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Abstract

It has become increasingly popular to view the brain as a
prediction machine. This view has informed a number of
theories of brain function, the most prominent being predic-
tive processing, where generative hypotheses are iteratively
updated by error signals. In this treatment we take a lower
level approach by examining the hierarchical temporal mem-
ory framework, which views individual pyramidal cells as
the primary predictive unit of a self-organizing networked
sequence learning system. Within this computational frame-
work, the cell behaviour is constrained by a number of param-
eters which are static and shared across all cells. To further
increase the adaptability of the cells, we shift away from this
paradigm by introducing the concept of dynamic thresholds.
This allows for the activation threshold (the amount of activ-
ity on a distal dendrite needed to form a prediction) to be ad-
justed continuously and individually for each cell. As a met-
ric we use the prior, or unconditional, probability of activity
on the proximal dendrites. Our experiments show that using
this metric for dynamic thresholds can improve the predictive
capabilities of the system in a number of domains, including
anomaly detection, where we achieve state-of-the-results on
the Numenta Anomaly Benchmark.

Introduction
In recent years, the search for a unified theory of brain func-
tion has begun to converge on the idea that the brain is a
prediction machine. At a high-level this is expressed in
the Bayesian brain theory which envisions the brain as con-
stantly performing probabilistic inference in an attempt to
explain stimuli and trigger optimal reactions to it (Knill and
Pouget, 2004). An “intermediate-level” model (Clark, 2015)
is the increasingly popular theory of predictive processing
(PP), which is also often referred to as hierarchical predic-
tive coding. Under this model, top-down and lateral con-
nections between neurons communicate hypotheses (predic-
tions) regarding the current and future state of the system,
while bottom-up connections communicate prediction errors
which update the hypothesis of a higher layer (Rao and Bal-
lard, 1999). PP can also be subsumed under the free-energy
principle, which proposes that the behaviour of natural adap-
tive systems can be modelled by applying a policy that re-
duces the free-energy of their internal states (Friston et al.,

2006, 2009). In this treatment we provide a lower level ap-
proach by examining prediction forming in a biologically
plausible self-organizing system of cells.

The existing treatments of PP are largely theoretical and
it is unclear how such models could be implemented in a
neuronal architecture that is plausibly similar to actual bi-
ology. Some work in this area (Friston et al., 2006) makes
useful suggestions concerning the functioning of candidate
feedback and error-unit neurons, but does not integrate this
account into a theory of both high-level and low-level neural
architecture in specific regions of the central nervous sys-
tem. Such a region of specific interest is the neocortex,
which is implicated in perception, motor action, and high-
level thought. A theory needs to incorporate what is already
known concerning the architecture of the neocortex, such as
its sparse encoding scheme (Olshausen and Field, 2004), its
lateral organisation into layers, and its division into func-
tional mini-columns (Mountcastle, 1997). Such a theory
should also explain the behaviour of cells, which are known
to form a large number of synapses by applying a Hebbian
learning method (Hebb, 1949), and to produce complex non-
linear responses to activity on these synapses (Häusser et al.,
2000; Major et al., 2013).

One such theory that attempts to account for these factors,
and which exhibits significant parallels with PP, is hierar-
chical temporal memory (HTM) (Hawkins and Blakeslee,
2007). Here, the function of the neocortex is again un-
derstood in terms of generating predictions of future states.
These predictions are generated by self-organizing pyrami-
dal cells that apply Hebbian learning to predict sequences of
mini-column activity, both using and explaining the colum-
nar structure of the neocortex. In effect, each column is a
node in a hierarchically structured sequence learning algo-
rithm, organised in such a way that each node can be in-
corporated into multiple learned sequences, depending on
the context of operation. HTM theory posits that the dis-
tal dendrites of pyramidal cells act to recognise individual
patterns, and learn the individual causes of activity on prox-
imal dendrites. Essentially, activity on a pyramidal cell’s
distal dendrites predicts activity on its proximal dendrites,



and networks of such pyramidal cells can learn and predict
sequences (Hawkins and Ahmad, 2016).

