
Towards an Efficient SAT Encoding for Temporal
Reasoning

Duc Nghia Pham, John Thornton, and Abdul Sattar

Safeguarding Australia Program
National ICT Australia Ltd., Australia

Institute for Integrated and Intelligent Systems
Griffith University, Australia

{duc-nghia.pham, abdul.sattar, john.thornton }@nicta.com.au

Abstract. In this paper, we investigate how an IA network can be effectively en-
coded into the SAT domain. We propose two basic approaches to modelling an IA
network as a CSP: one represents the relations between intervals as variables and
the other represents the relations between end-points of intervals as variables. By
combining these two approaches with three different SAT encoding schemes, we
produced six encoding schemes for converting IA to SAT. These encodings were
empirically studied using randomly generated IA problems of sizes ranging from
20 to 100 nodes. A general conclusion we draw from these experimental results
is that encoding IA into SAT produces better results than existing approaches.
Further, we observe that the phase transition region maps directly from the IA
encoding to each SAT encoding, but, surprisingly, the location of the hard region
varies according to the encoding scheme. Our results also show a fixed perfor-
mance ranking order over the various encoding schemes.

1 Introduction

Representing and reasoning about time dependent information (i.e.,temporal reason-
ing), is a central research issue in computer science and artificial intelligence. The basic
tasks include the design and development of efficient reasoning methods for finding sce-
narios that are consistent with the given information, and effectively answering queries.
Often, such information is incomplete and uncertain. One of the most expressive for-
malisms used to represent such qualitative temporal information is the Interval Algebra
(IA) proposed by Allen [1].

While IA is an expressively rich framework, the reasoning problem is computation-
ally intractable [21]. Existing reasoning techniques are generally based on the back-
tracking approach (proposed by Ladkin and Reinefeld [10]), which uses path consis-
tency as forward checking. Although this approach has been further improved [13, 20],
it and its variants still rely on path consistency checking at each step to prune the search
space. Thisnative IA approach has the advantage of being fairly compact, but is dis-
advantaged by the overhead of continually ensuring path-consistency. Additionally, the
native IA representation of variables and constraints means that state-of-the-art local

search and systematic search heuristics cannot be easily transferred to the temporal do-
main.

In practice, existing native IA backtracking approaches are only able to find con-
sistent solutions for relatively small general IA instances [18, 17]. On the other hand,
recent research has shown that modelling and solving hard combinatorial problems
(including planning problems) as SAT instances can produce significant performance
benefits over solving problems in their original form [9, 8, 15]. This motivated us to
undertake this study.

In this paper we investigate whether the representation of IA problems using spe-
cialised models that require specialised algorithms is necessary in the general case.
Given that the development of such approaches takes considerable effort, we would
expect significant performance benefits to result. To answer this question, we look at
expressing IA as a CNF formula using six different SAT encoding schemes. This en-
ables us to apply a range of SAT solvers and to compare the performance of these with
the existing native IA approaches. To the best of our knowledge, there is no explicit and
thorough work on formulating temporal problems as SAT instances. Nebel and Bürckert
[14] pointed out that qualitative temporal instances can be translated to SAT instances
but that such a translation causes an exponential blowup in problem size. Hence, no
further investigation was provided in their work.1

The remainder of the paper is structured as follows: next we review the basic defini-
tions of IA. Then in Section 3 we introduce two models for transforming IA instances
into CSP instances. Using these methods, combined with three CSP-to-SAT encodings,
six IA-to-SAT encodings are presented in Section 4. Sections 5-7 present an empirical
study to investigate the hardness distribution of these SAT encodings and evaluate their
performance relative to each other, and in comparison to existing approaches. Finally,
Section 8 presents the conclusion and discusses future research directions.

2 Interval Algebra

Interval Algebra [1] is the most commonly used formalism to represent temporal in-
terval events. It consists of a set of 13 atomic relations between two time intervals:
I = {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi} (see Table 1). Indefinite information be-
tween two time intervals can be expressed as a subset ofI (e.g. a disjunction of atomic
relations). For example, the statement“Event A can happen either before or after event
B” can be expressed asA{b, bi}B. Hence there are a total of2|I| = 8,192 possible
relations between pairs of temporal intervals.

Let R1 andR2 be two IA relations. Then the four operators of IA:union(∪), inter-
section(∩), inversion(−1), andcomposition(◦), can be defined as follows:

∀ A,B : A(R1 ∪R2)B ↔ (AR1B ∨AR2B)
∀ A,B : A(R1 ∩R2)B ↔ (AR1B ∧AR2B)

∀ A,B : A(R−1
1)B ↔ BR1A

∀ A,B : A(R1 ◦R2)B ↔ ∃ C : (AR1C ∧ CR2B).

1 Recent independent work [6] has proposed representing IA as SAT, but the authors do not
specify the transformation in detail, and do not provide an adequate empirical evaluation.

