
On the Behavior and Application of Constraint
Weighting

John Thornton1 and Abdul Sattar2

1 School of Information Technology, Griffith University Gold Coast,
Parklands Drive, Southport, Qld, 4215, Australia

j.thornton@gu.edu.au
2 School of Computing and Information Technology, Griffith University,

Kessels Road, Nathan, Qld, 4111, Australia
sattar@cit.gu.edu.au

Abstract. In this paper we compare the performance of three constraint
weighting schemes with one of the latest and fastest WSAT heuristics: rnov-
elty. We extend previous results from satisfiability testing by looking at the
broader domain of constraint satisfaction and test for differences in perform-
ance using randomly generated problems and problems based on realistic
situations and assumptions. We find constraint weighting produces fairly con-
sistent behaviour within problem domains, and is more influenced by the
number and interconnectedness of constraints than the realism or randomness
of a problem. We conclude that constraint weighting is better suited to
smaller structured problems, where it is can clearly distinguish between dif-
ferent constraint groups.

1   Introduction

The intensive research into satisfiability testing during the 1990s has produced
a set of powerful new local search heuristics. Starting from GSAT [11], the
latest WSAT techniques have raised the ceiling on solving hard 3-SAT prob-
lems from several hundred to several thousand variables [13]. At the same time,
a new class of clause or constraint weighting algorithms have been developed
[9, 12]. These algorithms have proved highly competitive with GSAT (at least
on smaller problems with few solutions [1]), and have stimulated the successful
application of related techniques in several other domains [14, 2, 15]. However,
since the initial development of constraint weighting, WSAT has evolved new
and more powerful heuristics to meet the challenges posed by planning prob-
lems (such as novelty and rnovelty [8]). The improved performance of these
heuristics brings the usefulness of constraint weighting into question. This pa-
per re-examines constraint weighting in the light of the latest WSAT develop-
ments. We take the basic heuristics of both techniques and apply them to a se-
ries of different problem domains. In the process we examine the following
questions:



• Are there particular problem domains for which constraint weighting is
preferred?

• Does constraint weighting do better on more realistic, structured problems?
• Is there one weighting scheme that is superior on all the domains consid-

ered?

The main aim of the study is to provide practical guidance as to the relevance
and applicability of constraint weighting to the broader domain of constraint
satisfaction. Research has already looked at applying WSAT to integer optimi-
zation problems [16], and applying constraint weighting to over-constrained
problems (CSPs) [15]. However, outside the satisfiability domain, there has been
little direct comparison between techniques. The research addresses this by ap-
plying both WSAT and constraint weighting to three CSP formulations: univer-
sity timetabling, nurse scheduling and random binary constraint satisfaction. In
addition we explore the behavior of constraint weighting on several classes of
satisfiability problem, and look at the performance of a hybrid WSAT + con-
straint weighting algorithm.

The next section introduces the algorithms used in the study, and then the results
for each problem domain are presented. From an analysis of these results we draw
general conclusions about the applicability and typical behavior of constraint
weighting.

2   CSPs and Local Search

The constraint satisfaction paradigm models the world in terms of variables with
domains of values, and constraints that define allowable combinations of these val-
ues [7]. One of the aims of constraint satisfaction is to provide a uniform way of
representing a range of problems that can then be solved using standard CSP tech-
niques. Local search becomes relevant to constraint satisfaction when problems
become too large or complex to solve using a systematic technique such as back-
tracking [6]. Instead of building up a solution by instantiating variables one at a
time, local search starts with a complete instantiation of all variables and searches
for improving ‘local’ moves. Generally this means trying domain values for each
variable and accepting the value that most reduces the overall cost. Repeatedly
making improving moves will either lead to a solution (all constraints satisfied) or to
a local minimum (some constraints violated, but no more improving moves avail-
able). The basic issue for all non-trivial local search techniques is how to escape
local minima and carry on the search.