An algorithm that implements the sequence learning pro-
cedure of HTM is called the HTM temporal pooler (TP), an
online learning connectionist system (Hawkins et al., 2010).
TP comprises a number of self-organizing cells (artificial
neurons) which possess distal dendrite segments that form
synapses with other cells according to plausible Hebbian
learning principles. The activity of proximal dendrites is
governed by a separate learning system, the spatial pooler
(SP). When the activity on a distal dendrite segment is
greater than an activation threshold, the cell is considered
to be predicting activity on its proximal dendrites and en-
ters a predictive (depolarized) state. The overall system has
already proved itself highly effective for temporal sequence
prediction (Cui et al., 2016) and on-line anomaly detection
(Lavin and Ahmad, 2015), while also providing a compu-
tational explanation for the density of connectivity found in
actual neocortex (Hawkins and Ahmad, 2016).

Each cell’s behaviour in the TP is constrained by a num-
ber of pre-set parameters which remain static throughout the
lifetime of the system and are identical across all cells. Here,
we shift away from this paradigm and propose that, as well
as its connectivity, the internal dynamics of a cell should
adapt to the cell’s environment. We experiment with this
idea by dynamically adjusting the threshold of synaptic ac-
tivity required for a cell to enter a predictive state. The met-
ric we use is the cell’s prior, or unconditional, probability
of becoming active. The basis for this metric is simple and
lies at the heart of Bayesian inference: the higher the prior
probability, the higher the posterior probability should be.

We refer to our modified algorithm as temporal pooler
with dynamic thresholds (TPDT) and compare it to the stan-
dard TP on two sequence prediction tasks on which the TP
has previously produced strong results (Cui et al., 2016),
and show that TPDT can produce improved performance
on these tasks. We further apply TPDT to the Numenta
Anomaly Benchmark (NAB) (Ahmad and Hawkins, 2015),
where we achieve state-of-the-art results. Our application
of dynamic thresholds to TP, then, has produced two major
contributions: 1) we have shown that incorporating the prior
probability of a cell’s activation into the predictive mecha-
nisms can improve the performance of TP; 2) introduced a
new spur of HTM research in which parameters are dynamic
and adaptive.

Previous work
TP and a sparse encoder, the spatial pooler (SP), both form
part of the HTM framework, which was first outlined in the
Cortical Learning Algorithms (CLA) white paper by Nu-
menta (Hawkins et al., 2010). TP and, more generally, the
HTM framework has been shown to perform strongly on se-
quence prediction tasks, where it produces results compara-
ble or better than leading sequence learning algorithms, such

as TDNN and LSTM (Cui et al., 2016). The HTM frame-
work has also been applied to the task of online anomaly
detection, it has produced strong results in this field and is
state-of-the-art on NAB (Lavin and Ahmad, 2015).

Other treatments of the HTM computational framework
have looked at both formalizing (Mnatzaganian et al., 2016),
and expanding SP (Thornton and Srbic, 2013). As well as
investigating the best method for communicating between
hierarchical regions (Kneller and Thornton, 2015; Skrynnik
et al., 2016). There has also been work on implementing a
PP style hierarchy using CLA (McCall and Franklin, 2013).

Temporal pooler with dynamic thresholds
HTM models pyramidal neurons as being the primary en-
coding and predicting unit within the neocortex. The proxi-
mal dendrites learn and encode bottom-up input, distal den-
drites learn causes of and forms predictions on the bottom-
up input, and the apical dendrite learns and encodes top-
down predictions. Within the computational framework, the
SP governs the proximal dendrites, while the TP governs
the distal dendrites. In this treatment we implement dynamic
thresholds to TP, and will focus our discussion on TP and the
modified algorithm (TPDT). We apply this system as a sin-
gle layer, non-hierarchical system, so are not concerned with
the apical dendrites. We begin this section with a discussion
of the overarching theories of TP and TPDT, followed by a
description of the implementation of these theories.

Temporal pooler
The TP is a connectionist system in which the individual
artificial neurons form temporal predictions on their future
state; when the system is taken in its totality, it forms pre-
dictions on sparsely encoded sequences. In contrast to more
typical artificial neural networks, where the states and out-
put of artificial neurons are represented by real numbers, the
activity of a TP system is represented by discrete states of
the various structures. This paradigm allows us to investi-
gate biologically inspired encoding from the perspective of
dynamically shifting states, where action potentials are dis-
crete events, and, more practically, it allows for a number of
optimization techniques in implementation.

