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ABSTRACT 

 

The study introduces an enhanced cyclic descent algorithm 
for nurse rostering. The algorithm is compared to four 
other rostering algorithms and to manually generated 
roster solutions obtained from the Gold Coast Hospital. 
Three criteria are developed with which the roster 
generation methods are assessed: these are roster schedule 
quality, roster shift allocation quality and execution time. A 
statistical analysis shows that the enhanced cyclic descent 
algorithm has the best overall performance. An integer 
linear programming algorithm and an enhanced simulated 
annealing algorithm are also shown to perform well with 
smaller problems. 
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Chapter 1  Introduction 

 

Chapter 1: Introduction 

 

 

1.1 The Importance of Nurse Allocation Decisions 
 

Two critical and conflicting objectives in the running of a hospital are the minimisation of 

costs and the provision of adequate patient care. Typically, nursing salaries form the 

largest item in a hospital budget (Sitompul 1992). The number and skill level of nurses 

assigned to a hospital ward is also a primary determinant of the quality of patient care. 

Nurse allocation decisions are therefore a central issue in hospital management, and the 

generation of nurse rosters is one of the main tasks of nurse allocation.  

 

In addition, nursing personnel are a scarce resource (Hung 1995). Most developed 

countries experience a nursing shortage, and are required to recruit nurses from overseas. 

There are high turnover rates in nursing staff, and this is in part attributable to the 

unsocial hours nurses are expected to work. Nurse allocation policies have a direct impact 

on nurse satisfaction, and hence on turnover (Kostreva and Genevier 1989). The difficulty 

in replacing nursing staff means that attention needs to be paid to producing work 

schedules that reflect nurse preferences. 

 

Health and safety considerations are an important factor in nurse allocation. Schedules 

requiring nurses to work long stretches without days off, or frequently alternating patterns 

of unsocial hours, can result in stress, exhaustion, inadequate care, absenteeism and staff 

turnover (Sandhu et al. 1992). The same effects can be caused by understaffing a hospital 

ward relative to the patient load. The consequences of inadequate patient care can be 

serious. In emergency situations, the observational skills and speed of response of nursing 

staff can mean the difference between life and death for a patient. Nursing staff are also 

responsible for the correct and regular administration of dangerous drugs. It is therefore 

important that a ward is adequately staffed, and that the staff are sufficiently rested 

between each period of duty. 

 (1) 



Chapter 1  Introduction 

To summarise, the nurse allocation process has an impact on three areas of hospital 

management: 

 

• The quality and safety of patient care 

• The distribution of the hospital budget 

• The satisfaction and turnover of the nursing staff 

 

1.2 Nurse Rostering within the Nurse Allocation Process 
 

The nurse allocation process has been divided into four stages (Warner 1976): 

 

1. The long term allocation of nurses to hospital wards or units, based on funding 

levels and predictions of the expected demand for nursing care. 

2. The medium term allocation of when each nurse will be on or off duty, 

resulting in the creation of a nurse roster. 

3. The daily allocation of additional ‘floating’ or ‘pooled’ staff to cover for 

unforeseen absenteeism and fluctuations in demand. 

4. The hour by hour allocation of tasks and patients to individual nurses. 

 

The current study is concerned with Stage 2, the specification of when each nurse on a 

particular ward will be on or off duty. This specification results in the creation of a nurse 

roster. A roster defines shift duties for a fixed time period, which can range from one 

week to several months. The roster not only defines the patterns of shift types and days 

off each nurse has to work, but also the total number of nurses working each shift of each 

day. The form and definition of a roster is further explained in Appendix 1. 

 

Nurse Rostering as a Separate Issue. The four stages of the nurse allocation process are 

interrelated. The tasks performed in a ward (stage four), define the number of nurses 

required for the ward, and the number of nurses required for a shift (stages one, two and 

three). Nevertheless, each stage of the nurse allocation process is separated in time, with 

the output of one process becoming the input for another. Given that the other stages of 

the problem have been defined, then an individual stage can be considered in isolation. 

This is reflected in hospital policy. Typically, the allocation of staff to a ward is a 

 (2) 
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centralised administrative decision (stages one and three), whilst the rostering of nurses 

and allocation of nursing tasks (stages two and four) are performed at a ward level. On the 

basis of this division, the current study considers nurse rostering separately from the other 

allocation stages. 

 

1.3 The Complexity of Nurse Rostering 
 

Nurse rostering is a complex problem. Given a hospital ward employing twenty-five full-

time nurses, and providing round-the-clock nursing care, there are 2700 possible 

combinations of nurses and shifts for a two week period1. Using current computer  

technology, an exhaustive search of these possibilities is infeasible. However, as with 

other complex scheduling problems, the majority of solutions can be eliminated by 

applying rules associated with the problem constraints. For instance, there must be a 

minimum number of staff on duty during each shift, and there are legal limits to the 

number of consecutive shifts a nurse can work without a day off. Even given the 

application of such rules, realistic nurse rostering scenarios are still too complex to be 

solved by an exhaustive search methodology.  

 

Sitompul (1992) notes that nurse rostering shares much in common with other difficult 

staff scheduling problems such as police station, fire station and telephone exchange 

staffing. All these problems require staff to be on duty 24 hours a day and seven days a 

week, with fluctuating daily demand for services and fixed regulations as to acceptable 

work patterns. However, the nurse rostering problem is further distinguished by the 

following features: 

 

• Multiple minimum staffing levels: There can be four or more grades of 

nursing staff, each with a different skill level. Legal controls limit the tasks 

each grade of nurse can perform. Consequently, each shift can have a minimum 

staffing requirement for each grade of nurse. 

                                                 
1Given there are three shift types that can be worked in a day, a nurse can work any one of these shifts, or 
alternatively have a day off. Therefore, there are 4 possible states that a nurse can be in on a particular day. 
Over a 14 day period, this means there are 414  (or 228) possible combinations of shifts and days off for one 
nurse. If a roster is to be calculated for 25 nurses, this means there are 228x25 = 2700 possible rosters. 
 

 (3) 
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• Desired staffing levels: Beyond the provision of minimum staffing levels there 

are also desired staffing levels which should be met as often as possible. 

• Nurse preferences: Due to the importance of maintaining nurse satisfaction 

and reducing turnover, schedules should reflect a nurse’s preferences for shift 

patterns and days off.  

• Flexible rostering: In order to meet changing nurse requests for particular days 

off, a roster should not be fixed or imposed. This means a new roster needs to 

be calculated in each rostering period, rather than rotating duties within an 

existing roster. 

  

The main feature that emerges from these points, and that sets nurse rostering apart from 

other scheduling problems, is that nurse rostering has multiple objectives (Ozkarahan and 

Bailey 1988). Other sophisticated problems, such as the aircrew scheduling problem, 

usually have a single objective of minimising costs, after the basic constraints have been 

met (Graves et al. 1993, Hoffman and Padberg 1993). However, nurse rostering involves 

minimising nurse dissatisfaction with the roster, and minimising deviations from desired 

staffing levels. These two objectives can then be decomposed into a series of sub-

objectives (see Appendix 3, Section A3.3). 

 

The constraints and multiple objectives of the nurse rostering problem make it unique 

within the domain of staff scheduling. The situation is further complicated by the 

existence different policies and circumstances within different hospitals and on different 

wards. This has meant that existing solutions to the problem have not been widely 

applied2 (Sitompul 1992). In the next chapter, existing approaches to nurse rostering are 

considered in more detail, through a review of the current literature. 

                                                 
2As an example of a commercial application, PolyOptimum®, a US based company owned by Microsoft®, 
have produced a hospital staffing, scheduling and productivity monitoring system called ProAct®. This 
product has gained some acceptance in NSW hospitals. Interviews conducted with nursing staff who have 
used the system, have produced mixed results. Whilst the system is preferred to a return to manual 
rostering, doubts were expressed that the original investment in the product was justified. Claims for 
reductions in staffing costs have not conclusively materialised, and many rosters produced by the system 
require extensive manual alterations. 
 