2.1   Constraint Weighting

Constraint weighting schemes solve the problem of local minima by adding
weights to the cost of violated constraints. These weights permanently increase



the cost of violating a constraint, changing the shape of the cost surface so that
minima can be avoided or exceeded [9].

procedure ConstraintWeighting
begin

CurrentState ← set variables to initial assignments
BestCost ←  cost of CurrentState
while BestCost > 0 and iterations < MaxIterations do

if MOVE or CurrentState is not a local minimum then
Dlist ← Empty
select a variable vi involved in a constraint violation
for each domain value dj of vi | dj  ≠ current value of vi do

TestCost ← cost of accepting dj

if TestCost ≤ BestCost then
if TestCost < BestCost then

Dlist ← Empty, BestCost ← TestCost
end if
Dlist ← Dlist + dj

end if
end for
if Dlist not Empty then

CurrentState ← randomly accept move from Dlist
else if MOVE then

increment the weight of all violated constraints containing vI

BestCost ←  new cost of CurrentState
end if

else if MIN then
increment the weight of all violated constraints
BestCost ←  new cost of CurrentState

else if UTIL then
increment the weight of all violated constraints with the smallest weight
BestCost ←  new cost of CurrentState

end if
end while

end
Fig. 1. The Constraint Weighting Algorithm

Several weighting schemes have been proposed. In Morris’s [9] formulation,
constraint weights are initialised to one and violated constraint weights are
incremented by one each time a local minimum is encountered. Frank [3, 4]
adjusts weights after each move and experiments with different initial weights
and weight increment functions and with allowing weights to decay over time.
Further work has applied constraint weighting to over-constrained problems
using dynamic weight adjustment [14] and utility functions [15].
In the current study we are interested in when and what to weight. Therefore we
keep to Morris’s original incrementing scheme and explore variations of three
of the published weighting strategies:

1. MIN: Incrementing weights at each local minimum (based on [9]).



2. MOVE: Incrementing weights when no local cost improving move exists (based
on [3], although Frank increments after all moves).

3. UTIL: Incrementing weights at each local minimum according to a utility func-
tion (based on [15]).

Voudouris and Tsang’s [15] utility function is part of a more sophisticated algo-
rithm (Guided Local Search or GLS) that handles constraints with different
absolute violation costs. They penalise features in a local minimum that have
the highest utility according to the following function:

utilityi(s*) = Ii(s*) × (ci / (1 + pi))

where s* is the current solution, i identifies a feature, ci is the cost of feature i,
pi is the penalty (or weight) currently applied to feature i and Ii(s*) is a function
that returns one if feature i is exhibited in solution s* (zero otherwise). In the
current study we assume each feature is a constraint with a cost of one. In this
case the utility function will only select for weighting the violated constraint(s)
in a local minimum that have the smallest current weight. Our aim is to test the
utility function as a weighting strategy in isolation from the GLS algorithm, to
see if it is useful in a more general weighting approach.

The three weighting strategies are tested within the same basic algorithm
which randomly selects variables involved in constraint violations and accepts
the best non-cost increasing move from the variable’s domain (see Fig. 1). This
algorithm was adjusted for SAT problems to randomly select violated clauses
(rather than variables) and then accept the best non-cost increasing move from
the combined domains of all variables involved in the clause (following the
WSAT approach of Fig. 2). In addition, the MOVE heuristic was adapted for
SAT to  increment the weight of a selected clause if no improving move exists
for that clause. These strategies were chosen due to the special structure of SAT
problems in that all variables have two domain values (true or false), which
would otherwise cause the original Fig. 1 algorithm to only consider a single
move in each iteration.

2.2   WSAT

WSAT avoids local minima by allowing cost increasing moves. The algorithm
proceeds by selecting violated constraints and then choosing a move which will
improve or satisfy the constraint, even when this results in an overall cost in-
crease. The various WSAT schemes differ according to the move selection heu-
ristic employed. The rnovelty heuristic [8] considers both the overall cost of a
move and when the move was last used. If the best cost move is also the most
recently used move then (according to a probability threshold) the second best
cost move may be accepted (as shown in figure 2). In using a least recently used
comparison, rnovelty combines a stochastic search with a memory strategy
similar to that proposed for HSAT [5]. It is the extra leverage obtained by con-
sidering the age of a move that distinguishes rnovelty from the earlier WSAT
heuristics.



