining in different ways atomic mea-
sures, i.e. simple functions that describe the nature of the problem and the state of the
search.

The MULTI-TAC system developed by Minton [4] is designed to synthesise algo-
rithms for solving CSPs. Exploration of new algorithms is by way of a beam search,
designed to control the number of candidate heuristics that will be examined. As the
beam search selects only the best B candidate algorithms for further consideration,
MULTI-TAC is susceptible to overlooking synergies, i.e. measures that perform poorly
individually but well in conjunction with other methods.

The Adaptive Constraint Engine (ACE) of Epstein et al. [5] learns the appropriate
importance of individual advisors (measures) for particular problems. ACE is only ap-
plicable for use with complete search, as a trace of the expanded search tree is necessary
to update advisor weights. Although described as being applicable to over-constrained
problems, it does not obviously follow how this type of weight update scheme would
apply when every search path eventually derives an inconsistency. There appears to be
a practical limitation on the complexity of algorithms that can be learned by ACE, but
unlike the beam search method used in MULTI-TAC, the use of feedback to update
weights facilitates the identification of synergies between heuristics.

A third approach is the CLASS system developed by Fukunaga [6], which can con-
struct algorithms of arbitrary complexity. Adaptation in CLASS is evolutionary, using
a specialised composition operator to generate new algorithms. This operator is solely
applicable to algorithms of an if-then form and, as the offspring generated with it are al-
ways larger and more complex than their parents, term rewriting must be used to reduce
the size of generated algorithms.

ACE, MULTI-TAC and CLASS each have different strengths, but clearly the po-
tential exists to overcome a number of their limitations. The foregoing discussion has
identified a number of features crucial to the expressiveness and performance of an
adaptive system:

1. Ability to represent both complete and local search routines
2. Unrestricted complexity
3. Ability to recognise and exploit synergies
4. Appropriateness for satisfiable and over-constrained problems
5. The ability to learn from failure

Our adaptive system exhibits all of these characteristics and is presented in the next
section.

3 Evolving Algorithms

As genetic programming [7] has been developed specifically to address the problem of
evolving complex structures, it is surprising that it is yet to be successfully applied to
the domain of adapting algorithms. This study sets out to redress this absence from the
adaptive constraint algorithm literature, but also to study the importance of more com-
plex, non-linear (multiplicative) combinations of measures that previous works have
used in only a limited fashion.



A constraint satisfaction algorithm may be viewed as a procedure that iteratively
makes moves, i.e. variable-value assignments (in complete search), or reassignments
(in local search). At each iteration, procedures of both types rank potential moves ac-
cording to heuristic merit. Such a heuristic is simply a functional expression composed
from measures describing the nature of the problem and the state of the search. This rep-
resentation satisfies criteria 1 & 2 above, being suitable for search procedures of both
types and without an a priori complexity bound. One method suitable for the adaptation
of these functional expressions is genetic programming.

Genetic programming [7] begins with a random population of expressions, which
in this case represent search heuristics. Methods analogous to natural selection and bi-
ological reproduction are used to breed subsequent populations of heuristics that better
solve the target problem. As the probability of incorporating an individual into the next
generation is determined probabilistically by its fitness, poorly performing algorithms
are not automatically excluded, permitting synergies to be identified (criteria 3). Fur-
thermore, the fitness measure can incorporate a variety of performance data, making
genetic programming suitable for both satisfiable or over-constrained problems (cri-
teria 4) and allowing it to distinguish between heuristics, even if they fail to locate a
solution (criteria 5).

3.1 Empirical Study

Four different classes of problems were selected from which training instances were
drawn. These were hard random MAX-3-SAT problems (uuf100) from SATLIB; un-
satisfiable jnh problems from the DIMACS benchmark set; random MAX-2-SAT prob-
lems from Borchers’ work1 [1]; and SAT encoded unsatisfiable quasigroup instances,
generated according to [8].

To determine the best algorithm for each particular training instance (listed in Ta-
ble 1), the evolutionary procedure was run 5 times and for 50 generations for each
instance. The initial generation of algorithms all incorporate the MOMS heuristic but
are otherwise randomly generated. The fitness measure used was the number of back-
tracks necessary to determine the optimal solution to the training instance, standardised
so that fewer backtracks equates to higher fitness. The composition of each successive
generation was as follows, to give a total of np = 50 algorithms in each generation: the
previous nc = 3 best algorithms; nb = 36 new algorithms generated by standard GP
crossover; and, nm = 11 algorithms generated by mutation.

The results of the experiments are tabulated in Table 1, both for linear (weighted-
sum combinations) and non-linear (multiplicative) combinations of measures. Every
evolved algorithm required fewer backtracks than MOMS on its training instance, with
algorithms employing linear combinations of heuristics offering mean and median im-
provements over standard MOMS of 56.2% and 62.7% respectively, but algorithms
employing non-linear combinations offering mean and median improvements of 58.4%
and 65.3% respectively. There was less distinction in terms of time however, with
evolved algorithms offering on average no more than a 34% improvement over MOMS.