 (4) 
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Chapter 2: Literature Review
 

 

Computerised nurse rostering has been of interest to researchers for over twenty years. 

Due to the nature of the problem, the literature has tended to be more applied than 

theoretical. Many publications have arisen from the implementation of working hospital 

systems (Warner 1976). Other researchers have used the expertise and data available from 

the health care industry to test new rostering approaches (Ozharahan and Bailey 1988). As 

new computing techniques have developed, this has also been reflected in the rostering 

literature. The 1970s saw the use of linear and integer programming techniques, whilst the 

1980s introduced the use of goal programming, decision support systems, expert systems 

and knowledge-based systems. More recently, researchers have given greater 

consideration to the users of nurse rostering systems (Kostreva and Jennings 1991) and to 

the development of a more flexible and generic approach to nurse rostering (Sitompul 

1992). 

 

The current chapter provides a literature review of computerised approaches to nurse 

rostering. Reference is made to relevant research in other areas of staff scheduling. 

Through an analysis of the literature, a background to the nurse rostering problem is 

given, and the area of intended research is introduced. 

 

Firstly, the two basic approaches to nurse rostering covered in the literature are discussed: 

these are cyclic and non-cyclic rostering. 

 

2.1 Cyclic vs Non-Cyclic Rostering 

  

Cyclic Rostering: Cyclic nurse rostering involves generating a fixed roster that can 

satisfy staff requirements, without considering individual nurse requests. Nurses are then 

assigned schedules within the roster. The roster remains the same in each successive 

rostering period, with nurses being assigned different schedules within the roster. In this 

way a nurse will ‘cycle’ through the various schedules in the roster. Howell (1966) and 
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Frances (1966) laid down some basic principles for manual cyclic rostering. Howell’s 

work was further extended and applied by Megeath (1978). In addition, Rosenbloom and 

Goertzen (1987) developed a computer algorithm for the generation of cyclic rosters. 

 

Non-Cyclic Rostering: A non-cyclic roster is reformulated before each rostering period, 

with each schedule in the roster being matched to a particular nurse. This is done to 

accommodate individual nurse preferences and to allow for fluctuations in the number 

and type of staff assigned to a ward.  

 

Advantages of Cyclic Rostering: The main advantage of a cyclic roster is that it can be  

used repeatedly during successive rostering periods. One roster can therefore be used for 

several months or even years. Due to this infrequent calculation, it can be more cost 

effective to use human expertise to generate cyclic rosters, than to develop an automated 

solution (Megeath 1978). In addition, a well designed cyclic roster can result in better 

overall roster quality, and a fairer distribution of schedules (Smith and Wiggins 1977). 

This is because non-cyclic rosters try to include nurse’s special requests. This will usually 

result in longer work stretches and a more unbalanced distribution of shift types than 

would otherwise be necessary. Cyclic rosters can also incorporate the principles of 

circadian rhythms (Kostreva and Genevier 1989). Using this approach, nurses are given 

schedules that minimise physical and psychological stress caused by changing shift 

patterns. 

 

Disadvantages of Cyclic Rostering: The basic problem with cyclic rostering is a lack of 

flexibility (Smith and Wiggins 1977). A nurse requiring a particular day off, which is not 

granted in the roster, must make arrangements to exchange shifts with another nurse of 

the same level. This may not always be possible. Nurses may also be unable to obtain 

their preferred holiday periods. Changes in the numbers of staff in a ward will require 

complicated revisions of the roster. In a ward with frequent changes in personnel and a 

fluctuating patient load, cyclic rostering may prove as complicated as non-cyclic 

rostering. 

 

More attention has been paid in the literature to the computerised generation of non-cyclic 

rosters, than to the generation of cyclic rosters. This is due to the greater complexity of 

 (6) 
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non-cyclic rosters and to the large and repeated investment of human effort required in 

their creation. 

 

2.2 Non-Cyclic Approaches to Nurse Rostering 

 

2.2.1 Mathematical Programming Approaches to Rostering 

 

A mathematical programming approach to nurse rostering involves the construction of a 

mathematical model of the problem. This typically means the definition of an objective 

function or functions, and the creation of a series of constraints. Then, using a suitable 

computational technique, the value of the objective function is either maximised or 

minimised (Papadimitriou and Steiglitz 1982). A mathematical programming approach to 

nurse rostering is illustrated in Appendix 2.  

 

The existing mathematical programming literature on nurse rostering can be divided into 

four categories according to the computational techniques employed. These techniques 

are linear programming, integer programming, goal programming and local search: 

 

2.2.1.1 Linear Programming 
  

Linear programming is an algorithmic technique for finding the optimum solution to a 

constrained minimisation or maximisation problem (Taha 1992). Existing computerised 

linear programming applications can solve problems of equivalent size to the rostering 

problem. However, linear programming solutions are usually non-integral. Rosters asking 

nurses to work 0.43 of a schedule, or 1.23 of a shift have no practical meaning. 

Nevertheless, linear programming techniques have been successfully applied to certain 

staffing problems. 

 

An early paper on the scheduling of hospital housekeeping staff was produced by 

Rothstein in 1973. Whilst not directly applicable to nurse rostering, Rothstein’s work 

does present a simple method for solving the “days off” problem using linear 

programming. The objective of the model is to maximise the number of consecutive two 

day off periods granted to staff working a five day week. The problem is formulated in 

 (7) 
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such a way that integer solutions are guaranteed. Baker (1976) shows that if the staff 

scheduling problem can be reduced to a special form (as a network), then all solutions 

will be integral. However, subsequent research into nurse rostering has been unable to 

formulate a more complete rostering problem as a network linear program.  

 

2.2.1.2 Integer Programming 
 

Integer programming techniques are designed to find optimal solutions to linear 

programming problems which have integer variable restrictions. However, integer 

programming algorithms are computationally expensive, and models with large numbers 

of variables soon become too time consuming to solve (Chow and Hui 1993). For this 

reason, standard integer programming approaches to the nurse rostering problem have not 

been popular. Instead, researchers have concentrated on developing specialised integer 

programming algorithms that exploit the features of the nurse rostering problem: 

 

Multiple-Choice Programming: Warner (1976) uses a multiple-choice programming 

algorithm (Healy 1964) to solve a nurse rostering problem in the University of Michigan 

Hospital. The problem is expressed as one of finding the best combination of feasible 

nurse schedules (see Appendix 1, Section A1.3). Firstly, a set of feasible schedules is 

generated for each nurse. These schedule sets are then combined until the best staffing 

levels for the complete roster are found. In a second phase, the algorithm calculates the 

best combination of schedules according to nurse preferences. In both phases, a multiple-

choice algorithm uses a linear programming method to arrive at an initial solution and 

then searches for the best integer solution. The basic principles of Warner’s method are 

illustrated in the following diagram: 

 

 (8) 
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Best Schedule 
for Nurse 1

Best Schedule 
for Nurse 2

Best 
Schedule for 

Key:  M = Monday, T = Tuesday, etc 

 E = Early Shift, L = Late Shift, N = Night Shift, - = Day Off 

Figure 1: Warner’s feasible schedule approach to nurse rostering 

 

Warner reports that the algorithm could solve problems with up to 400 variables within 20 

to 40 seconds, using an IBM® 360/67. According to IBM® staff3, a modern day 486 

microprocessor should also be able to process Warner’s algorithm. Therefore, earlier 

criticisms that Warner’s solution required excessive computing resources, are no longer 

relevant (Rosenbloom and Goertzen 1987).  

 

However, Warner assumes a nurse will have 10 to 20 feasible schedules per two week 

roster period. In Appendix 4, it is shown that nurses operating under a US rostering policy 

can have up to 180 feasible schedules per two week roster (in an Australian hospital, the 

number of feasible schedules per nurse can grow to several thousand). Warner’s approach 

therefore relies on a degree of simplification before the problem is presented to the 

algorithm. 

 

Mixed-Integer Programming: Following on from Warner’s work, Kostreva et al. (1978) 

developed a mixed-integer programming formulation of the nurse rostering problem. 