procedure rnovelty
begin

CurrentState ← set variables to initial assignments
while Cost(CurrentState) > 0 and iterations < MaxIters do

if iterations modulus 100 = 0 then
 CurrentState ← CurrentState + random move

end if
select a violated constraint c
Best ← n, SecondBest ← n | Cost(n) = LargeValue
LastChange ← last iteration variable in c was changed
for each variable vi involved in c do

for each domain value dj of vi | dj  ≠ current value of vi do
if Cost(dj) < Cost(Best) or (Cost(dj) = Cost(Best)

 and LastUsed(dj) < LastUsed(Best)) then
SecondBest ← Best, Best ← dj

else if Cost(dj) < Cost(SecondBest) or
(Cost(dj) = Cost(SecondBest) and

 LastUsed(dj ) < LastUsed(SecondBest)) then
SecondBest ←  dj

end if
end for
if LastUsed(Best) = LastChanged and

(Cost(Best) - Cost(SecondBest) < MinDiff or
random value < NoiseParameter) then

Best ← SecondBest
end if
CurrentState ← CurrentState + Best

end for
end while

end
Fig. 2. The rnovelty heuristic

3   Experimental Results

3.1   Satisfiability Results
Research has already demonstrated the superiority of constraint weighting over
GSAT and early versions of WalkSAT for smaller randomly generated 3-SAT
problems (up to 400 variables) and for single solution AIM generated problems
[1]. To see if these earlier results still hold, we updated Cha and Iwama’s study
by comparing our constraint weighting algorithms with McAllester et al.’s
WSAT implementation of rnovelty [8]. For our problem set we randomly gener-
ated 100, 200 and 400 variable 3-SAT problems with a clause/variable ratio of
4.3 and selected ten satisfiable problems for each problem size (shown as r100,
r200 and r400 in table 1). At each problem size we calculated the average of
100 runs. We also used the 4 AIM generated single solution 100 variable prob-
lems available from the DIMACS benchmark set (see ftp://dimacs.rutgers.-



edu/pub/challenge/sat/benchmarks/cnf). Each problem was solved 100 times and
the average for all 4 problems reported. Table 1 shows the results for these
problems1 and confirms constraint weighting’s superiority for small AIM for-
mula, but indicates rnovelty has better random 3-SAT performance. The results
also show there is a growing difference between constraint weighting and rnov-
elty as the problem size increases. For the r400 problems rnovelty is still solving
98% of instances within 1,000,000 flips where the success rate for the best
weighting strategy (MOVE) has dropped to 84%. Of the weighting strategies,
MOVE outperforms MIN on most problem sizes (except r100), while MIN does
somewhat better than UTIL (although the gap closes for the larger problems).
In table 1, Max-Flips is the number of flips at which unsuccessful runs were
terminated, average flips is the average number of flips for successful runs, time
is the average time for successful runs and success is the percentage of problems
solved at Max-Flips.

Table 1. Results for small 3-SAT problems

Problem Max Flips Constraints Method Average Flips Time (secs) Success
r100 250000 432 rnovelty 1165 0.03 100%

MIN 2221 0.04 100%

MOVE 2162 0.06 100%

UTIL 11285 0.22 98%

r200 500000 864 rnovelty 5319 0.11 100%

MOVE 42043 1.27 91%

MIN 45799 0.90 74%

UTIL 42512 0.79 64%

r400 1000000 1728 rnovelty 69223 1.42 98%

MOVE 180168 3.23 84%

MIN 128243 2.67 34%

UTIL 114408 2.20 31%

AIM 100 100000 200 MOVE 3800 0.06 100%

MIN 6767 0.09 100%

UTIL 42457 0.48 81%

rnovelty - - 0%

To investigate the gap between constraint weighting and rnovelty for larger
problems, we looked at the relative performance of the two algorithms for the
DIMACS benchmark large 3-SAT problems (800 to 6400 variables). The graph
in figure 3 shows the best result obtained for each algorithm (after 10 runs of 4
million flips on each problem) and confirms that constraint weighting perform-
ance starts to degrade as problem size increases. However, an interesting effect
is that the relative performance of UTIL starts to improve as the problem size
grows until it significantly dominates the other weighting methods.