1 For clarity, instances are named as p CLAUSESIZE #VARS #CONSTRAINTS.



Instance Cost MOMS Evolved Linear With Non-linear
(GSAT / BTs BTs Time BTs Time
Optimal) %MOMS %MOMS

uuf100-0420.cnf (2/2) 11030 8571 123.8% 8580 134.3%
MOMS+Degree-3*(RevJW+Linear)

uuf100-04.cnf (2/2) 11085 8491 132.0% 8706 116.9%
MOMS+CountSatisfy+10*(ValUsed-10*FwdDegree)

uuf100-0327.cnf (3/1) 17950 748 8.64% 472 4.3%
MOMS+MOMSLiteral*(2SJW-NumWillDetermine)

uuf100-0190.cnf (3/2) 31064 7524 42.5% 5969 35.2%
MOMS+2SidedJW*(Linear*MOMSStrict+1)+MOMSStrict

uuf100-0332.cnf (3/2) 46709 6015 25.5% 5378 23.1%
MOMS+1stOrder+MOMS*(MOMSStrict+NumWillDetermine+RevJW)

p 2 50 200.cnf (16/16) 5835 783 23.2% 798 21.6%
MOMS+20*(100*FwdDegree+2SidedJW)

p 2 50 250.cnf (22/22) 27610 5827 35.5% 4855 31.8%
MOMS+(Undetermined+UnitClause)*(JeroslowWang*1stOrder*FwdDegree)

p 2 100 300.cnf (15/15) 84062 6619 15.4% 6521 14.1%
MOMS+(72*Undetermined2*FwdDegree*Degree)

jnh310.cnf (3/3) 4744 3923 89.2% 3711 122.4%
MOMS+Degree+(UndetCount*FwdDegree*MOMSStrict*NumConstraints)

jnh307.cnf (3/3) 5244 2668 68.1% 3177 100.0%
MOMS+FwdDegree-180*Determined

jnh303.cnf (3/3) 21554 18102 132.3% 15830 103.9%
MOMS+BwdDegree+(BwdDegree*MOMSLiteral*UnitClause*Linear)

jnh302.cnf (4/4) 35335 29458 122.7% 25440 137.1%
MOMS+MOMSStrict*(UnitClause*UndetCount*MOMSLiteral+1)

jnh305.cnf (4/3) 39104 7984 29.5% 7498 37.3%
MOMS+CountSatisfy*(MOMSStrict-1stOrder*MOMSLiteral)

qg3-05.cnf (5/5) 21935 11817 79.1% 10998 71.3%
MOMS+(JeroslowWang*UnitClause+ValUsed)*(MOMSStrict*Linear)

Table 1. Comparison of performance of evolved algorithms on training instances, along with the
expression of the best performing algorithm for each. Boldface denotes the algorithm requiring
the fewest backtracks.

Class Num. MOMS BTs Linear BTs Non-Linear BTs
Instances Mean Median Mean Median Mean Median

uuf100 100 1311 295 1308 288 1320 289
jnh 34 3592 550 2665 457 2325 475

quasigroup 3 2.95E6 311986 238950 132901 69037 84530
MAX-2-SAT 6 3.16E6 629613 410180 87362 100070 34628

Table 2. Performance of MOMS and evolved linear & non-linear variants on test sets. Boldface
denotes the algorithm requiring fewest mean backtracks.

On its own though, the ability of an algorithm to perform well on a single training
problem is not particularly useful, due to the computational time required for training.
To be truly useful, good performance on a training instance must translate into good
performance on a class of similar problems. To demonstrate that evolved algorithms
exhibit such performance, the evolved algorithms for each training instance were eval-
uated on a larger test set of problems of their class.



Performance results for MOMS and the best evolved algorithm in each class are
tabulated in Table 2. These results show that evolved algorithms, particularly the non-
linear variants, offer significant performance benefits on the larger test sets as well.

4 Conclusions and Future Work

This work has demonstrated a new method for automatically adapting algorithms that
exhibits a number of desirable characteristics absent in other work, specifically the abil-
ity to discover synergies between heuristics and to explore complex non-linear combi-
nations of heuristics. These two important features are a step toward developing fully
automated constraint solving algorithms.

The evolved algorithms were shown to outperform the well-known MOMS heuris-
tic on training instances taken from four different classes of NP-hard optimisation prob-
lems. An evaluation of the evolved algorithms on larger test sets of problems showed
that on three of the four classes examined, an evolved algorithm substantially outper-
formed MOMS in terms of backtracks. These results indicate that genetic methods are
certainly appropriate for the adaptation of algorithms.

Finally, in evaluating the importance of non-linear algorithms, we found them to
have better backtrack performance on 10 of the 14 training instances. Although exhibit-
ing only comparable performance on the uuf100 test set, non-linear variants achieved
superior performance on all other test sets, including both a structured and a smaller
random problem set. This suggests that non-linear combinations identify and exploit
structure overlooked by a linear approach, and whilst not appropriate for all problem
classes, there can be substantial performance gains from non-linear combinations on
problem classes that are sufficiently homogenous.

An extended version of this paper is available from the author’s homepage at
http://stuart.multics.org

References
1. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-

SAT problems. Journal of Combinatorial Optimization 2 (1999) 299–306
2. Xing, Z., Zhang, W.: Efficient strategies for (weighted) maximum satisfiability. In: CP ’04:

Principles and Practice of Constraint Programming. (2004) 690–705
3. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions

on Evolutionary Computation 1 (1997) 67–82
4. Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Con-

straints 1 (1996) 7–43
5. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive constraint

engine. In: CP ’02 Principles and Practice of Constraint Programming. (2002) 525–540
6. Fukunaga, A.: Automated discovery of composite SAT variable-selection heuristics. In:

AAAI’02, Canada (2002) 641–648
7. Koza, J.: Genetic Programming: On the programming of computers by means of natural

selection. MIT Press, Cambridge, Massachusetts (1992)
8. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. Journal of Automated

Reasoning 24 (2000) 277–296