                                                 
3This information was obtained via a customer service telephone call to IBM®’s Sydney offices. 
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Subsequently, Kostreva and Jennings (1992) used a revised version of this approach to 

solve nurse scheduling problems on a microcomputer. In both pieces of research, the same 

model is used.  

 

Firstly, the problem is broken down into two phases. The first phase involves heuristically 

generating a complete roster that fulfils all the constraints of the problem. If possible, the 

roster meets all the staffing requirements for each shift and provides nurse schedules that 

meet or exceed minimum standards. When a nurse requires days off in a roster, then at 

least one schedule in the roster will have those days off. By providing nurses with 

questionnaires, a matrix of “hate points” for each nurse in relation to each schedule is 

calculated (Kostreva et al. 1978, p. 287). The second phase of the approach uses a mixed-

integer programming technique to assign schedules in the roster to individual nurses. The 

objective of phase two is to minimise the total “hate point” score. The algorithm iterates 

between phase one and phase two, generating a new roster with each iteration. After 

running for a fixed period of time, the solution with the lowest aggregate “hate point” 

score is selected. The phase two assignment problem is illustrated in the following 

diagram: 

 

 
Key:  M = Monday, T = Tuesday, etc 

 E = Early Shift, L = Late Shift, N = Night Shift, - = Day Off 

Figure 2: Kostreva et al.’s assignment approach to nurse rostering 
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As with Warner’s study (1976), Kostreva et al.’s solution is problem specific, and focuses 

on a US nurse rostering situation. Whilst Warner’s solution attempts to find an optimal 

overall solution, Kostreva et al. optimise the second phase assignment of schedules to 

nurses. The initial rosters, from which the assignments are made, represent feasible or 

“good enough” solutions to the problem. Therefore, Kostreva et al.’s final solutions are 

also feasible, but not necessarily optimal. The quality of Kostreva et al.’s solution 

depends on the roster generating heuristic. This heuristic is not specified in detail, and it’s 

performance is not comparatively tested. For these reasons, the overall quality of the 

rosters generated by Kostreva et al.’s approach cannot be fully assessed. 

 

2.2.1.3 Goal Programming 
 

Goal programming is a particular case of linear (and integer) programming. In a goal 

programming model, different goals can be maximised or minimised, either 

simultaneously or in a specified order. The special feature of goal programming is that the 

relative importance of goals can be changed and ranked according to the preferences of 

the user. However, this flexibility is bought at the cost of greater computational 

complexity (Hillier and Lieberman 1990). 

 

In the 1980s, criticisms arose that previous mathematical formulations of the nurse roster 

problem had been too inflexible (Arthur and Ravindran 1981, Musa and Saxena 1984, 

Ozharahan and Bailey 1988). Most early models had a fixed set of goals, typically defined 

by the authors of the various studies (e.g. Warner 1976, Miller et al. 1976). With the 

advent of goal programming techniques, a series of studies looked afresh at the nurse 

rostering problem.  

 

Arthur and Ravindran (1981) use goal programming in a two-phase approach to the 

rostering problem. They define four goals for the model as: 

 

1. Minimising deviations from minimum staffing levels 

2. Minimising deviations from desired staffing levels 

3. Meeting nurses’ preferences 

4. Meeting nurses’ special requests 
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The first phase of the model uses goal programming to allocate the days off for the 

nursing staff. Individual schedules are built for each nurse using a zero-one integer 

programming approach. The second phase uses a heuristic procedure to allocate 

individual shift types. The problem is constrained by considering full-time nurses working 

a seven day roster period, and also by having a fixed weekend off policy. This results in 

each nurse having five feasible day on, day off schedules. 

 

Musa and Saxena (1984) developed a similar zero-one goal programming model. This 

time their approach considers a 14 day roster, with part-time staff and a flexible week-end 

off policy. The problem is simplified by considering a limited number of nurses, and one 

shift type. This results in a 154 variable model, with 120 constraints. 

 

Finally, Ozharahan and Bailey (1988) developed a goal programming approach to nurse 

rostering as part of a planned flexible decision support system. This study differs from the 

previous work in the area by allocating both eight and ten hour shift lengths. Integer 

programming techniques are used to solve the basic problem, with the allocation of 

starting times for individual shifts being decided in a separate heuristic procedure. As 

with the studies by Arthur and Ravindran (1981), and Musa and Saxena (1984), the 

problem complexity is constrained. This is achieved by considering a seven day rostering 

period, with a single grade of nurse. 

 

In comparison to the previous studies on integer programming (Warner 1976, Kostreva et 

al. 1978), the goal programming literature has used relatively simple rostering models. 

This raises the question of the applicability of the goal programming techniques for more 

complex problems. Chow and Hui (1993) report that standard integer programming 

techniques, such as those used in the goal programming approaches, are unable to solve 

large rostering problems. Although Arthur and Ravindran (1981) discuss the extension of 

their model through the relaxation of constraints, the limitations of integer programming 

methods in more complex situations are not directly raised in the goal programming 

literature.  
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2.2.1.4 Cyclic Descent Local Search Techniques 

 

Local search techniques use a trial and error method to find solutions to a given problem. 

These techniques are usually fast relative to linear and integer programming techniques. 

However, as the name implies, local searches find only the best of a subgroup of 

solutions. There is no guarantee that a local search will find the best overall solution, 

because the total search space is not fully explored. 

 

The structure of a simple local search is given by the following algorithm (Papadimitriou 

and Steiglitz 1982): 

 

local search  

{ 

 best solution = selected starting solution 

    while improve(best solution) < > ‘no’ 

        best solution = improve(best solution)  

 return best solution 

} 

where: 

improve(best solution) =  

any new solution within the search space such that 
cost(new solution) <  cost(best solution) 
 
' no'  if no lesser cost solution exists                         

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 

Figure 3: A simple local search algorithm 

 

The cost function used in figure 3 is analogous to the objective function in linear 

programming. It evaluates a solution in terms of the search objective(s) and returns a 

quantifiable cost. 

 

Miller et al. (1976) used a local search technique in a mathematical programming 

approach to nurse rostering. A cyclic descent algorithm was employed to produce rosters 

by combining feasible nurse schedules (see Section 4.3). The algorithm starts by 

constructing a roster using one schedule for each nurse, from each nurse’s set of feasible 
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schedules. Then holding all other schedules in the roster constant, all feasible schedules 

for the first nurse are tried in the roster. A cost function produces an overall roster score 

for each schedule in terms of how well the staffing levels are met, and the overall quality 

of schedules allocated. The schedule having the lowest cost is inserted into the roster, 

then the next nurse in the roster is selected and all feasible schedules for that nurse are 

tried, the best one inserted and so on. The algorithm cycles through each nurse, returning 

to the first nurse and repeating the process until no further improvement or descent in the 

cost function is found. Miller et al. applied the technique to a relatively small problem 

involving the rostering of days off for twelve nurses. 

 

A difficulty with local search approaches is judging the quality of the solutions generated. 

For this reason, Miller et al. perform a series of tests on their algorithm. Firstly, a 

comparison is made with an integer programming algorithm for a small problem. 

Secondly, the deviations from the desired staffing levels, and the quality of schedules 

generated are graphically analysed. Finally, comparisons are made between the algorithm 

and manually generated rosters. Generally favourable results are reported for the 

algorithm in each test. 

 

Blau and Sear (1983) applied a cyclic descent approach to another nurse rostering 

problem. Again, a simple day on, day off assignment of shifts is required. The study 

reports the successful implementation of the algorithm on a microcomputer, but does not 

evaluate the quality of the rosters generated.  

 

2.2.2 Artificial Intelligence Approaches to Nurse Rostering 

 

The Artificial Intelligence Domain: The domain of Artificial Intelligence (AI) 

encompasses a variety of techniques. The practical objective of AI research has been to 

develop computer programs that can exhibit intelligent and adaptive behaviour. In the 

area of scheduling, this has resulted in the creation of expert systems (Turban 1990), 

neural networks (Carling 1992), genetic algorithms (Goldberg 1989) and fuzzy logic 

systems (Kosho 1992). 