To test whether the random 3-SAT results are reproduced in more structured
domains we looked at a selection of conjunctive normal form (CNF) encodings

                                                       
1All problems were solved on a Sun Creator 3D-2000



of large realistic problems (again from the DIMACS benchmark). We found
rnovelty to dominate the large and hard graph coloring problems (g) where as
constraint weighting performed better on the smaller circuit fault analysis (ssa),
parity function learning and inductive inference problems (ii32). Representative
results averaging 100 runs on selected problems are given in table 2:

Fig. 3. Result plot for large DIMACS 3-SAT problems

Table 2. Results for large structured DIMACS problems

Problems Max-Flips Constraints Method Average Flips Time(secs) Success
g125.18 1000000 152064 rnovelty 5679 1.54 100%

g250.15 UTIL 160094 18.75 100%

Graph MIN 218078 26.63 90%

Colouring MOVE 222658 38.27 90%

ssa038-160 500000 3032 MOVE 2911 0.05 100%

Circuit MIN 3182 0.08 100%

Fault UTIL 17501 0.26 100%

Diagnosis rnovelty 41897 0.97 100%

par8-2/4-c 250000 268 MOVE 1972 0.04 100%

Parity rnovelty 2844 0.05 100%

Function MIN 3981 0.06 100%

Learning UTIL 12698 0.19 98%

ii32b3–e3 500000 8376 MIN 1125 0.25 100%

Inductive UTIL 1241 0.27 100%

Inference MOVE 2734 0.86 100%

rnovelty 16097 3.30 100%

The overall DIMACS problem results show that constraint weighting does per-
form better on smaller, realistic (possibly structured) problems in comparison to
rnovelty. The relative performance between weighting strategies is similar to the
3-SAT results, in that UTIL performs better on the larger problems (g), with
MOVE dominating the majority of other problems (excepting ii32). However,

0

20

40

60

80

100

0 20 40 60 80 100

Constraints

W
ei

g
h

t

3-SAT

PAR

AIM



rnovelty’s superiority on the graph problems again suggests weighting performs
less well in longer term searches, as in all domains where constraint weighting
dominates, (AIM, par, ii32 and ssa) solutions are found relatively quickly. In
the large and difficult problems (e.g. 3-SAT and graph coloring) the constraint
weighting heuristics do not seem to provide effective long term guidance.

Fig. 4. An example constraint weight curve

Examining Constraint Weight Behavior.  To further investigate the be-
havior of constraint weighting, we looked at the way constraint weights are built
up during a search. To do this we developed constraint weight curves which plot
the constraint weights on the y-axis and order the constraints on the x-axis ac-
cording to their ascending weight values. For example, if at the solution point of
a problem containing 4 constraints, constraint 1 has a weight of 2, constraint 2
has a weight of 4, constraint 3 has a weight of 1 and constraint 4 has a weight
of 10, we would produce the graph in figure 4. In this way a picture is generated
of the distribution of weights across the constraints.

Figure 5 shows the average weight curves for each 3-SAT problem size using
the MOVE heuristic (normalized on axes from 0 to 100). We plotted additional
curves for the larger 3-SAT problems and found that after an initial predictable
adjustment period, curves very similar to those in figure 5 are produced. The
other weighting strategies also produce consistent and similar curves, showing
that in the longer term, the weighting process mainly serves to smooth the
curves to an underlying distribution (for 3-SAT, curves of the form y = a –
blogn(c – x) provide a close fit).