In TP the pyramidal cells are referred to simply as cells,
and are grouped into columns (based on minicolumns of the
neocortex). For simplicity the activity on the proximal den-
drites is the same for all cells in a single column. As such,
we refer to the proximal dendrite activity as column activ-
ity, and the cell’s role is to predict the future activity of the
column. The use of multiple cells in a column allows for
the representation of different causes for the column’s acti-
vation. For example, a column which encodes an edge ap-
pearing at a specific spot in the visual field could have been
predicted to appear there through multiple causes, such as
moving left to right, right to left, or being stationary. With
different causes learned by different cells, the system is then



Figure 1: a) Diagram of TP activity over two time-steps (T1,T2). This simple TP has 5 columns (C1-C5) each with three
pyramidal cells (P1-P15). Columns are activated by the input (I). Synapses and segment structures are shown by a single solid
line, where the arrowhead points to the cell that the segment belongs to. In T1, P9 is in a predictive state (yellow) due to its
connections with P2 and P6, which are active (red). In T2, both C3 and C5 are activated, in C3 only P9 is active as it predicted
the column activation, while all cells are active in C5, as no prediction-cell predicted the column activation. b) Two cell’s are
shown with activation thresholds, θ̃, of 2 and 3. Both have segments with two active cell’s, but only the one with θ̃ = 2 has
enough activity to enter a predictive state.

able to learn high order sequences, while still operating un-
der the Markov assumption.

A cell learns causes by forming synapses along its den-
dritic segments to other cells using a Hebbian learning in-
spired method: when a column becomes active one of its
cells will form synapses, from a single dendrite, to other
cells which were active the previous time-step. On future
time-steps if the number of active synapses on a dendrite is
above an activation threshold then the cell will enter a pre-
dictive state. If the cell’s column becomes active on the next
time-step than that cell will become active. If no cells were
in a predictive state when a column became active than all
cells will become active. This is referred to as bursting a col-
umn and represents that the activation may have any number
of causes. We display an example of this inference proce-
dure in Figure 1.

Dynamic thresholds

In TPDT the activation threshold is dynamic, such that it
can be continually modified for each cell on an individual
basis. The effect of modifying the activation threshold is that
when the threshold is higher more synapses on a segment are
required to be active to put the cell in a predictive state than
when the threshold is lower. So the higher the threshold the
more ‘evidence’ the cell requires to enter a predictive state.

As a metric for TPDT we use the prior, or unconditional,
probability of a cell’s column being in an active state. We
modify the threshold such that, the greater the prior prob-
ability the lower the activation threshold. In effect if the
column has a high prior probability its cells require less ev-
idence, and are more likely, to predict its activation. This
approach has obvious roots in Bayesian inference, where the
greater the prior probability, the greater the upper bound of
the posterior probability.

A column’s activity is a Boolean state variable, either ac-

tive or non-active, and we measure this value over a time
series. As such, the state is of a Bernoulli probability distri-
bution and we calculate the prior probability of the variable
being in an active state, p̃, as:

p̃ =
ã

t
(1)

Where ã is the total number of column activations, and t is
the total number of time steps. We use the value of p̃ as
the metric to adjust the activation threshold of each cell as
described applied below.

Implementation
In this section we detail the implementation of the above the-
ories. We take a more algorithmic approach than Cui et al.
(2016), but use the same notation where appropriate. As
the TPDT alterations to TP primarily affect the inference
phase we focus our discussion on inference and the dynamic
thresholds.