AI criticisms of Mathematical Programming: With the emergence of computerised 

linear programming algorithms, and the further development of integer and goal 
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programming, mathematical programming approaches initially dominated the area of 

scheduling research (for instance, see Baker 1974). More recently, Artificial Intelligence 

researchers have turned their attention to scheduling problems. In doing so, they have 

recognised two main problems with the previous approaches to scheduling: 

 

1. Realistic scheduling problems, and specifically rostering problems, are often too 

complex to be solved directly using mathematical programming techniques (Chow and 

Hui 1993). 

2. Mathematical formulations of a problem tend to be inflexible. Unlike human experts, 

mathematical algorithms are unable to adjust and balance conflicting requirements and 

constraints (Dhar and Ranganathan 1992).  

 

The need for flexible systems, with reasoning capabilities, has lead to the application of 

several AI techniques to the scheduling domain. Johnston and Adorf (1992) used a neural 

network approach in an application to schedule observations from the Hubble Space 

Telescope. They also report the use of neural networks in aircrew training scheduling and 

school timetable construction. Genetic algorithms have been used for timetable 

scheduling (Colorni et al. 1991) and job shop scheduling (Biegel and Davern 1990). In 

addition, Griffith University academic, Suresh Hugenahally, is using a fuzzy logic 

approach to solve an applied staff scheduling problem (private communication, March 

1994). However, in the area of nurse rostering, the most relevant research has focused on 

the use of knowledge-based and expert systems. 

 

2.2.2.1 Knowledge-Based and Expert Systems 

 

Chow and Hui (1993) report on a knowledge-based system for rostering aircraft 

maintenance personnel. The intent of the research is to develop a generalised approach to 

staff scheduling, based on the imitation of human reasoning processes. It is therefore 

relevant to the nurse rostering problem. In addition, Sitompul (1992, pp. 25-27) reports on 

Lukman’s 1986 thesis, which uses an expert system approach to develop a nurse rostering 

application. 
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Hui (1988) distinguished a knowledge-based system from an expert system by the depth 

of knowledge required in the problem domain: “Since the knowledge of roster scheduling 

is not up to expert level, the term knowledge-based system is used” (1988, p. 32). Both 

expert system and knowledge-based approaches to problem solving first involve 

extracting human knowledge from a problem domain. This knowledge is then 

symbolically expressed as a knowledge base. Typically, a computer program, known as an 

inference engine, will operate on a knowledge base, in order to prove or disprove a given 

hypothesis or goal (Hui 1988). An important distinction is that the processing algorithm 

(i.e. inference engine) is entirely independent of the particular problem, as expressed in 

the knowledge base. This differs from standard heuristic programming approaches, where 

the knowledge about a problem is integrated in the algorithm (Colin Thorne, private 

communication, October 1994). 

 

Hui recognises that human knowledge about rostering problems is not just a series of 

static rules, but involves the application of control strategies (1988, p. 35). Control 

strategy knowledge is knowledge about how to approach a problem (i.e. it is procedural). 

Most expert systems have a predetermined control strategy such as forward and backward 

chaining. Hui’s approach involves using multiple control strategies combined into a 

“conceptual inference engine” (1988, p. 38).  This approach allows a developer to use a 

combination of control strategies to solve a particular problem. The knowledge base of 

Hui’s system is divided into rules, constraints and heuristic operators. The heuristic 

operators represent the various control strategies available. Hui’s aim is to provide a 

general purpose set of building blocks from which different types of rostering problems 

can be modelled and solved. 

 

As with the goal programming approaches to rostering, Hui allocates individual shifts to 

staff. Schedules are built shift by shift, via the application of rules and constraints, until a 

complete roster is generated. The roster is then improved using a process of shift 

swapping. The initial shift by shift construction of a roster is illustrated in the following 

diagram: 
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Key:  M = Monday, T = Tuesday, etc 

 E = Early Shift, L = Late Shift, N = Night Shift, - = Day Off 

Figure 4: A shift by shift assignment approach to nurse rostering 

 

The benefit of the knowledge-based approach is that constraints can be relaxed as needed. 

The system is capable of considering many constraints and assigning different priorities to 

each one. Large problems can be solved because computationally expensive mathematical 

algorithms are not necessary.  

 

The price of this flexibility is that a knowledge-based system will find a satisficing, rather 

than optimal, problem solution. Hui does not measure the quality of rosters generated, so 

comparisons with other approaches are not possible. Also, it is difficult to extract and 

symbolically express all the expert knowledge in a given problem domain (Turban 1990). 

For this reason, heuristic operators are only likely to represent a subset of the rules a 

human expert would apply. 

 

2.2.3 Heuristic Approaches to Nurse Rostering 

 

Whilst the papers previously discussed have included heuristic techniques, these 

techniques have been secondary to the major theme of the research (e.g. Hui 1988, 

Kostreva and Jennings 1991). In addition to these papers, research has been conducted 

into nurse rostering that is based exclusively on heuristic approaches. Firstly, Smith and 

Wiggins (1977) developed a heuristic nurse rostering application for a US hospital. Their 
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objective was to provide a “rough” solution “to supplement the judgement of the 

scheduling clerks” (Smith and Wiggins 1977, p. 198). 

 

Secondly, Randhawa and Sitompul (1993) report on a heuristic-based decision support 

system for nurse scheduling. This research only considers the generation of feasible 

schedules, using a US shift rostering policy. The combining of schedules into rosters is 

not included in the study. 

 

2.2.4 Decision Support Systems 

 

Several researchers have mentioned the desirability of developing a decision support 

system (DSS) approach to nurse rostering. Both Sitompul (1992) and Ozharahan and 

Bailey (1988) envisage systems that would able to handle a broad range of rostering 

problems. Sitompul (1992) itemises the following characteristics for a nurse rostering 

DSS: 

 

• An ability to handle semi-structured problems. 

• The provision of several different problem solving techniques. 

• An easy to use, interactive user interface. 

• Sufficient flexibility and adaptability to accommodate changes in the 

environment and in the decision style of the user. 

 

At present, no system reported in the literature can meet the above criteria. Bell et al. 

(1986) discuss a visual interactive decision support system for nurse scheduling. Their 

approach concentrates on the development of a user interface, and is able to generate 

partial rosters. Sitompul’s (1992) DSS application enables users to interactively specify 

and generate schedules, but is again unable to generate a complete roster. Finally, 

Ozharahan and Bailey’s (1988) work stresses the DSS aspects of goal programming, by 

allowing  users to specify the relative importance of each rostering objective. However, 

their application only considers a limited and specific problem.  

 

The above systems represent a first step towards a fully integrated DSS for nurse 

rostering. The idea of including multiple roster generation techniques in one system has 
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still not been applied. In addition, the enhanced user interface environment available on 

today’s PC has not been studied in relation to nurse rostering applications. 

 

2.2.5 Simulated Annealing 
 

Whilst no direct use of simulated annealing has been made in the nurse rostering 

literature, the technique has been successfully applied in several other scheduling 

domains (e.g. school timetabling, aircraft gate allocation and machine-job allocation: 

Abramson 1992, Lo and Bavarian 1992). Simulated annealing is a general purpose 

optimisation technique modelled after the physical cooling process of heated atoms 

(Abramson 1992).  It is similar in structure to a local search algorithm (Abramson et al. in 

press). A cost function is defined and local or neighbourhood solutions are randomly 

generated. These solutions are automatically accepted if they cause a reduction in cost. 

However, if a solution causes an increase in cost (or energy), it is accepted or rejected on 

the basis of an annealing probability function and the given temperature of the system. 

This means the algorithm is able to climb out of local minima solutions that would have 

caused a local search algorithm to terminate (Connolly 1992). As the algorithm executes, 

the temperature of the system reduces and the probability of accepting a increased cost 

solution also decreases, until the algorithm becomes a simple local search.  