Atomic relation Symbol Meaning Endpoint relations

A beforeB b A¾- B¾- A− < B−, A− < B+

B afterA bi A+ < B−, A+ < B+

A meetsB m A¾ - B¾ - A− < B−, A− < B+

B met byA mi A+ = B−, A+ < B+

A overlapsB o A¾ - A− < B−, A− < B+

B overlapped byA oi B
¾ -

A+ > B−, A+ < B+

A duringB d A¾ - A− > B−, A− < B+

B includesA di B
¾ -

A+ > B−, A+ < B+

A startsB s A¾ - A− = B−, A− < B+

B started byA si B
¾ -

A+ > B−, A+ < B+

A finishesB f A¾ - A− > B−, A− < B+

B finished byA fi B
¾ -

A+ > B−, A+ = B+

A equalsB eq A¾ - A− = B−, A− < B+

B
¾ -

A+ > B−, A+ = B+

Table 1.The13 IA atomic relations. Note that the endpoint relationsA− < A+ andB− < B+

have been omitted.

Hence, theintersectionandunionof any two temporal relations (R1, R2) are simply
the standard set-theoretic intersection and union of the two sets of atomic relations
describingR1 andR2, respectively. Theinversionof a temporal relationR is the union
of the inversion of each atomic relationri ∈ R. Thecompositionof any pair of temporal
relations (R1, R2) is the union of all results of the composition operation on each pair of
atomic relations (r1i, r2j), wherer1i ∈ R1 andr2j ∈ R2. The full composition results
of these IA atomic relations can be found in [1].

An IA network can be represented as aconstraint graphor a constraint network
where the vertices represent interval events and the arcs are labelled with the possible
interval relations between a pair of intervals [13]. Usually, such a constraint graph for
n interval events is described by ann× n matrixM , where each entryMij is the label
of the arc between theith andjth intervals. An IAscenariois asingletonIA network
where each arc (constraint) is labelled withexactly oneatomic relation.

An IA network with n intervals isglobally consistentiff it is strongly n-consistent
[11]. Hence, the ISAT problem of determining the satisfiability of a given IA network
becomes the problem of determining whether that network is globally consistent [1, 13].
ISAT is thefundamentalreasoning task in the temporal reasoning community because
all other interesting reasoning problems can be reduced to it in polynomial time [7] and
it is one of the most important tasks in practical applications [20].

It is worth noting that enforcingpath consistency[11, 3] is enough to ensure global
consistency for the maximal tractable subclasses of IA, including singleton networks
[13]. Allen [1] proposed a path consistency method for an IA networkM that repeat-
edly computes the followingtriangle operation: Mij ← Mij∩Mik◦Mkj for all triplets
of vertices(i, j, k) until no further change occurs or untilMij = ∅. These operations
remove all the atomic relations that cause an inconsistency between any triple(i, j, k)
of intervals. The resulting network is a path consistent IA network. IfMij = ∅, then
the original IA network is path inconsistent. More sophisticated path consistency algo-
rithms have been applied to IA networks that run inO(n3) time [19, 13].

3 Reformulation of IA into CSP

A common approach to encode combinatorial problems into SAT is to divide the task
into two steps: (i) modelling the original problem as a CSP; and (ii) mapping the new
CSP into SAT. In the next two subsections, we propose two transformation methods to
model IA networks as CSPs such that these CSPs can be feasibly translated into SAT.
We then discuss three SAT encoding schemes to map the CSP formulations into SAT,
producing six different approaches to encode IA networks into SAT.2

3.1 The Interval-Based CSP Formulation

A straightforward method to formulate IA networks as CSPs is to represent each arc
as a CSP variable. We then limit the domain of each variable to the set of permissible
IA atomic relations for that arc, rather than the set of all subsets ofI used in existing
IA approaches. This allows us to reduce the domain size of each variable from213 to a
maximum of13 values. Thus an instantiation of aninterval-based CSP maps each vari-
able (arc) toexactly oneatomic relation in its domain. In other words, an instantiation
of this new CSP model is actually a singleton network of the original IA network.

Lemma 1. Let Θ be a singleton IA network with3 intervalsI1, I2, andI3. ThenΘ is
consistent iffr13 ∈ r12 ◦ r23 whererij is an arc between any twoIi andIj intervals.

Proof. Trivial as there is exactly one mapping of a singleton network onto the time line.

Theorem 1. Let Θ be a singleton IA network withn intervals andrij be the label of
the arc betweenIi andIj . ThenΘ is consistent iff for any triple(i < k < j) of vertices,
rij ∈ rik ◦ rkj .

Proof. (⇒) This direction is trivial asΘ is also path consistent.
(⇐) As rij ∈ rik ◦ rkj holds for all triplets(i < k < j) of vertices,Θ is path

consistent by Lemma 1. In addition,Θ is singleton. Hence,Θ is globally consistent.

Based on the results of Theorem 1, aninterval-based CSP representation of a given
IA network is defined as follows:

Definition 1. Given an IA networkM with n intervals,I1, . . . , In; the corresponding
interval-based CSP is(X ,D, C), where
X = {Xij | i, j ∈ [1..n], i < j}; each variableXij represents a relation between two
intervalsIi andIj ;
D = {Dij }, eachDij is a set of domain values forXij , andDij = Mij the set of
relations between intervalIi andIj ; and
C consists of the following constraints:

∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ D′
ij (1)

wherei < k < j andD′
ij = Dij ∩ (x ◦ y).