Inference A single TP layer comprises m × n number of
cells, where n is the number of columns, and m is the num-
ber of cells per column. Each cell has an activity state vari-
able, which represents whether a cell is active (1) or inactive
(0). We track this variable in a 2-dimensional array, A, with
dimensions m × n. The input into TP is a binary array, x,
of n length, the source of the input is either the SP or some
other sparse binary encoder. Each entry of x corresponds to
a column activation, which is the proximal dendrite activity
of each cell in the column. So, a value of 1 in the jth entry
of the array will activate the jth column. To calculate the
activity of individual cells, A, we use the function:

cellAct(Π,x, i, j,m) =


1 if xj = 1 ∧

(
Π(i,j) = 1∨

∀π ∈ Π(0...m,j)(π = 0)
)

0 otherwise



where Π is a 2-dimensional array of size m× n which con-
tains the predictive state variables of cells; j is the column
index (0 ≤ j ≤ n) and i is the index of a cell within a col-
umn (0 ≤ i ≤ m). So if xj = 1 then at least one cell within
the jth column will be active; if a cell predicted the activity
than it will be active, otherwise the column will burst and all
will be active.

When cells have been activated we can perform inference,
starting with calculating the activity of segments. We rep-
resent segments using an array, s, of binary 2-tuples; each
2-tuple represents a cell with which the segment has formed
an active synapse. Both segments and synapses have activ-
ity state variables. A synapse’s activity state variable is set to
active if the pre-synaptic cell it is connected to is in an active
state. As a result we can obtain the activity state of a synapse
by accessing A with a 2-tuple, for example: A(s1,s2) where
s ∈ s. We store each s array in a 3-dimensional array S of
size m × n × k, where k is the maximum number of seg-
ments on a cell. Using this we can calculate each segment’s
activity as:

segAct(s,A, α) =

1 if

(∑
s∈s

[A(s1,s2) = 1]

)
≥ θ

0 otherwise

where θ is the activation threshold. As can be seen, if the
total number of active synapses on a segment is above θ then
that segment is active.

After computing the activity states of cells and segments
we now set the predictive state variables for cells. A cell’s π
is set to predictive (1) if any segment is active:

cellPred(D, i, j, k) =

{
1 if ∃d ∈ D(i,j,0...k)(d = 1)

0 otherwise

where D is a 3-dimensional array of size m × n × k con-
taining the activity states of segments. The value of each
cell’s π will then be used for the activation of cells in the
next time-step. The system progressives iteratively through
this process for each time-step. We outline the procedure
with pseudo-code in Algorithm 1.

Learning As our additions to TP primarily concern the
inference phase of the algorithm we only provide a high-
level description of this learning method (for a more in depth
treatment we recommend Cui et al. (2016) or the CLA white
paper (Hawkins et al., 2010).

Each synapse has a connected state variable, this can ei-
ther be connected or unconnected. Synapses that are con-
nected have an entry in their segment’s s array, whereas un-
connected synapses do not and, therefore, play no role in
inference. Each synapse has a permanence value, when this
value is above a permanence threshold value the synapse is
connected. Synapse permanence values, both connected and

unconnected, are altered on the time step following their seg-
ment being active. If the cell enters an active state (i.e. the
segment correctly predicted the activation of the column)
each synapse on the segment that was active on the pre-
ceding time-step has its permanence value incremented by
a set amount (as per parameter); synapses that were not ac-
tive have their permanence decremented. If the cell does not
become active following a segment being active then all ac-
tive synapses on that segment have their permanence values
decremented.

Segments and synapses are formed when a column be-
comes active but none of its cells were in a predictive state.
We search all cells in the column for the segment which had
the most active synapses, including synapses that are uncon-
nected. If the total number of active segments on this seg-
ment is above a set number, we add a number of synapses to
the segment that connect to cells that were active. Otherwise
we search for the cell with the least number of segments and
create a new segment on it with synapses to cells that were
active.

Dynamic thresholds
To the above algorithm we add dynamic thresholds which
modify the activation threshold, θ, for individual cells. We
denote a modified activation threshold as θ̃, where θ̃ ∈ Z+.
When applying dynamic thresholds during inference we
pass the target cell’s θ̃ instead of the global θ variable when
calling the function actSeg; we show this in Algorithm 1.