To further explore this phenomenon we looked at curves for problems which
constraint weighting found relatively easy to solve. Figure 6 shows the averaged
MOVE curves for the DIMACS par and AIM problems and figure 7 shows the
curves for the ii32, graph and ssa problems. In both figures an averaged 3-SAT
curve is provided for comparison. The first feature observed from these graphs
is that there is a high degree of consistency for the same problems but noticeable
differences between domains. The graphs also show two distinct types of con-
straint weight curve: the figure 7 curves are similar (or uniform) in that after an
initial steeper start all the curves have a steadily increasing gradient. These
curves differ mainly in the steepness of their ascent and in the point at which
the curve reaches the constraint axis. The curves in figure 6 show different be-
haviour, in that each curve deviates from the steadily increasing gradients of the
other problems and exhibits some irregularity. For instance, the par problems

0

2

4

6

8

10

Con 3 Con 1 Con 2 Con 4



show a ‘step’ between 22 and 28 on the constraint axis and the AIM problems
show a similar step between 80 and 95.

Fig. 5. Constraint weight curves for various 3-SAT problems

Fig.6. Constraint weight curves for the DIMACS par and AIM problems

Fig.7. Constraint weight curves for the DIMACS graph, ssa and ii32 problems

0

20

40

60

80

100

0 20 40 60 80 100
Constraints

W
ei

g
h

t

r100

r200

r400

0

20

40

60

80

100

0 20 40 60 80 100

Constraints

W
ei

g
h

t

3-SAT

PAR

AIM

0

20

40

60

80

100

0 20 40 60 80 100

Constraints

W
ei

g
h

t

3-SAT

SSA

g125

II32



Adding Weights to rnovelty.  Given that no one technique proved better on
all the satisfiability problems, we decided to explore a hybrid rnovelty algorithm
with constraint weighting guidance added in. The rnovelty heuristic was
changed by weighting each selected constraint iff the selected move for the con-
straint causes an overall (weighted) cost increase. Move evaluation is then based
on the weighted cost. The new algorithm improved rnovelty’s performance on
all problems where constraint weighting previously dominated (AIM, par, ssa
and ii32) but was unable to reach constraint weighting’s original performance
levels. For those problems where rnovelty dominated (3-SAT and graph color-
ing), the hybrid algorithm was still superior to constraint weighting, but not as
good as pure rnovelty. In no instance was the average performance of the hybrid
superior to both of the original techniques. For this reason, further exploration
of the algorithm was rejected. An alternative technique which added an rnovelty
value selection heuristic into constraint weighting was also implemented. This
proved slightly inferior to the rnovelty hybrid and was also rejected.

3.2   CSP Results

Satisfiability is a subset of the broader domain of constraint satisfaction. Al-
though CNF formulations can model multiple problem domains, they all share
the same constraint type (i.e. clauses of disjunct literals). For many CSPs there
are more natural and efficient ways of modeling constraints and variables. It is
therefore significant to explore the performance of constraint weighting and
rnovelty on a broader range of problems (also, to our knowledge, this is the first
time rnovelty has been applied to CSPs). To this end, we look at two CSP for-
mulations of real-world problems (university timetabling and nurse scheduling),
both involving complex non-binary constraints and large non-standard variable
domains. In addition we run tests on the well-studied problem of random binary
constraint satisfaction [10].

For the purpose of the research, a university timetable problem generator was
developed. The generator can be tuned to produce a wide range of realistic
problems, while also having a mode that creates relatively unstructured, ran-
domised problems. We were interested in building identical sized problem pairs,
one reflecting the structure of a realistic timetabling problem (i.e. students do-
ing degrees, following predictable lines of study, etc.) and the other using purely
random allocations. The motivation was to test if a realistic problem structure
influences the relative performance of the two algorithms.

The nurse scheduling experiments were run on a set of benchmark problems,
taken from a real hospital situation. Each schedule involves up to 30 nurses,
over a 14 day period, with non-trivial constraints defining the actual conditions
operating in the hospital (for more details, see [14]).

Finally two sets of hard random binary CSPs were generated, each with 30
variables of domain size 10, and constraint density (p1) and tightness (p2) val-
ues that placed them in the accepted phase transition area [10]. This made the
problems large and difficult enough to challenge the standard backtracking
techniques.