 

So-called “classical annealing” (Lo and Bavarian 1992) uses a version of the Bolzman 

distribution to generate the probability of acceptance given by 

 

 ( )P accept e
E

T=
−∆

  

 

where T = temperature and ∆E = change in cost caused by accepting the new solution. 

Further, the temperature is systematically reduced during the execution of the algorithm 

using some form of cooling schedule, for example, a geometric cooling schedule: 

  
 T T Rn n= −1 *  

 

where R is the cooling rate (0 ≤ R< 1) and T is a real number (Abramson 1992). 
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The temperature variable can be reduced after each iteration of the algorithm or after a 

predefined number of iterations, called a Markov chain length. In addition, the starting 

temperature of the system and an appropriate terminating condition need to be defined. 

 

Several other forms of the simulated annealing algorithm have been developed, using 

different probability functions and cooling schedules (see Collins et al. 1988, Lo and 

Bavarian 1992), but all retaining the basic principle of allowing uphill climbs, with a 

decreasing probability of acceptance over time. 

 

Given a slow enough cooling schedule the simulated annealing algorithm will eventually 

converge on an optimum solution (Lo and Bavarian 1992). However, as infinitely long 

cooling schedules are not practical, an optimum solution cannot be guaranteed (Abramson 

et al. in press). Further, in order to find acceptable solutions to complex systems very 

slow cooling rates still need to be employed, resulting in lengthy execution times. The 

slow convergence of the algorithm has caused researchers to look into specialised 

computer architecture for simulated annealing (Abramson 1992) and into so-called “fast” 

simulated annealing algorithms (Lo and Bavarian 1992). 

 

Although not previously applied, simulated annealing is a promising candidate for a nurse 

rostering algorithm. It extends the possibilities of the cyclic descent algorithm by 

providing a mechanism to escape local minima, whilst being able to handle larger 

problems that could prove too complex for integer programming techniques. The main 

question that arises is whether a simulated annealing algorithm can converge on 

acceptable solutions to the nurse rostering problem within a reasonable period of time.  

 

 

2.3 An Introduction to the Research Problem 
 

The intention of the current research is to investigate the cyclic descent algorithm as a 

tool for solving the nurse rostering problem. Two forms of the algorithm will be tested 

against manual, simulated annealing and integer linear programming roster solutions. 

Data will be collected from two wards in an Australian hospital. Details of the rostering 

practices for these wards are provided in Appendix 3.   
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2.3.1 Australian vs United States Rostering Policy 

 

Previous published research has concentrated on rostering in US hospitals. An important 

difference between US and Australian rostering practices is that Australian hospitals 

generally have fewer constraints in the allocation of shift types. 

 

Generally, in US hospitals, a large proportion of nurses work only one shift type (i.e. all 

late shifts, all early shifts or all night shifts). Those nurses that rotate shifts, typically 

work only one shift type between days off, and no more than two shift types per two week 

period. This means that nurses are not expected to change shift types without an 

intervening day off or period of days off (e.g. see Sitompul 1992). 

 

In contrast to US practice, Australian nurses are usually expected to work a mixture of 

early, late and night shifts without intervening days off. This adds to the complexity of the 

Australian rostering problem. Given the constraints detailed in Appendix 3, a full-time 

nurse will be able to work up to 8,000 different feasible schedules. If, as in the US, a 

nurse were additionally constrained to require days off between a change of shift type, the 

number of feasible schedules would be reduced to 180 (See Appendix 4). 

 

2.3.2 Implications of the Literature for the Research Problem 
 

The research requires an approach which can solve complex rostering problems. For the 

purposes of this study, a complex problem is defined as one involving several thousands 

of variables, rather than several hundred. The integer and goal programming techniques 

described in the literature have considered much smaller problems. Chow and Hui (1993) 

suggest that integer linear programming (ILP) techniques are unable to solve more 

complex and realistic rostering problems. However, the degree of complexity at which an 

ILP approach becomes inadequate is unclear. The continual advance in computer 

technology means that conclusions drawn in the past about ILP techniques may no longer 

be relevant4. In addition, whilst the heuristic and AI techniques considered in the 

                                                 
4Sophisticated integer programming techniques have been developed to solve the airline crew scheduling 
problem (Graves et al. 1993, Hoffman and Padberg 1993). These techniques have used up to a million 
variables. Whilst the large computing resources required for such approaches are not practical for the 
current research, the airline studies indicate that ILP techniques are capable of solving large problems. 
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literature can solve large problems, only satisficing or “good enough” solutions are 

generated. The quality of these solutions in relation to other approaches has not been 

measured.  

 

This research is looking for an approach which can solve large problems and generate 

optimal or near optimal solutions. The application of an ILP algorithm is one possibility. 

Of the other techniques reviewed, the cyclic descent algorithm proposed by Miller et al. 

(1976), and a simulated annealing approach to rostering appear promising. This is because 

both techniques are capable of solving large problems, whilst systematically attempting to 

optimise the result. 

 

Simulated Annealing and the Cyclic Descent Algorithm: As Abramson et al. (in press) 

observe, simulated annealing is closely related to the cyclic descent algorithm, and at very 

low temperatures the techniques become identical. The main problem with a cyclic 

descent strategy is that it tends to get stuck in non-optimal solutions or minima5. In order 

to circumvent these minima, simulated annealing techniques have been used to solve 

other types of scheduling problem (e.g. Lo and Bavarian 1992). However, simulated 

annealing methods tend to converge slowly on a solution, especially in complex problem 

situations (Abramson 1992). The approach in the current research is to develop a heuristic 

procedure which can move a roster solution out of a local minima in a directed and 

efficient manner (see Chapter 4). This avoids relying on the broader randomised search 

technique introduced by simulated annealing. In this way, it is intended that a near 

optimal solution can be generated in a relatively short time. 

 

Problem Decomposition: Arthur and Ravindran (1981) introduced the idea of separating 

the allocation of shift types from the main roster optimisation problem. A preliminary 

study of the Australian rostering problem shows that it can also be decomposed into two 

                                                 
5A problem involving a 14 day roster and 25 nurses was given to an implementation of the cyclic coordinate 
descent algorithm. Each nurse was scheduled to work full time with work stretches of no more than seven 
days and no less than three days. All nurses were to receive two sets of two consecutive days off. The 
number of days worked in the previous roster was randomly generated. The algorithm was instructed to 
minimise the deviations from a required number of days off for each day of the shift (set at between six and 
eight days off for each day of the roster). The problem was set up so that a perfect solution would always 
exist (i.e. it was always possible for the target number of days off to be met exactly). The cyclic coordinate 
descent algorithm was consistently unable to find a perfect solution. An inspection of the algorithm 
generated solution by a human expert usually revealed that a series of simple steps could move the roster to 
an optimum solution. 
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simpler problems by separating the allocation of late and early shifts from the main body 

of the problem (see Section 4.1.1). Without loss of optimality, these shifts can be 

considered as two types of day shift with different starting times, and allocated in a 

separate heuristic procedure (as proposed by Ozharahan and Bailey 1988). Such an 

approach can significantly reduce the size of the rostering problem. However, any gains 

from such problem decomposition are counteracted with the introduction of flexible part-

time staff into the roster (see Section 4.1.4).  

 

Future Possibilities: The proposed approach to rostering, whilst confronting the issues of 

problem size and solution quality, does not fully consider the issue of flexibility. A cyclic 

descent technique relies on a fixed set of constraints in order to descend to a solution. 