In this treatment we calculate each cell’s θ̃ by incorporat-
ing the prior, or unconditional, probability of each column
activity. In TP each cell’s proximal dendrite activity is en-
coded by columns, so a cell’s prior probability of proximal
dendrite activity is the column’s prior probability of being
active. We calculate the prior probability of a column being
in an active state, p̃, using:

calcPrior(x̃, t, j) =
x̃j

t

where x̃ is an array containing the activity count of each
column and t is the total number of time-steps the system
has been exposed to. Before calculating θ̃ we perform a few
steps. Firstly we constrain the value of p̃ to be within a max-
imum value, p̃

≤
, we then divide by this value:

constrainPrior(p̃, p̃
≤

) =

{
1.0 if p̃ ≥ p̃≤

p̃ 1

p̃
≤ otherwise

This is similar to a normalization process. We use this
method as it prevents outliers from influencing the final
value and is more biologically plausible, as it does not re-
quire the cell to be aware of other cell’s prior probabilities.

Before calculating θ̃ we multiply the ‘constrained’ prior,
p̆, by a value p̆

×
, which modifies the effective range of θ̃.

For example if p̆
×

= 2 then there would be three possible



values for θ̃ (as θ̃ is an integer value). As p̆
×

increases, so
does the range of possible θ̃ values. Finally we calculate θ̃
using:

calcDynThresh(p̆, p̆
×
, θ̃

≤
) = b θ̃

≤
− p̆p̆

×
c

where θ̃
≤

is the maximum value for θ̃. Pseudo-code for in-
ference with TPDT is provided in Algorithm 1.

Algorithm 1 Inference and Dynamic Thresholds
Require: f {TPDT flag: 1 if using TPDT, 0 if TP}
Require: Π,x,S, θ,m, n, k {TP parameters}
Require: x̃, t, p̃

≤
, p̆

×
, θ̃

≤ {TPDT parameters}
1: t← t+ 1
2: for j ← 1 to n do
3: for i← 1 to m do
4: A(j,i) ← cellActive(Π,x, j, i,m)
5: if f = 1 then
6: if xj = 1 then
7: x̃j ← x̃j + 1
8: for j ← 1 to n do
9: for i← 1 to m do

10: if f = 1 then
11: p̃← calcPrior(x̃, t, j)
12: p̆← constrainPrior(p̃, p̃

≤
)

13: θ̃ ← calcDynThresh(p̆, p̆
×
, θ̃

≤
)

14: else
15: θ̃ ← θ
16: for k ← 1 to p do
17: D(i,j,k) ← segActive(S(i,j,k),A, θ̃)
18: Π(i,j) ← cellPredictive(D, i, j, k)

HTM Computational Framework
The TP is typically deployed as part of an HTM computa-
tional framework (Cui et al., 2016). To adequately compare
TP with and without dynamic thresholds we use this frame-
work for a number of experiments, following the methodol-
ogy used in the literature. As well as the TP, this framework
includes a number of other computation steps, which we will
outline below.

Framework
The first step in the HTM framework encodes input into bi-
nary representations, which is the required format for both
SP and TP. For real valued input, a selection of scalar en-
coders can be used. We use the random distributed scalar
encoder that preserves important properties around overlap-
ping representations, e.g. scalars with a small difference in
value will have a high degree of overlap between their binary
patterns, whereas scalars with large differences in value will
have little or no overlap in their bit patterns. This scheme
removes the need for later stages of the framework having
to learn that similar values are indeed similar.

Next the SP algorithm is used to group, or ‘pool’, highly
correlated output bits from the scalar encoder into individ-
ual features that will be used to activate the columns in TP
(Hawkins et al., 2010). In SP, each column has a single seg-
ment which forms synapses to input bits. This is achieved
using a Hebbian learning method similar to TP, here synapse
permanences are increased when input bits are ‘on’ and the
column is active. Instead of an activation threshold (as in
TP), columns compete to be active, where the columns with
the highest overlap score becoming active. Overlap is sim-
ply a column’s total number of active synapses multiplied by
a boost modifier, which is used to help inactive columns be-
come more active. This competitive encoding is how spar-
sity is enforced, with only a small proportion of columns
becoming active on each time-step. The output of SP is a
sparse distributed representation (SDR) of column activity,
in the form of a binary vector, which is used as input into
the TP. For a more in-depth look at SP we recommend the
mathematical formulation by Mnatzaganian et al. (2016) or
the white paper (Hawkins et al., 2010).