2 In practice, IA networks can be directly encoded into SAT formulae without being reformu-
lated as CSPs. However, for the sake of clarity we first transform IA into two different CSP
formulations and then to SAT.

Theorem 2. Let Θ be an IA network andΦ be the corresponding interval-based CSP
defined by Definition 1. ThenΘ is globally consistent or satisfiable iffΦ is satisfiable.

Proof. We first rewrite the constraint (1) into two equivalent clauses

∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ Dij (2)

∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ x ◦ y (3)

(⇒) Let Θ′ be a consistent scenario ofΘ. As Θ′ is a singleton network,Θ′ is also
an instantiation ofΦ by Definition 1. Hence clause (2) is satisfied. In addition, asΘ′

is globally consistent, clause (3) is also satisfied by Theorem 1. HenceΘ′ satisfies all
constraints ofΦ. As a result,Φ is satisfiable.

(⇐) Let Φ′ be an instantiation ofΦ such that it satisfies all constraints ofΦ (i.e.
clauses (2) and (3) are satisfied). We construct a singleton networkΘ′ by labelling each
arc (i, j) of Θ′ with the atomic relation (value)Φ′(i, j). As Φ′ satisfies clause (2),Θ′

is a singleton network ofΘ. In addition, asΦ′ satisfies clause (3), we haveΘ′(i, j) ∈
Θ′(i, k) ◦ Θ′(k, j) for all triples (i < k < j) of vertices. Applying Theorem 1,Θ′ is
globally consistent. As a result,Θ is satisfiable.

Example For the sake of clarity, we use the IA network in Figure 1(a) as a running
example to illustrate the transformation of IA networks into CSPs and SAT encodings.
The example represents the following scenario:“Anne usually reads her paper(I1)
before or during her breakfast(I3). In addition, she always drinks a cup of coffee(I2)
during her breakfast. This morning, she started reading her paper before her coffee was
served and finished reading before drinking the last of her coffee”. The corresponding
interval-based CSP of this IA network is shown in Figure 1(b), having3 variables,
which represent the temporal relations between each pair of actions. These variables
and their corresponding domains are described using the same order inX andD. Note
that as{o} ◦ {d} = {o, d, s}, the constraint betweenI1, I2 andI3 further restricts the
domain ofX13 to {d} instead of its original{b, d}, i.e. Anne could not have read her
paper before breakfast if she was still reading it while drinking coffeeduringbreakfast.

mI1

mI2

mI3

¡
¡

¡¡µ{o} @
@

@@R

{d}

-{b, d}

X = {X12, X13, X23 }
D = { {o}, {b, d}, {d} }
C = { (X12 = o ∧X23 = d =⇒ X13 = d) }

(a) IA network (b) interval-based CSP

Fig. 1. An interval-based CSP representation of the running example.

3.2 The Point-Based CSP Formulation

Vilain and Kautz [21] proposed the Point Algebra (PA) to model qualitative information
between time points. PA consists of a set of3 atomic relationsP = {<, =, >} and4
operators defined in a similar manner to IA. In addition, the concepts of consistency
discussed above for IA networks are also applicable to PA networks. Again, we use
ann × n matrix P to represent a PA network withn points wherePij is the relation
between two pointsi andj.

As mentioned in Section 2, IA atomic relations can be uniquely expressed in terms
of their endpoint relations. However, representing non-atomic IA relations is more com-
plex, as not all IA relations can be translated into point relations. For example, the
following combination of point relations

(A− 6= B−) ∧ (A− < B+) ∧ (A+ 6= B−) ∧ (A+ < B+)

represents not onlyA{b, d}B but alsoA{b, d, o}B. This means that PA can only cover
2% of IA [13].

Using the CSP formalism, we can prevent the instantiation of such undesired IA re-
lations by simply introducing new constraints into the CSP model. Letµ(r) = (vss, vse,
ves, vee) be the PA representation of an IA atomic relationr between two intervalsA
andB, wherevse, for example, is the corresponding PA relation between two endpoints
A− andB+. We then define thepoint-based CSP model of an IA network as follows:

Definition 2. Given an IA networkM with n intervals and its corresponding PA net-
workP (with 2n points,P1,...,P2n), the point-based CSP ofM is (X ,D, C), where
X = {Xij | i, j ∈ [1..2n], i < j}; each variableXij represents a relation between two
pointsPi andPj of P ;
D = {Dij}, eachDij is the set of domain values forXij and Dij = Pij the set of
point relations betweenPi andPj ; and
C consists of the following constraints:

∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ D′
ij (4)

∧

r/∈Mlm

(Xl−m− , Xl−m+ , Xl+m− , Xl+m+) 6= µ(r) (5)

wherei < k < j, D′
ij = Dij ∩ (x ◦ y), andXl∗m∗ is the CSP variable representing the

relation between one endpoint of intervall and one endpoint of intervalm.

Theorem 3. LetΩ be a singleton PA network withn points andrij be the label of the
arc between two pointsIi andIj . ThenΩ is consistent iff for any triple(i < k < j) of
vertices,rij ∈ rik ◦ rkj .

As Theorem 3 is similar to Theorem 1, we can construct its proof in a similar way
to the proof of Theorem 1.