Such an algorithm cannot selectively relax constraints when no immediate feasible 

solution is possible. In this respect, the knowledge-based techniques proposed by Hui 

(1988) and reviewed by Randhawa and Sitompul (1990) are superior. Bearing this in 

mind, it should be noted that the current research is concerned with a part of the nurse 

rostering problem, namely with the development and evaluation of a roster generating 

engine. A fully operational system, i.e. one that could operate without extensive human 

intervention, would also require a shell that could resolve conflicting and unattainable 

constraints. A knowledge-based or expert system approach would seem ideal for the 

development of such a shell. 
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2.4 Summary 

 
The current literature review has looked at both cyclic and non-cyclic approaches to nurse 

rostering. Non-cyclic approaches have been given greater attention as they are more 

applicable to the research domain. The various papers concerned with non-cyclic nurse 

rostering are summarised by the following two tables:  

 
 
Study General 

Technique 
Specific 
Technique 

Important Features 

Chow and Hui 
(1993),  
Hui (1988) 

Non-optimising 
heuristics 

Knowledge-based 
scheduling with 
heuristic operators 

1) Able to handle large problems 
2) Flexible, with abilities to selectively 
relax unattainable constraints 
3) Applicable to multiple types of 
rostering problem 
4) Imitates human reasoning 
5) Solves general rostering problems 
but not tested on nurse rostering 
problem 
 

Lukman (1986)  
 

Non-optimising 
heuristics 

Expert system 1) Able to handle large problems 
2) Flexible  
 
 
 

Smith and Wiggins 
(1977) 

Non-optimising 
heuristics 

List processing 
heuristic 

1) Able to handle large problems 
2) Used only as an aid for scheduling 
decisions, and not intended to produce 
workable rosters 
3) Applied to a specific hospital 
problem 
 

Sitompul (1992) Non-optimising 
heuristics 

Heuristics 
embedded in a 
Decision Support 
System 

1) Able to flexibly generate a wide 
range of schedules 
2) Not designed to generate a complete 
roster 
3) Specific solution for a US rostering 
policy 
 

Bell et al. (1986) Non-optimising 
heuristics 

Heuristics 
embedded in a 
Decision Support 
System 

1) Good quality, interactive user 
interface 
2) Used as a decision aid only, not 
intended to produce workable rosters 
3) Applied to a specific hospital 
problem 
 

Table 1: Summary of heuristic techniques for the non-cyclic nurse roster problem 
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Study General 

Technique 
Specific 
Technique 

Important Features 

Warner (1976) Optimising Multiple-choice 
(integer) 
programming 

1) Optimises both schedule quality and 
deviations from desired staffing levels 
2) Can solve larger problems than a 
standard integer programming 
formulation 
3) Staffing constraints are flexible 
4) Applied to a specific hospital 
problem 
 

Arthur and 
Ravindran (1981) 

Optimising Goal   
programming with 
heuristics 

1) Flexible to changing user priorities 
2) Based on standard integer 
programming techniques 
3) A relatively simple model is used 
 

Musa and Saxena 
(1984) 

Optimising Goal programming 1) Flexible to changing user priorities 
2) Based on standard integer 
programming techniques 
3) A relatively simple model is used 
 

Ozharahan and 
Bailey (1988) 

Optimising Goal programming 
with heuristics 

1) Flexible to changing user priorities 
2) Able to consider different shift 
starting times 
3) Based on standard integer 
programming techniques 
4) A relatively simple model is used 
 

Miller et al. (1976) Optimising Local search cyclic 
coordinate descent 
algorithm 

1) Able to handle large problems 
2) Potentially flexible to changing 
problem priorities and  formulations 
3) Solutions not necessarily optimal due 
to limited area of search 
4) Tests of the algorithm are performed 
 

Blau and Sear 
(1983) 

Optimising Local search cyclic 
coordinate descent 
algorithm 

1) Able to handle large problems 
2) Potentially flexible to changing 
problem priorities and  formulations 
3) Solutions not necessarily optimal due 
to limited area of search 
 

Kostreva and 
Jennings (1991), 
Kostreva et al. 
(1978)  

Optimising Mixed integer 
programming with 
heuristics 

1) Able to handle large problems 
2) Good quality user interface 
3) Use of heuristics in roster generation 
4) Only assignment of staff to 
schedules is optimised 
5) Concept of “hate points” is 
introduced to measure nurse 
preferences 
 

Table 2: Summary of optimising techniques for the non-cyclic nurse roster problem 
 
 

The intent of the current research is to develop a non-cyclic approach to nurse rostering 

which can calculate with several thousand variables, and can also produce solutions 
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which are comparable or superior in quality to those produced by human experts. Of the 

approaches to nurse rostering described in the current literature, two main limitations 

have been identified: 

 

• The optimising mathematical programming techniques become impractical to use as 

the problem size becomes too large. 

• The remaining techniques rely on heuristics, or search techniques, which may result in 

non-optimal solutions. 

 

From a consideration of the existing methods, it is proposed to develop both an enhanced 

cyclic descent algorithm based on the work of Miller et al. (1976) and a simulated 

annealing algorithm for nurse rostering. An integer linear programming algorithm will 

also be used to investigate whether a mathematical optimising approach is feasible for the 

size of problem. It is noted that there has been a lack of comparison between existing 

approaches to nurse rostering within the literature. This area will be addressed by an 

empirical evaluation of the proposed approaches, as described in the next chapter. 
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Chapter 3: Methodology 

 

 

3.1 An Outline of the Empirical Study 

 

The task of the empirical study is to provide a comparative measure of the performance of 

five nurse rostering algorithms. The research is exploratory in nature, and is not intended 

to rigorously test all dimensions of the rostering problem. Instead, quantifiable criteria 

will be developed which will allow the scoring and comparison of the selected rostering 

methods. 

 

The five algorithms considered in the study are: 

 

1. Basic Cyclic Descent: A version of the cyclic coordinate descent algorithm 

proposed by Miller et al. (1976).  

2. Enhanced Cyclic Descent: An enhanced version of the cyclic descent 

algorithm with a built-in hill climbing heuristic. 

3. Basic Simulated Annealing: A “classical” simulated annealing algorithm (Lo 

and Bavarian 1992) using a geometric cooling schedule (Abramson 1992). 

4. Enhanced Simulated Annealing: A simulated annealing algorithm with a 

built-in bias to select higher grade schedules. 

5. Integer Linear Programming: A commercially available package employing 

a branch and bound algorithm (Hillier and Lieberman 1990). 

 

Details of the development of the cyclic descent and simulated annealing algorithms are 

provided in Chapter 4, and the integer linear programming formulation of the problem is 

given in Appendix 3, Section A3.4. Each algorithm will be tested using data collected 

from rosters actually worked at a Queensland public hospital. Therefore results will be 

additionally compared with the manually generated solutions developed by hospital staff. 

This approach is an extension of the original study conducted by Miller et al. (1976), 
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where a cyclic descent algorithm is compared with an integer programming application 

and with manually generated solutions. 

 

The research introduces an enhanced version of Miller et al.’s cyclic descent algorithm. 

The purpose in developing the algorithm was to improve the searching ability of the 

standard cyclic descent algorithm without incurring the long execution times associated 

with a simulated annealing algorithm. The empirical study will test whether these 

objectives have been met. 

 

Four of the algorithms used in the study (both simulated annealing and cyclic descent 

algorithms) have been developed and will be tested on an IBM® compatible 486 DX50 

PC, running under MS-DOS®. The integer linear programming (ILP) package will be 

tested on a Sun®/Unix platform. It is already expected that the ILP approach will be 

unable to solve large scheduling problems (Hui 1988). Therefore a more powerful 

platform has been chosen for the ILP algorithm in order to increase the proportion of 

rosters that can be solved.  

 

The inclusion of an ILP algorithm in the study is for two reasons. Firstly, the literature is 

unclear as to the size of rostering problem that an ILP approach can solve (within a 

reasonable time). By testing the ILP approach on the experimental data, an indication of a 

feasible problem size can be obtained (the rosters range in size from 822 to 48,782 

feasible schedules). Secondly, an ILP algorithm will produce an optimum solution to a 

given set of constraints. Therefore, for those rosters that are solved by the ILP approach, 

an objective standard can be set by which the quality of roster solutions generated by the 

other methods can be measured.  

 

The current chapter first looks at the research strategy to be used in the study. Then a 

more detailed description of the measurement criteria is given. This leads on to a 

discussion of the experimental design. Finally, the experimental hypotheses are stated and 

the limitations of the study are discussed. 