The TP then forms predictions on the SDR vector us-
ing the methods outlined above. However the TP used for
anomaly detection has a number of divergences from these
methods, which we discuss below. After TP has formed pre-
dictions, the final step of the framework decodes the state
of the system, the method used for this is largely task de-
pendent. For the artificial data experiments we use a sim-
ple method that compares the predicted SDR with those that
have previously been used as input, and then assign the clos-
est matching SDR based on the overlap of the two. For the
taxi cab experiment the range of possible input values is sep-
arated into 22 buckets, and we use a maximum likelihood
classifier to assign the state of the system to one of these
buckets. The methodology for both of these experiments
follows that of Cui et al. (2016). For the anomaly detec-
tion experiment we use the scheme used by Lavin and Ah-
mad (2015). On each time-step the current activity states
of columns are compared to the predictive states of cells
from the previous time-step. Based on this comparison the
time-step is assigned an anomaly score between 0.0 and 1.0,
where 0.0 represents the next time-step was perfectly pre-
dicted and 1.0 indicates significant prediction errors. We
calculate an anomaly likelihood by comparing the anomaly
score at any time-step to the distribution of recent anomaly
scores. This value is then thresholded before we output
whether the input data for that time-step is anomalous or
not.

Temporal pooler for on-line anomaly detection
In TP for anomaly detection the learning phase has its own
inference phase that only applies to learning. Here only a
single cell in a column can be in a predictive state on a given
time-step. The single predictive cell is the one with the high-
est activation count on a segment. Due to this method, and



because there is no column bursting in learning, only a sin-
gle cell can be active in a column. This constrains TP to
learning on only those cells most likely to implicated in the
current input. In our TPDT implementation we use θ̃ for the
activation thresholds both in learning and inference.

In this version of TP each column has a single start cell,
these are used to indicate the beginning of a sequence and
are triggered under three circumstances. The first is on the
very first time-step of anomaly detection and the other two
are based on the TP’s internal states. The second is when TP
has been out of sequence for a pre-set number of time-steps
(Lavin and Ahmad (2015) use three time-steps). The sys-
tem is considered out of sequence when greater than 50% of
the predicted column activations are incorrect. But before
giving up on an out of sequence time-step the system per-
forms a backtracking method: this is the third circumstance
start cells are used. Backtracking replays time-steps from a
number of starting points. On these starting points start-cells
are the only active cells on that time-step, the time-steps are
then replayed in an attempt to get TP to lock on to the current
sequence.

Although these added features to TP detract somewhat
from its biological plausibility they can improve the sys-
tem’s ability to learn and infer on complex input sequences.
Consequently, in order to make a fair comparison between
the state-of-the-art TP and TPDT, TPDT also uses these fea-
tures for anomaly detection.

Experiments
To test whether precisions can improve the predictive per-
formance of TP, we apply TPDT to three experiments of TP
in the literature and compare the results. For all experiments
we use the same framework as the initial study and we repli-
cate their results with TP. The results are averaged over a
number of runs, altering the random seed for each separate
run.

Taxi Passenger Demand
This experiment tests a sequence learning algorithm’s pre-
dictive capabilities in a real-world scenario: predicting the
taxi demand in two and half hours, given the current demand
and time. The HTM framework has been shown to produce
state-of-the-art results on this problem (Cui et al., 2016).

Experimental Design Before running TP on this dataset,
SP is applied over the first 5,000 time-steps for five itera-
tions. TP is only trained for one iteration over the 5,000
and after this we begin scoring, which we detail below. The
parameters we use are: θ̆

×
= 5.0, θ̃

≤
= 0.05, and θ̃

≤
= 20

The dataset contains the aggregate demand for taxis in
New York City over 30 minute periods spanning July 1st
2014 through to June 30th 2015, there are a total of 17,520
time-steps. This dataset is derived from data made a avail-
able by the New York City Transit Authority. All possible

Table 1: Results for TP and TPDT on NAB
MAPE NegLL

Avg StdDev Avg StdDev
TP 0.0869 0.0005 1.6563 0.0071

TPDT 0.0858 0.0006 1.6439 0.0052

values are separated into 22 buckets. We use maximum like-
lihood classifier to predict the bucket given the current state
of the system. We use both the mean absolute percentage er-
ror (MAPE) and negative log likelihood (NegLL) as metrics
for error; MAPE is the error given the most likely bucket,
while NegLL incorporates the probabilities across all the
buckets, allowing for the consideration of multiple predic-
tions (Cui et al., 2016).