Table 3 shows the results of running each class of problem against our four
algorithms (all results are averages of 10 runs on 10 different problems). We



also report results for the binary CSPs using Van Beek’s backtracking algorithm
(see ftp://ftp.cs.ualberta.ca/pub/vanbeek/software). The table 3 results put rnov-
elty firmly ahead for the binary CSPs and slightly ahead for both classes of
timetable problem, but strongly favor constraint weighting for the nurse sched-
uling problems. Adding structure to the timetabling problems does slow per-
formance, but does not favor a particular method. As before, we are interested in
the constraint weighting behavior, so figure 9 shows the average constraint
weight curves for each class of CSP.

Table 3. Results for the CSP problems
(tt-struct = structured timetabling, tt-rand = random timetabling,

n-sched = nurse scheduling, binary = binary CSP)

Problem Cut-off(secs) Constraints Method Av. Iterations Time (secs) Success
tt-struct 500 500 rnovelty 306546 98.9 78%

MIN 287874 101.3 74%

MOVE 348327 164.9 70%

UTIL 439288 177.4 62%

tt-rand 500 500 rnovelty 106357 28.7 95%

MIN 111957 30.2 95%

MOVE 113427 34.0 97%

UTIL 187339 40.5 95%

n_sched 180 500 MIN 134303 57.7 94%

MOVE 236142 103.3 81%

UTIL 249317 108.6 81%

rnovelty 1010629 99.4 77%

binary 350 200 rnovelty 103155 1.2 100%

n=30 200 MOVE 469329 5.2 93%

m=10 200 MIN 270339 3.3 79%

p1=80 200 UTIL 268949 3.4 75%

p2=17 1000 Backtrack 2.4x109 408.6 80%

binary 175 200 rnovelty 198833 1.4 100%

n=30 200 MOVE 239287 1.5 81%

m=10 200 MIN 254531 1.7 55%

p1=40 200 UTIL 226520 1.6 57%

p2=32 1000 Backtrack 33923486 16.4 100%

4   Analysis

The only direct way in which one constraint can influence another is by sharing
variables. Hence we would expect problems with a high degree of interconnect-
edness between constraints to also form large difficult constraint groups. Ran-
dom hard problem generators (as in 3-SAT and binary CSP) adjust the degree of
connectedness to the critical level where the expected number of problem solu-
tions approaches 1 [10]. Consequently, we expect such problems to exhibit an



upper bound on the average degree of connectedness for which problem solu-
tions are possible. The 3-SAT and binary CSP constraint curves in figures 5 and
9 show that on these hard problems, constraint weights become spread across
nearly all the problem constraints. The curves are also very similar in shape,
exhibiting (after an initially steeper start) a constantly increasing gradient.
Combining this information suggests that nearly all the constraints in these
hard random problems belong to a single difficult constraint group. Although
some constraints consistently accrue more weight than others, there is no sepa-
ration point where a weighting algorithm can recognise that one constraint
group is significantly different from another. This lack of distinction between
constraint groups could explain constraint weighting’s poorer performance on
the 3-SAT and binary CSP random problems.

Fig.9. Constraint weight curves for the CSP problems

AIM and par curves. The constraint weight curves for the AIM and par problems
in figure 6 diverge from the monotonically increasing curves of the other problems.
These irregular curves indicate the weighting algorithm has found some difference
between constraint groups. A closer inspection of the AIM problem structure sup-
ports this reasoning, as nearly all AIM variables appear in exactly 6 clauses. This
tends to create tightly connected constraint groups that are relatively disconnected
from the rest of the problem. Weighting can exploit this situation by ensuring the
constraints in a harder group are kept true (by frequently placing weights on them)
and then exploring the search space by violating constraints in the easier constraint
groups. In doing this, constraint weighting will fix potential bottlenecks early in the
search and quickly move to potential solution areas (in much the same way as a
human problem solver). In contrast, non-weighting methods do not distinguish
moves that violate difficult constraint groups and so are more likely to move into
constraint violations that are harder to repair.