Theorem 4. Let Θ be an IA network andΨ be the corresponding point-based CSP
defined by Definition 2. ThenΘ is globally consistent or satisfiable iffΨ is satisfiable.

Proof. (⇒) LetΘ′ be a consistent scenario ofΘ. AsΘ′ is a singleton network, its corre-
sponding point-based CSPΨ ′, defined by Definition 2, is an instantiation ofΨ . Hence,
Ψ ′ satisfies all constraints (5). In addition, asΘ′ is globally consistent,Ψ ′ satisfies all
constraints (4) due to Theorem 3. As a result,Ψ is satisfiable.

(⇐) Let Ψ ′ be an instantiation ofΨ such that all constraints (4) and (5) are satisfied.
Let µ−1(Xl−m− , Xl−m+ , Xl+m− , Xl+m+) = r be the inversion ofµ(r), such that it
maps the combination of the PA atomic relations of four endpoints(Xl−m− , Xl−m+ ,
Xl+m− , Xl+m+) to the IA atomic relationr between two intervalsl andm. As every
variableXl∗m∗ of Ψ ′ is instantiated with exactly one atomic relation,µ−1(Xl−m− ,
Xl−m+ , Xl+m− , Xl+m+) maps to exactly one interval relation.

We construct a singleton IA networkΘ′ from Ψ ′ by labelling each arc(l,m) with
the corresponding IA atomic relationµ−1(Xl−m− , Xl−m+ , Xl+m− , Xl+m+). As Ψ ′

satisfies all constraints (5),Θ′ is a scenario ofΘ. In addition,Θ′ is globally consistent
by the application of Theorem 3 asΨ ′ satisfies all constraints (4). As a result,Θ is
satisfiable.

Example Figure 2 shows a point-based CSP corresponding to the original IA network
from Figure 1(a), including a partial PA graph to assist in understanding the point-
based CSP translation. In this graph (Figure 2(a)), each intervalIi has been replaced by
its endpointsIi− (the start point) andIi+ (the finish point) and all temporal relations
between pairs of intervals have been replaced by corresponding relations between their
endpoints. These endpoint relations are the CSP variables in the new model, which are
in turn instantiated with PA atomic relations. For example, the expressionX1−1+ = <
means that the arc between the endpointsI1− andI1+ must be instantiated with the
value<, thereby expressing the underlying PA constraintI1− < I1+ . The power we
obtain from this CSP model is that we can disallow unwanted interpretations that cannot
be eliminated from a simple PA network. For example, in Figure 2(a) the PA graph is
not a correct alternative representation of the original IA network as it allows intervalI1

to overlap (o) with intervalI3. In the CSP formalism we can disallow this overlapping
relation using the third constraint in Figure 2(b):(X1−3− 6= <) ∧ (X1−3+ 6= <) ∧
(X1+3− 6= >) ∧ (X1+3+ 6= <). It should further be noted that the order of domains in
D is preserved exactly with respect to their corresponding variables inX and that all
constraints of type (4) that do not further restrict the domain values of a variable have
been omitted.

4 Reformulation of IA into SAT

In this section, we describe three different schemes to encode the interval-based or
point-based non-binary CSP formulations (as described in the previous section) into
SAT, resulting in six different ways of encoding IA into SAT. First, we describe the one-
dimensional (1D) support scheme that naturally translates IA CSPs into CNF formulae.
We then present extensions of thedirect andlog encoding schemes [8, 22].

nI1−

nI1+

nI2−
nI2+

nI3−

nI3+

6
{<}

-{<}

6
{<}

-
{<, >}

PPPPPPPPPPPPPq

{<, >}

¡
¡

¡¡µ{>}
@

@
@

@
@

@
@

@@R

{>}

X = { X
1−1+

, X
2−2+

, X
3−3+

,

X
1−2− , X

1−2+
, X

1+2− , X
1+2+

,

X
1−3− , X

1−3+
, X

1+3− , X
1+3+

,

X
2−3− , X

2−3+
, X

2+3− , X
2+3+

}

D = { {<}, {<}, {<},
{<}, {<}, {>}, {<},

{<, >}, {<}, {<, >}, {<},

{>}, {<}, {>}, {<} }

C = { (X
1−1+

= < ∧X
1+3−= <⇒ X

1−3−= <),

(X
1+2−= > ∧X

2−3−= >⇒ X
1+3−= >),

(X
1−3−6= < ∧X

1−3+
6= < ∧

X
1+3−6= > ∧X

1+3+
6= <) }

(a) PA network (b) point-based CSP

Fig. 2. A point-based CSP representation of the running example.