Results The results for this experiment are given in Ta-
ble 1, showing the average and standard deviation over the
25 trials. For both MAPE and NegLL lower values are bet-
ter and TPDT shows improved performance on both these
scores. Although the differences are small, the variance
across the trials is quite low and the differences are sig-
nificant using a one-tailed t-test (p < 0.05). These results
therefore indicate that dynamic thresholds can improve the
accuracy of TP for sequence prediction.

Online anomaly detection
To test the capabilities of TPDT for anomaly detection, we
embed it in the HTM framework described previously and
apply it to NAB.

Experimental Design On this experiment there is less
pre-training for spatial pooler, so the input has a lower life-
time sparsity and consequently there are columns with much
higher prior probabilities. Because of this we use a greater
θ̃
≤

. The parameters used for TPDT in this experiment is:
θ̆
×

= 2.5, θ̃
≤

= 0.85, and θ̃
≤

= 15. All other parameters
are the same as the TP.

NAB contains 58 datasets of time-series data, each with
between 1,000 to 22,000 time-steps. These datasets are from
a variety of different domains, such as server load, taxi book-
ings, machine temperature, and artificial data. All data has
been labelled to include known anomalies within it. For
scoring in NAB, each anomaly is assigned an anomaly win-
dow, if an anomaly detector detects an anomaly within this
window it is assigned a score; the earlier in the window the
anomaly is detected the higher the score. If no anomalies
are detected within the anomaly window or anomalies are
detected outside of an anomaly window a negative score is
assigned. Final scores are given for three separate profiles:
standard, reward low false-positives (FP) where negative
scores from detecting an anomaly outside of a window are
given greater weight, and reward low false-negatives (FN)
where negative scores from not detecting an anomaly within



Table 2: Results for TP and TPDT on NAB
Standard Minimize FP Minimize FN

Avg Best Avg Best Avg Best
TP 69.97 71.88 62.84 65.90 74.50 76.36
DT 70.22 72.64 62.73 66.03 74.85 76.88

an anomaly window are given greater weight.

Results The results of the experiments on NAB are shown
in Table 2, where again results in bold indicate the better re-
sults that have statistical significance on a one-tailed t-test
(p < 0.05). TPDT shows gains on both the standard and
minimize FN profiles; the minimize FP profile shows a mi-
nor (not statistically significant) drop over TP. The ‘best’
results indicate the best score achieved over the 50 trials,
and they appear to follow the same pattern as the averages:
TPDT gives improved results for both standard and mini-
mize FN.

We have replicated the results for TP on the NAB score-
board (as of writing): with a standard profile of 70.10, FP of
70.10, and FN of 69.9 (Lavin, 2017). This result is achieved
with a seed value of 1960, which is the default for the NuPIC
framework (Numenta, 2017). However, as shown in Table
2 we find a greater best score for TP, although the average
across 50 trials is slightly lower. Regardless, TPDT’s av-
erage is greater than the reported score, statistically signif-
icantly better than TP’s average, and TPDT’s best score is
greater than TP’s. To the best of our knowledge, TPDT’s is
therefore state-of-the-art on NAB for both the standard and
the minimize FN profiles.

Discussion
The idea of the brain as a Bayesian prediction engine has
its roots in the 19th century, with Helmholtz describing per-
ception as a form of inference (von Helmholtz, 1867). More
modern theories have expanded greatly on this insight, ar-
guing that cognitive tasks such as attention and motor con-
trol can be explained through predictive techniques such as
expected precision weighting and active inference, respec-
tively (Feldman and Friston, 2010; Friston et al., 2009).
These theories draw an understanding of brain function from
a deep well of scientific knowledge, encompassing Bayesian
statistics, thermodynamics, information theory, and cyber-
netics (Friston et al., 2006; Seth, 2014). Within this line
of research we find HTM, a theory of particular interest as
it makes specific predictions regarding the functionality of
both pyramidal cells and the general architecture of the neo-
cortex, positing that the distal dendrites learn causes of prox-
imal dendrite activity and that when embedded within a net-
work the system as a whole learns and predicts on temporal
sequences (Hawkins and Ahmad, 2016).