The parity learning function (par) curve in figure 6 also has an irregular shape,
with a bulge appearing in the early part of the graph.  This bulge indicates a group of
relatively easy constraints that accrue less weight during the search, and offers an
explanation of constraint weighting’s relatively good performance on these prob-
lems. An examination of the par clauses also shows a structure of many small groups

0

20

40

60

80

100

120

0 20 40 60 80 100

Constraints

W
ei

g
h

t

Binary

Schedule

Timetable



of tightly connected constraints (both the AIM and par problems were artificially
constructed to have a guaranteed solution). In combination, the 3-SAT, AIM and par
results suggest that a non-uniform constraint graph (i.e. one that deviates from a 3-
SAT type curve) can be an indication of an ‘engineered’ problem, i.e. one that ex-
hibits a certain degree of regularity or structure. If this structure causes a signifi-
cantly greater or lesser degree of interconnectedness amongst constraint sub-groups
then we also expect that a constraint weighting algorithm will exploit this situation
and gain a certain amount of leverage of other non-weighting techniques.

Graph colouring, ssa and ii32 curves. Figure 7 shows the constraint weight curves
for the larger DIMACS problems: circuit fault diagnosis (ssa), inductive inference
(ii32) and graph colouring. In comparison to 3-SAT, these curves show a similar
monotonic increase but start with a shallower gradient and then have a distinct
turning point where the gradient becomes noticeably steeper. If we consider the per-
formance of constraint weighting on these problems, we find that a shallower initial
gradient correlates with relatively better constraint weight performance. This can be
explained by the lower curves indicating a greater weight distinction between the
easy and hard constraints in the problem. Following our earlier reasoning, constraint
weighting can exploit this difference by tending to avoid moves that violate heavily
weighted constraints, and exploring violations of relatively easier constraints. The
poorer performance of constraint weighting on the graph colouring problems can be
further explained by the larger size of these problems and consequent scaling effects
discussed later.

CSP curves. In looking at constraint weight curves for the more realistic CSP
problems (nurse scheduling and timetabling), familiar smoothly increasing gra-
dients are observed (see figure 9). However, for both problem types, approxi-
mately 60% of constraints accrue virtually zero weight. This contrasts with the
similar curves in figure 7 where at least some weight has accrued on nearly all
the constraints. Zero weight constraints are unlikely to provide leverage to a
constraint weighting algorithm, because such constraints are hard to violate.
Consequently, weighting and non-weighting algorithms will both tend to search
in the space where these constraints are satisfied. Following this line of reason-
ing, we would not expect constraint weighting to have an advantage on the
timetabling or nurse scheduling problems, whereas, in practice, MIN signifi-
cantly outperforms the other techniques on the nurse scheduling problems. To
investigate this further we looked at the individual constraint weight curves for
each timetabling and nurse scheduling problem (figure 9 shows the average
curves for 10 different problems). An initial inspection showed the nurse sched-
uling curves exhibited more irregularity of shape than the timetabling curves.
To quantify this, we took the standard deviation of the weight value for each
curve at each of the 100 points on the constraint axis and calculated the sum of
these values for each problem type. This produced a summed deviation of 190.8
for the timetabling curves and 358.7 for the nurse scheduling curves (confirm-
ing the visual inspection). In addition, the shapes of the nurse scheduling curves



indicated that, in many cases, the constraint weighting algorithm was able to
distinguish between constraint groups. Combining this information suggests
that, although the constraint weight curves for timetabling and nurse scheduling
were similar, the underlying behaviour of constraint weighting on the two
problems was different and that constraint weighting was able to exploit ir-
regularities in the nurse scheduling problems.

Scaling Effects. Given that constraint weighting does better when it finds dis-
tinctions between groups of constraints, we would expect the probability of ran-
domly generating highly interconnected constraint groups to decline (causing
the performance of constraint weighting to also decline) as problem size in-
creases. For example, the number of constraints in a random 3-SAT problem
grows at the rate of 4.32n (where n is the number of variables) whereas the
number of possible constraints grows at a faster rate of 2n(n-1)(n-2). In addition
there may be a granularity effect in constraint weighting, i.e. as the number of
problem constraints increase, the effect of weighting a single constraint neces-
sarily decreases, and constraints start to become weighted and violated in larger
and larger groups. In this way the weight guidance becomes more general and
less detailed, which could then cause promising search areas to be ignored. This
is further backed up by the relative improvement in the performance of UTIL for
longer searches: as UTIL increments weights less frequently than the other
methods we would expect it’s performance to deteriorate more slowly. This
result ties in with Frank’s work [4] on causing weights to decay during the
search, and it may prove useful to investigate a combination of these strategies
for larger problems.