4.1 The SAT1-D Support Encoding

Using either interval-based or point-based CSP formulations, an IA network can be en-
coded as a SAT instance, in which each Boolean variablexr

ij represents an assignment
of a domain valuer to a CSP variableXij . The Boolean variablexr

ij is true iff the value
r is assigned to the CSP variableXij . For each CSP variableXij having a domain of
valuesDij , two sets of at-least-one (ALO) and at-most-one (AMO) clauses are used to
ensure that there is exactly one domain valuev ∈ Dij assigned toXij at any time:

ALO :
∨

v∈Dij

xv
ij (6)

AMO :
∧

u,v∈Dij

¬xu
ij ∨ ¬xv

ij (7)

It is common practice to encode a general CSP into a SAT formula without the AMO
clauses, thereby allowing CSP variables to be instantiated with more than one value
[22]. A CSP solution can then be extracted by taking any single SAT-assigned value for
each CSP variable. However, our two CSP formulation methods strongly depend on the
fact that each CSP variable can only be instantiated with exactly one value at any time.
This maintains the completeness of our reformulation methods (see the proofs above).
A counter-example is shown in Figure 3.I1 is beforeI4 becauseI1 is during I2 andI2

is beforeI4. In addition, asI1 overlapsI3 andI3 startsI4, I1 overlapsI4. As a result,
I1 is eitherbeforeor overlapsI4. However, neither of the scenarios obtained from this
network is consistent. Hence, the AMO clauses cannot be removed from our translation.

A natural way to encode the consistency constraints, i.e. constraints (1) and (4)
above, is to add the following support (SUP) clauses:

SUP :
∧

u∈Dik,v∈Dkj

¬xu
ik ∨ ¬xv

kj ∨ xw1
ij ∨ . . . ∨ xwm

ij (8)

whereD′
ij = Dij∩(u◦v) = {w1, . . . , wm}. Note that we use the IA composition table

for the interval-based reduction method and the PA composition table for the point-
based reduction method.

mI1

mI2 mI4

mI3

6
{d}

6
{s}

-{o}

-{b}

´
´

´
´

´
´́3

{b}
{o} X12 = d ∧X24 = b ⇒ X14 = b

X13 = o ∧X34 = s ⇒ X14 = o

Fig. 3. A counter-example of removing AMO clauses.

The constraints (5) in a point-based CSP are translated into a SAT formula using
the followingforbidden(FOR) clauses:

FOR :
∧

r/∈Mlm

¬xu
l−m− ∨ ¬xv

l−m+ ∨ ¬xy
l+m− ∨ ¬xz

l+m+ (9)

whereu, v, y, z are PA atomic relations andµ(r) = (u, v, y, z). For example, given
that the PA representation ofXl{o}Xm is µ(o) = (<,<, >,<), the corresponding
forbidden clause is¬x<

l−m− ∨ ¬x<
l−m+ ∨ ¬x>

l+m− ∨ ¬x<
l+m+ .

We refer to this method as the1-D supportencoding scheme because it encodes
the support values of the original problem. In Gent’s support encoding scheme [5], the
support clauses are necessary for both implication directions of the CSP constraints.
However, in our scheme, only one SUP clause is needed for each triple of intervals
(i < k < j), and not forall permutation orders of this triple.

ALO: (xo
12) (xb

13 ∨ xd
13) (xd

23)

AMO: (¬xb
13 ∨ ¬xd

13)

SUP: (¬xo
12 ∨ ¬xd

23 ∨ xd
13)

Fig. 4. An interval-based1-D support encoding of the running example.

ALO: (x<
1−1+) (x<

2−2+) (x<
3+3+)

(x<
1−2−) (x<

1−2+) (x>
1+2−) (x<

1+2+)
(x<

1−3− ∨ x>
1−3−) (x<

1−3+) (x<
1+3− ∨ x>

1+3−) (x<
1+3+)

(x>
2−3−) (x<

2−3+) (x>
2+3−) (x<

2+3+)
AMO: (¬x<

1−3− ∨ ¬x>
1−3−) (¬x<

1+3− ∨ ¬x>
1+3−)

SUP: (¬x<
1−1+ ∨ ¬x<

1+3− ∨ x<
1−3−) (¬x>

1+2− ∨ ¬x>
2−3− ∨ x>

1+3−)
FOR: (¬x<

1−3− ∨ ¬x<
1−3+ ∨ ¬x>

1+3− ∨ ¬x<
1+3+)

Fig. 5. A point-based1-D support encoding of the running example.

4.2 The SAT Direct Encoding

Another way of representing CSP constraints as SAT clauses is to encode the conflict
values between any pair of CSP variables [8, 22]. Thisdirect encoding scheme for IA
networks can be derived from our1-D support encoding scheme by replacing the SUP
clauses with conflict (CON) clauses. If we represent SUP clauses between a triple of
intervals(i < k < j) as a3D array of allowable values for the CSP variableXij given
the values ofXik andXkj , then the corresponding CON clauses are defined as:

CON :
∧

u∈Dik,v∈Dkj ,w∈D′′ij

¬xu
ik ∨ ¬xv

kj ∨ ¬xw
ij (10)

whereD′′
ij = Dij − (u ◦ v).

Themultivaluedencoding [15] is a variation of the direct encoding, where all AMO
clauses are omitted. As discussed earlier, we did not consider such an encoding because
in our IA transformations the AMO clauses play a necessary role.

ALO: (xo
12) (xb

13 ∨ xd
13) (xd

23)

AMO: (¬xb
13 ∨ ¬xd

13)

CON: (¬xo
12 ∨ ¬xd

23 ∨ ¬xb
13)

Fig. 6. An interval-based direct encoding of the running example.