To the HTM framework and, more generally, the model
itself we add the concept of dynamic thresholds. This adds a

further level of adaptation to the system, where not only does
each cell’s connectivity adapt to its environment, but the in-
ternal dynamics of each cell adapts as well. We implemented
this idea in TP for the activation threshold parameter, which
governs the amount of distal dendrite segment activity re-
quired for the cell to enter a predictive state. As a metric we
use the prior probability of a cell’s proximal dendrites be-
coming active. The higher the probability of proximal den-
drite activity, the lower the threshold and the more likely a
distal dendrite will predict future proximal dendrite activity.
In considering the prior probability in the encoding scheme,
we add a further element of basic Bayesian inference into
the HTM framework.

Our experiments indicate that TPDT can improve the per-
formance of the HTM framework for sequence learning. We
achieved state-of-the-art results on NAB, a benchmark that
is geared at evaluating online anomaly detecting algorithms
across a number of domains, using a scoring method that pri-
oritises early detection. This shows that, despite the theoret-
ical underpinnings of this work, TPDT has obvious practical
applications and could be deployed in industry settings.

Future work on TPDT could look at other parameters to
add dynamism to, such as connected permanence, and the
increment and decrement values used in learning. Dynami-
cally adjusting values in this way could be key to introduc-
ing the concept of expected precisions (inverse variance) to
HTM. Expected precision is major facet of PP, measuring
the level of confidence in error signals, and is conceptually
similar to Kalman weights used in Kalman filters. A suc-
cessful scheme could improve the resilience of TP to tem-
poral noise (Cui et al., 2016).

Conclusions
We have presented a modification to TP, an algorithm in
which individual cells learn to predict their own activity
and when networked form a system that can learn and pre-
dict temporal sequences. Our modified algorithm (TPDT)
adds the concept of dynamic thresholds, where the activa-
tion threshold (level of activity needed to form a prediction)
is continuously and individually updated for each cell. As
a metric for this adjustment we use the prior probability of
the cell becoming active. Our experiments indicate that dy-
namic thresholds can improve the performance of TP for
both sequence prediction and anomaly detection, where we
achieve state-of-the-art results on NAB. The major contribu-
tions of this work are to have improved the performance of
TP and to have introduced a new concept to the algorithm,
in which internal dynamics of the cells (not only the connec-
tivity) can adapt to the environment in which the system is
embedded.
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Mnatzaganian, J., Fokoué, E., and Kudithipudi, D. (2016).
A mathematical formalization of hierarchical temporal
memory’s spatial pooler. Frontiers in Robotics and AI,
3:81.

Mountcastle, V. B. (1997). The columnar organization of the
neocortex. Brain, 120(4):701–722.

Numenta (2017). NuPIC: Numenta platform for intelli-
gent computing. [Online code repository] Available:
https://github.com/numenta/nupic.

Olshausen, B. A. and Field, D. J. (2004). Sparse coding
of sensory inputs. Current opinion in neurobiology,
14(4):481–487.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the
visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature neuroscience,
2(1):79–87.

Seth, A. K. (2014). The cybernetic Bayesian brain. In Open
Mind. Open MIND. Frankfurt am Main: MIND Group.

Skrynnik, A., Petrov, A., and Panov, A. I. (2016). Hierar-
chical temporal memory implementation with explicit
states extraction. In Biologically Inspired Cognitive
Architectures (BICA) for Young Scientists, pages 219–
225. Springer.

Thornton, J. and Srbic, A. (2013). Spatial pooling for
greyscale images. International Journal of Machine
Learning and Cybernetics, 4(3):207–216.

von Helmholtz, H. (1867). Handbuch der physiologischen
Optik, volume 9. Voss.