5   Conclusions

The main conclusion of the paper is that constraint weighting is best suited to
problems where the weighting process is able to distinguish sub-groups of con-
straints that have a distinctly different weight profile from the remaining prob-
lem constraints. We term such problems as having a structure which can be
recognised either through an analysis of constraint weight curves or through a
direct analysis of the interconnections of variables and constraints. Constraint
weighting performance is therefore most influenced by the number and degree
of interconnectedness of constraints rather than the degree of realism used in
the problem generation. In addition, we found constraint weighting performance
starts to degrade as problem size grows, due to a combination of larger problems
tending to have less structure and a postulated weighting granularity effect.
Additional experiments with hybrid constraint weight and rnovelty algorithms
did not yield promising results, so further work in this area was rejected. Of the
different weight heuristics, MOVE performed well on the binary CSP and satis-
fiability problems, while MIN did better on structured CSPs. UTIL was the best
weighting strategy for larger problems, but was unable to match the perform-
ance of rnovelty.  The paper also introduces constraint weight curves as a



method for analysing and predicting the behaviour of constraint weight algo-
rithms. In our ongoing work, an extended version of this paper will present a
larger sample of results and explore and compare the behavior of several com-
peting constraint weight, WSAT and tabu search heuristics.

References

1. B. Cha and K. Iwama. Performance test of local search algorithms using new types
of random CNF formulas. Proceedings of IJCAI-95, pages 304-310, 1995.

2. A. Davenport, E. Tsang, C. Wang and K. Zhu. GENET: A connectionist architecture
for solving constraint satisfaction problems by iterative improvement. Proceedings
of AAAI-94, pages 325-330, 1994.

3. J. Frank. Weighting for Godot: Learning heuristics for GSAT. Proceedings of AAAI-
96, pages 338-343, 1996.

4. J. Frank. Learning short-term weights for GSAT. Proceedings of IJCAI-97, pages
384-389, 1997.

5. I. Gent and T. Walsh. Towards an Understanding of Hill-climbing Procedures for
SAT. Proceedings of AAAI-93, pages 28-33, 1993.

6. V. Kumar. Algorithms for constraint satisfaction problems: a survey. AI Magazine,
32-43, Spring 1992.

7. A. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99-118, 1977.

8. D. McAllester, B. Selman and H. Kautz. Evidence for invariants in local search.
Proceedings of AAAI-97, pages 321-326, 1997.

9. P. Morris. The Breakout method for escaping from local minima. Proceedings of
AAAI-93, pages 40-45, 1993.

10. P. Prosser. An empirical study of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence, 81(1-2):81-111, March 1996.

11. B. Selman, H. Levesque and D. McAllester. A new method for solving hard satisfi-
ability problems. Proceedings of AAAI-92, pages 440-446, 1992.

12. B. Selman and H. Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. Proceedings of IJCAI-93, pages 290-295, 1993.

13. B. Selman, H. Kautz and D. McAllester. Ten challenges in propositional reasoning
and search. Proceedings of IJCAI-97, pages 50-54, 1997.

14. J. Thornton and A. Sattar. Dynamic Constraint Weighting for Over-Constrained
Problems. Proceedings of PRICAI-98, pages 377-388, 1998.

15. C. Voudouris and E. Tsang. Partial Constraint Satisfaction Problems and Guided
Local Search. Proceedings of Practical Application of Constraint Technology
(PACT'96), pages 337-356, 1996.

16. J. Walser, R. Iyer and N. Venkatasubramanyan. An integer local search method
with application to capacitated production planning. Proceedings of AAAI-98, pages
373-379, 1998.