ALO: (x<
1−1+) (x<

2−2+) (x<
3+3+)

(x<
1−2−) (x<

1−2+) (x>
1+2−) (x<

1+2+)
(x<

1−3− ∨ x>
1−3−) (x<

1−3+) (x<
1+3− ∨ x>

1+3−) (x<
1+3+)

(x>
2−3−) (x<

2−3+) (x>
2+3−) (x<

2+3+)
AMO: (¬x<

1−3− ∨ ¬x>
1−3−) (¬x<

1+3− ∨ ¬x>
1+3−)

CON: (¬x<
1−1+ ∨ ¬x<

1+3− ∨ ¬x>
1−3−) (¬x>

1+2− ∨ ¬x>
2−3− ∨ ¬x<

1+3−)
FOR: (¬x<

1−3− ∨ ¬x<
1−3+ ∨ ¬x>

1+3− ∨ ¬x<
1+3+)

Fig. 7. A point-based direct encoding of the running example.

4.3 The SAT Log Encoding

A compact version of the direct encoding is thelog encoding [8, 22]. Here, a Boolean
variablexl

i is true iff the corresponding CSP variableXi is assigned a value in which the
l-th bit of that value is1. We can linearly derive log encoded IA instances from direct
encoded IA instances by replacing each Boolean variable in the direct encoding with
its bitwise representation. As a single instantiation of the underlying CSP variable is
enforced by the bitwise representation, ALO and AMO clauses are omitted. However,
extra prohibited (PRO) clauses are added (if necessary) to prevent undesired bitwise
representations from being instantiated. For example, if the domain of variableX has
three values then we have to add the clause¬x0

3 ∨¬x1
3 to prevent the fourth value from

assigning toX. Another way to handle redundant bitwise representations is to treat
them as equivalent to a valid representation. However, thisbinary encoding [4] tends
to generate exponentially more conflict clauses than the log encoding and hence is not
considered in this study.

PRO: (¬x1
12) (¬x1

23)
CONl: (x1

12 ∨ x1
23 ∨ x1

13)

Fig. 8. An interval-based log encoding of the running example.

PRO: (¬x1
1−1+) (¬x1

2−2+) (¬x1
3+3+)

(¬x1
1−2−) (¬x1

1−2+) (¬x1
1+2−) (¬x1

1+2+)
(¬x1

1−3+) (¬x1
1+3+)

(¬x1
2−3−) (¬x1

2−3+) (¬x1
2+3−) (¬x1

2+3+)
CONl: (x1

1−1+ ∨ x1
1+3− ∨ ¬x1

1−3−) (x1
1+2− ∨ x1

2−3− ∨ x1
1+3−)

FOR: (x1
1−3− ∨ x1

1−3+ ∨ ¬x1
1+3− ∨ x1

1+3+)

Fig. 9. A point-based log encoding of the running example.

5 The Phase Transition of SAT-encoded IA instances

As our SAT translations were theoretically proved sound and complete, we expected
that the following properties would also be true for our SAT-encoded IA instances:

i) The phase transition of SAT-encoded instances happens at the same critical value
of the average degree parameterd as for the original IA instances; and

ii) The performance of SAT solvers on SAT-encoded instances is proportionally sim-
ilar to the performance of temporal backtracking algorithms on the original IA in-
stances.

To verify these properties, we conducted a similar experiment to that reported in
Nebel’s study [13]. We generated an extensive benchmark test set ofA(n, d, 6.5) IA
instances by varying the average degreed from 1 to 20 (in steps of0.5 from 8 to 11 and
in steps of1 otherwise) andn from 20 to 50 (in steps of5).3 We generated500 instances
for eachn/d data point to obtain a set of23 × 7 × 500 = 80, 500 test instances. We
then ran two variants of Nebel’s backtracking algorithm [13], NBTI and NBTH, on
these instances and zChaff [12] on the corresponding SAT-encoded instances. NBTI
instantiates each arc with an atomic relation inI, whereas NBTH assigns a relation
in the setH of ORD-Horn relations to each arc. The other heuristics used in Nebel’s
backtracking algorithm were set to default and all solvers were timed out after one hour.

As expected, the probability of satisfiability for our SAT-encoded instances was
the same as the probability of satisfiability for the original IA instances, regardless
of the SAT translation method. This is illustrated in Figure 10 which shows that the
phase transition happens aroundd = 9.5 for s = 6.5 regardless of instance size or
representation. These results are consistent with the earlier work of Nebel [13].

However, the performance of zChaff on our six different SAT encodings was rela-
tively significantly different from the performance of NBTI and NBTH on the native
IA representations. As graphed in Figure 10, the median runtime of NBTI and NBTH
both peaked where the phase transition happens, i.e.d = 9.5. In contrast, the runtime
peaks of zChaff on the SAT instances were shifted away from the phase transition. The
graphs in the middle row of Figure 10 show that the median CPU time of zChaff on
the point-based1-D support, direct and log instances peaked aroundd = 9, 8 and6,
respectively. In addition, the CPU time of zChaff on instances surrounding these peaks
was relatively similar, regardless of which SAT encoding scheme was used.