 

 (28)



Chapter 3  Methodology 

3.2 Research Strategy 
 

The strategy selected for the current research is to evaluate the rostering algorithms using 

data contained in existing manually generated rosters. The research will analyse 52 rosters 

obtained from two Gold Coast Hospital medical wards, spanning the complete period 

from January 1993 to January 1994. Using these rosters, the original problem parameters 

can be reconstructed. Each of the five algorithms will then attempt to generate new rosters 

that solve the original historical roster problems. 

 

Having derived the data, the research will use a set of criteria to compare the rostering 

approaches. The three main dimensions of comparison are shift allocation quality, 

schedule quality and algorithm execution time. The processes of criteria generation and 

statistical comparison are discussed more fully in sections 3.3 and 3.4. 

 

3.2.1  The Use of Historical Rosters 
  

Several advantages of using historical rosters as the basis for the study have been 

identified: 

 

• Objectivity: The original data is objective and can easily be converted to 

quantitative measures. 

• Sample size: A potentially large sample size can be considered. 

• Availability: The data is immediately available. 

• Minimum disruption: The use of historical rosters causes a minimum 

disturbance to nursing staff and the operation of the hospital.  

 

An alternative strategy of trialing computer generated rosters on one hospital ward whilst 

retaining manual practices on a second ward was considered. This approach was rejected 

for several reasons. Firstly, the task of developing an instrument that could validly 

measure staff satisfaction with rostering policy was seen as too ambitious for the current 

study. In addition, it was considered unlikely that hospital staff would agree to work 

untested and possibly substandard rosters. Finally, the amount of time and level of 
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cooperation required from a hospital to mount such a study was seen as too unrealistic for 

research at an honours level. 

 

3.3 Criteria for Roster Evaluation 

 

Although there has been debate in the literature as to the relative importance of different 

criteria in roster evaluation, there has been broad agreement about the areas that have to 

be measured. Arthur and Ravindran (1981) gave the following four objectives for their 

goal programming model: 

 

• Minimum staffing requirements 

• Desired staffing requirements 

• Nurse schedule preferences 

• Nurse requests 

 

The current study cannot properly consider nurse requests because information about 

requests that were not granted is unavailable for the historical rosters. However, measures 

will be developed for the remaining objectives. Interviews with nursing staff involved in 

rostering have confirmed that these criteria represent the most important aspects of the 

rostering problem. 

 

3.3.1 Minimum and Desired Staffing Criteria 

 

Minimum and desired staffing criteria have already been defined as constraints in the 

mathematical formulation of the problem (see Appendix 3). Quantitative values for 

deviations from minimum and desired constraints can be easily measured. However, using 

a simple summation procedure to generate an overall measure of deviation would not be 

adequate. This is because the consequences of understaffing are generally more serious 

than those of overstaffing. In addition, the cost of understaffing a shift by two nurses can 

be more than twice as costly as understaffing a shift by one. Interviews with nursing staff 

have indicated that relative weights or costs need to be applied to meeting staffing 

constraints for different shifts. When presented with this problem, the nurses responsible 
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for rostering in the case study wards developed the following costs for each feasible 

staffing deviation6 : 

 
 

DAY SHIFT 
Number of Staff over or  

under Given Level 
Cost of Deviation 

3 over   desired     level 15 
2 over   desired     level 5 
1 over   desired     level 1 
0           desired     level 0 
1 under desired     level 10 
1 under minimum level 75 
2 under minimum level 250 

          Table 3: Costs associated with under/over staffing a day shift 
 
 
 
 

NIGHT SHIFT 
Number of Staff over or  

under Desired Level 
Cost of Deviation 

1 over 50 
0           (desired     level) 0 
1 under (minimum level) 100 

          Table 4: Costs associated with under/over staffing a night shift 
 
 
 

SKILL MIX 
Staff level and shift type Cost of shortage of 1 staff 

member 
CN day shift 1 
CN night shift 2 
Senior RN day shift 5 

          Table 5: Costs associated with shortages of senior staff 
 

                                                 
6The charge sisters from the two wards considered in the study were asked to define weights for the staffing 
level criteria, given that an ideal solution has a zero weight. An initial weight of 10 was given to a shortage 
of one staff member under the desired level on a day shift, and the nurses were then asked to generate the 
other criteria weights on this basis. A Delphi method was used, in that the results of each nurse’s scorings 
were fed back to the other nurse until an agreed weighting was developed. 
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3.3.2 Nurse Preference Criteria 

 

Due to the infeasibility of surveying each nurse considered in the study (many no longer 

work at the hospital), the idea of generating unique criteria for each nurse’s preferences 

has been rejected. Instead, criteria have been developed which represent a generalised or 

averaged view of schedule quality. The accepted idea of an ideal two week full-time 

schedule, is one with five days on and two days off, followed by another five days on and 

two days off period. This is shown in the following table: 

 
Mo Tue We Th Fri Sat Sun Mo Tue We Th Fri Sat Sun

On On On On On Off Off On On On On On Off Off 

Table 6: An ideal two week schedule 
 

Within the framework of an ideal five on, two off, five on, two off schedule pattern, 

patterns with longer or shorter work stretches and with different distributions of days off 

are considered less attractive. Although part-time staff cannot work an ideal two week 

schedule, the same work stretch and day off preferences apply. For instance, a nurse 

working eight shifts in a roster would generally prefer two four day stretches and to have 

a least two days off between stretches. The study does not consider the granting of 

weekends off, as this is achieved through the requesting policy. As with the staffing level 

criteria, there are different weights for different kinds of violation. For instance, as work 

stretches get longer they become increasingly more unattractive, whereas shorter work 

stretches are not so unpopular. Again using interviews with the charge sisters of the two 

wards studied, the following weights were developed: 

 
 

CONSECUTIVE   DAY OFF   STRETCHES 
Number of Consecutive  

Days Off 
Cost of Stretch 

1 day off 15 
2 days off 0 
3 days off 5 
4 days off 10 

          Table 7: Costs associated with consecutive days off 
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CONSECUTIVE DAYS   WORKED 
Number of Consecutive 

Days Worked 
Cost of Stretch 

1 day on 10 
2 days on 5 
3 days on 2 
4 days on 1 
5 days on 0 
6 days on 1 
7 days on 5 
8 days on 15 
9 days on 20 
10 days on 30 

          Table 8: Costs associated with consecutive work stretches 

 

 
3.3.3 Time Measurement 
 

An additional measure will be taken of the time taken for each algorithm to find a roster 

solution. The dimension of time is considered important, firstly to distinguish between 

algorithms that are able to find equally good solutions on all other criteria, and secondly 

to test that a computerised solution can result in significant time savings over a manual 

approach. 

 

A direct comparison between the execution time of the integer linear programming (ILP) 

application and the other algorithms is not possible. This is because the ILP package  

(LPSolve) will be tested on a Sun® workstation running under Unix, whilst the other 

algorithms will be tested on an IBM® compatible 486 DX50 PC running under MS-

DOS®. Consequently, a program was developed in ANSI C to simulate the tasks of a 

roster algorithm. This program was then executed on both platforms and a platform 

adjustment factor obtained, based on the relative execution times. Using the platform 

adjustment factor, the time data for the ILP algorithm can be adjusted so that they become 

approximately comparable to the results for the PC based algorithms.  
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A measure is also required of the time taken by hospital staff to complete the manual 

rosters. As no records were kept of this data, it is assumed, based on interviews with 

hospital staff, that each manual roster takes approximately 3 hours to complete. This 

figure can be used as a yardstick with which to assess the various algorithms, but will not 

be included in the statistical analysis. 

 

3.4 Research Design 

 
3.4.1 Statistical Method 
 

The empirical study considers the relative performance of the two cyclic descent 

algorithms, the two simulated annealing algorithms, the ILP algorithm and the manually 

generated solutions for the 52 historical rosters obtained from the hospital. The objective 

is to find out whether the mean criteria scores for each roster generation method are 

significantly different. If the criteria scores are different, then the direction of the 

difference is also of interest. A secondary objective is to find if there is any significant 

difference in mean criteria scores for the two wards considered, and whether there is any 

interaction effect between the ward and the method used. The problem is therefore one of 

testing the significance of group differences. Given that basic assumptions can be met, the 

appropriate statistical method would be a factorial multivariate analysis of variance 

(MANOVA, Tabachnick and Fidell 1989). 