3 These instances were generated by Nebel’s generator, which is available at
ftp://ftp.informatik.uni-freiburg.de/documents/papers/ki/allen-csp-solving.programs.tar.gz

0 5 10 15 20 20
30

40
50

0

0.25

0.5

0.75

1

nodes

propability of satisfiability

average degree

pr
ob

ab
ili

ty

0 5 10 15 20 20
30

40
50

0

0.05

0.1

0.15

nodes

native IA (NBT
I
)

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
30

40
50

0

0.03

0.06

0.09

nodes

native IA (NBT
H
)

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
30

40
50

0

5

10

15

nodes

point−based support

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
30

40
50

0

25

50

75

nodes

point−based direct

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
30

40
0

500

1000

1500

nodes

point−based log

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
30

40
50

0

25

50

75

nodes

interval−based support

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
25

30
0

25

50

75

nodes

interval−based direct

average degree

C
P

U
 s

ec
s

0 5 10 15 20 20
25

30
0

1000

2000

3000

nodes

interval−based log

average degree

C
P

U
 s

ec
s

Fig. 10. The phase transition and hardness distribution of NBTI and NBTH on the native
A(n, d, 6.5) IA instances and zChaff on the corresponding SAT-encoded instances (500 instances
per data point).

This result is further supported when we take into account the performance of
zChaff on the interval-based SAT instances. The graphs in the bottom row of Figure 10
show the median CPU time of zChaff on the corresponding interval-based1-D support,
direct and log instances. Here we can see that the runtime peaks of zChaff are shifted
away from the phase transition in exactly the same way as they were on the point-based
SAT instances, regardless of which SAT encoding scheme was used. In fact, the CPU
time of zChaff on the interval-based direct and log instances peaked at the same points
as their corresponding point-based instances, i.e. atd = 8 and6, respectively. The only
exception is the runtime of zChaff on the interval-based1-D support instances which
peaked atd = 8, i.e. even further away than for the point-based1-D support instances.

These results are quite surprising and contrast with the results of previous studies
on the phase transition behaviour of IA networks [13] and random problems [2, 16].
Intuitively, the further left we move from the phase transition, the more solutions an
instance has and, as a consequence, the easier this instance should be to solve. How-
ever, this conjecture is not true for our SAT encoding schemes. The empirical results
clearly show that the hard region, where instances take significantly more time to solve,
does not always happen around the phase transition. In contrast, the representation or
encoding of the problem instance plays an important role in determining where the hard
region will occur.

6 An Empirical Comparison Among SAT Encodings

The graphs in Figure 10 provide strong supporting evidence for the following conjec-
tures:

i) A point-based formulation produces better results than an interval-based formula-
tion, regardless of how IA instances are generated (in terms of the number of nodes
n, the average degreed or the average label sizes) or the SAT encoding employed.

ii) The1-D support encoding scheme produces the best results, followed by the direct
and log encoding schemes, regardless of how IA instances are generated (in terms
of the number of nodesn, the average degreed or the average label sizes) or the
formulation method employed.

iii) Among the six encoding schemes considered, the point-based1-D support encod-
ing is the most suitable for translating IA instances into SAT formulae.

The superior performance of the1-D support encoding can be partly explained by
the significantly smaller number of clauses generated (on average about ten times less
than for direct or log encoded instances). However, it should be noted that the search
space (i.e. the number of variables) of1-D support and direct encoded instances are the
same, whereas the search space of log encoded instances isO(n× (|s| − log|s|)) times
smaller [8]. A further possible reason for the superiority of the1-D support encoding
(suggested by Gent [5]) is the reduced bias to falsify clauses, i.e. the numbers of positive
and negative literals in the support encoding are more balanced than in a direct encoding
and hence this may prevent the search from resetting variables to false shortly after they
are set to true.

7 Empirical Evaluation of SAT versus Existing Approaches

The final question to address in this study is how our SAT approach compares to the
existing state-of-the-art specialised approaches. We generated another benchmark test
set ofA(n, d, 6.5) IA instances by varying the average degreed from 1 to 20 (in steps
of 0.5 from 8 to 11 and in steps of2 otherwise) across nine values ofn varied from60
to 100 (in steps of5). We generated100 instances for eachn/d data point to obtain a
set of16 × 9 × 100 = 14, 400 test instances. This test set allowed us to take a closer
look at the performance of different approaches around the phase transition while still
providing a general view across the entire distribution. We then ran NBTH on these
instances and zChaff on the corresponding point-based1-D support SAT instances. All
solvers were timed out after one hour forn < 80 and four hours forn ≥ 80.

As shown in Figure 11, the mean CPU time of zChaff was significantly better than
the mean CPU time of NBTH (around4.35 times atn = 100). In addition, when the test
instances became bigger (e.g.n ≥ 80), the time curves of NBTH were exponentially
increased while the time curves of zChaff remained nearly linear. These observations
led us to conjecture that zChaff performs better than NBTH on hard instances and that
its performance scales better as the size of the test instances grows. A more thorough
analysis of the results produced further evidence to support this conjecture: with a one
hour time limit, zChaff was unable to solve32 of the entire benchmark set of14, 400

instances, while323 instances remained unsolved for NBTH (see Figure 11). When the
time limit was raised to four hours, only2 instances remained unsolvable for zChaff
in comparison with103 for NBTH. This means that the performance of zChaff scaled
51.5 times better than NBTH on these extremely hard instances.

0 5 10 15 20 60
70

80
90

100

0

1200

2400

3600

4800

nodes

Mean CPU time of zChaff

average degree

C
P

U
 s

ec
s

0 5 10 15 20 60
70

80
90

100

0

1200

2400

3600

4800

nodes

Mean CPU time of NBT
H

average degree

C
P

U
 s

ec
s

0 5 10 15 20 60
70

80
90

100

0

5

10

15

20

25

30

35

40

nodes

Probability of failure of zChaff within 1 hour limit

average degree

%
 fa

ilu
re

0 5 10 15 20 60
70

80
90

100

0

5

10

15

20

25

30

35

40

nodes

Probability of failure of NBT
H

 within 1 hour limit

average degree

%
 fa

ilu
re

Fig. 11. The CPU time and the probability of failure of zChaff on the point-based1-D support
instances and NBTH on the native IA instances.

8 Summary

In summary, we have proposed six different methods to formulate IA networks into SAT
formulae and provided the theoretical proofs of completeness of these transformation
techniques. Although our empirical results confirmed that the phase transition of IA
networks mapped directly into these SAT encodings, they also showed that the hard
regions of these problems were surprisingly shifted away from the phase transition areas
after transformation into SAT. Evaluating the effects of these SAT encodings, we found
that the point-based1-D support scheme is the best among the six IA-to-SAT schemes
examined. Our results also revealed that zChaff combined with our point-based1-D
support scheme could solve IA instances significantly faster than existing IA solvers
working on the equivalent native IA networks.

In future work we anticipate that the performance of our SAT-based approach can
be further improved by exploiting the special structure of IA problems in a manner
analogous to the work on TSAT [17]. The possibility also opens up of integrating our
approach to temporal reasoning into other well known real world problems such as
planning. Given the success of SAT solvers in many real world domains, our work
promises to expand the reach of temporal reasoning approaches for IA to encompass
larger and more practical problems.

Acknowledgments

We thankfully acknowledge the financial support from National ICT Australia (NICTA).
National ICT Australia is funded through the Australian Government’sBacking Aus-
tralia’s Ability initiative and partly through the Australian Research Council.

References

1. James F. Allen. Maintaining knowledge about temporal intervals.Communications of the
ACM, 26:832–843, 1983.

2. Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems
are. InIJCAI-91, pages 331–337, 1991.

3. Eugene C. Freuder. Synthesizing constraint expressions.Communication of ACM,
21(11):958–966, 1978.

4. Alan M. Frisch and Timothy J. Peugniez. Solving non-Boolean satisfiability problems with
stochastic local search. InIJCAI-01, pages 282–290, 2001.

5. Ian P. Gent. Arc consistency in SAT. InECAI-02, pages 121–125, 2002.
6. K. Ghiathi and G. Ghassem-Sani. Using satisfiability in temporal planning.WSEAS Trans-

actions on Computers, 3(4):963–969, 2004.
7. Martin C. Golumbic and Ron Shamir. Complexity and algorithms for reasoning about time:

A graph-theoretic approach.Journal of ACM, pages 1108–1133, 1993.
8. Holger H. Hoos. SAT-encodings, search space structure, and local search performance. In

IJCAI-99, pages 296–302, 1999.
9. Henry Kautz, David McAllester, and Bart Selman. Encoding plans in propositional logic. In

KR-96, pages 374–384, 1996.
10. Peter Ladkin and Alexander Reinefeld. Effective solution of qualitative interval constraint

problems.Artificial Intelligence, 57(1):105–124, 1992.
11. Alan K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8(1):99–

118, 1977.
12. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. InDAC-01, pages 530–535, 2001.
13. Bernhard Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the effi-

ciency of using the ORD-Horn class.Constraints, 1(3):175–190, 1997.
14. Bernhard Nebel and Hans-Jürgen B̈urckert. Reasoning about temporal relations: A maximal

tractable subclass of Allen’s Interval Algebra.Journal of ACM, 42(1):43–66, 1995.
15. Steven Prestwich. Local search on SAT-encoded colouring problems. InSAT-03, pages

105–119, 2003.
16. Barbara M. Smith and Martin E. Dyer. Locating the phase transition in binary constraint

satisfaction problems.Artificial Intelligence, 81(1-2):155–181, 1996.
17. John Thornton, Matthew Beaumont, Abdul Sattar, and Michael Maher. A local search ap-

proach to modelling and solving Interval Algebra problems.Journal of Logic and Computa-
tion, 14(1):93–112, 2004.

18. Peter van Beek. Reasoning about qualitative temporal information.Artificial Intelligence,
58:297–326, 1992.

19. Peter van Beek and Robin Cohen. Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132–144, 1990.

20. Peter van Beek and Dennis W. Manchak. The design and experimental analysis of algorithms
for temporal reasoning.Journal of Artificial Intelligence Research, 4:1–18, 1996.

21. Marc Vilain and Henry Kautz. Constraint propagation algorithms for temporal reasoning. In
AAAI-86, pages 377–382, 1986.

22. Toby Walsh. SAT v CSP. InCP-00, pages 441–456, 2000.