 

It is not expected that the ILP algorithm will be able to solve the larger rostering 

problems. Additionally, the execution times for the ILP algorithm are only approximately 

comparable to the other algorithms (due to the use of different platforms), and no reliable 

execution times are available for the manual method. Therefore the statistical analysis 

will be divided into three parts: 

 

1. MANOVA 1 will consider schedule and shift score data for all 52 rosters but will 

omit results for the ILP algorithm (as missing results are expected), and will not 

consider execution times (as reliable data does not exist for the manual method).  
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2. MANOVA 2 will include schedule, shift and execution time data for all rosters, 

and consequently will omit results for the ILP and manual methods 

  

3. MANOVA 3 will include schedule, shift and execution time data for rosters that 

the ILP method has been able to solve, leaving out results for the manual method. 

 

3.4.2 Independent Variables 

 

The independent variables in the model are the ward from which a roster originates and 

the method used to solve the roster. In accordance with the requirements of MANOVA, 

these variables are nominally scaled, as defined in the following table: 

 

 

VARIABLE NAME AND VALUE VARIABLE DESCRIPTION 

Method = 1 Indicates the roster was manually generated

Method = 2 Indicates the roster was generated using the 
basic cyclic descent algorithm 

Method = 3 Indicates the roster was generated using the 
enhanced cyclic descent algorithm 

Method = 4 Indicates the roster was generated using the 
basic simulated annealing algorithm 

Method = 5 Indicates the roster was generated using the 
enhanced simulated annealing algorithm 

Method = 6 Indicates the roster was generated using the 
integer linear programming package 

Ward = 1 Indicates the roster came from Ward 1 

Ward = 2 Indicates the roster came from Ward 2 

Table 9: Independent variables for the MANOVA statistical model 
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3.4.3 Dependent Variables 
 

The dependent variables in the statistical model represent the various criteria upon which 

the wards and rostering approaches are to be compared. To calculate criteria values for 

each roster, a series of measures have to be made. Firstly, the number of shifts with a 

particular level of over- or understaffing are counted for each roster. Then, the various 

stretches of days on and days off for all staff and the total number of staff are counted. 

Using these values, the criteria values are calculated using the weights defined in the 

previous section. Finally, the time taken for each algorithm to find a roster solution is 

recorded and multiplied by the platform adjustment factor. The individual measures 

required to calculate the criteria are defined in the following table: 

 

VARIABLE NAME VARIABLE DESCRIPTION 
Dayplus3                  (d3) Number of day shifts in roster overstaffed by 3 
Dayplus2                  (d2) Number of day shifts in roster overstaffed by 2 
Dayplus1                  (d1) Number of day shifts in roster overstaffed by 1 
Daydesired1               (dd-1) Number of day shifts with 1 under desired staff level 
Dayminus1                (d-1) Number of day shifts with 1 under minimum staff level 
Dayminus2                (d-2) Number of day shifts with 2 under minimum staff level 
Nightplus1                (n1) Number of night shifts in roster overstaffed by 1 
Nightminus1              (n-1)  Number of night shifts in roster understaffed by 1 
SeniorDayminus1     (sd-1) Number of day shifts with senior staff shortage of 1  
SeniorNightminus1   (sn-1) Number of night shifts with senior staff shortage of 1  
RNminus1                 (rn-1) Number of shifts with senior RN staff shortage of 1  
WorkStretch1         (w1) Number of 1 day work stretches in roster 
WorkStretch2              (w2) Number of 2 day work stretches in roster 
WorkStretch3         (w3) Number of 3 day work stretches in roster 
WorkStretch4         (w4) Number of 4 day work stretches in roster 
WorkStretch5         (w5) Number of 5 day work stretches in roster 
WorkStretch6         (w6) Number of 6 day work stretches in roster 
WorkStretch7         (w7) Number of 7 day work stretches in roster 
WorkStretch8         (w8) Number of 8 day work stretches in roster 
WorkStretch9         (w9)  Number of 9 day work stretches in roster 
WorkStretch10       (w10)  Number of 10 day work stretches in roster 
DaysOff1                (o1) Number of 1 day day off stretches in roster 
DaysOff2                (o2) Number of 2 day day off stretches in roster 
DaysOff3                (o3) Number of 3 day day off stretches in roster 
DaysOff4                (o4) Number of 4 day day off stretches in roster 
TotalNurses           (tn) Total number of nurses working in the roster 

  Table 10: Dependent variable measures for the MANOVA statistical model 
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Given the previously defined variable measures, the three overall criteria scores for each 

roster are calculated using the following formulae :  

 

WeightedShift =  

 15d3 + 5d2 + d1 + 10dd-1 + 75d-1 + 250d-2 + 50n1 + 100n-1 + sd-1 + 2sn-1 + 5rn-1 

WeightedSchedule =  

 (10w1 + 5w2 + 2w3 + w4 + w6 + 5w7 + 15w8 + 20w9 + 30w10 + 15o1 + 5o3 + 10o4) / tn 

ExecutionTime = Program execution time * Platform adjustment factor 

 (for programs run on the IBM®/DOS platform the platform adjustment factor = 1) 

 

 

3.4.4 Hypotheses 
 

The objective of the empirical study is to generate statistical measures of the relative 

performance of the rostering methods considered. Of primary interest is the relative 

performance of the enhanced cyclic descent algorithm in comparison to the other 

methods. Consequently, the enhanced cyclic descent mean values will be used as the basis 

of comparison.  

 

Hypotheses as to the expected performance of the algorithms can be developed from an 

examination of the algorithms themselves (see Chapter 4). Firstly, in the dimension of 

shift distribution quality (WeightedShift), it is expected that the basic cyclic descent 

algorithm will produce the poorest results, with all other algorithms scoring 

approximately equally. In the area of schedule quality (WeightedSchedule), it is expected 

that the ILP algorithm will produce the best results will all other algorithms again scoring 

approximately the same.  Shortest execution times are expected for the basic cyclic 

descent algorithm, followed by the enhanced cyclic descent algorithm, followed by the 

enhanced simulated annealing algorithm and the basic simulated annealing algorithm. 

Execution times for the ILP algorithm are undetermined. Finally, it is expected that all the 

computerised methods will find better solutions than the manual method in the 

dimensions of schedule quality, shift distribution quality and shorter execution times. 

These expectations are expressed in the following hypotheses: 
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Hypothesis 1:  

The mean value of WeightedSchedule for the ILP algorithm (method = 6) 

is less than the mean value of WeightedSchedule for the enhanced cyclic 

descent algorithm (method = 3) : 

 

µ µmethod WeightedSchedule method WeightedSchedule= =<6 3, ,  

 

Hypothesis 2:  

The mean value of WeightedShift for the basic cyclic descent algorithm 

(method = 2) is greater than the mean value of WeightedShift for the 

enhanced cyclic descent algorithm (method = 3) : 

 

µ µmethod WeightedShift method WeightedShift= =>2 3, ,  

 

Hypothesis 3:  

No significant difference exists between the mean values of WeightedShift 

for the enhanced cyclic descent algorithm (method = 3), the basic 

simulated annealing algorithm (method = 4), the enhanced simulated 

annealing algorithm (method = 5) and the ILP algorithm (method = 6) : 

 

µ µ µ µmethod WeightedShift method WeightedShift method WeightedShift method WeightedShift= = = == = =3 4 5 6, , , ,  

 

Hypothesis 4:  

No significant difference exists between the mean values of 

WeightedSchedule for the basic cyclic descent algorithm (method = 2), the 

enhanced cyclic descent algorithm (method = 3), the basic simulated 

annealing algorithm (method = 4) and the enhanced simulated annealing 

algorithm (method = 5) : 

 

µ µ µ µmethod WeightedSchedule method WeightedSchedule method WeightedSchedule method WeightedSchedule= = = == = =2 3 4 5, , , ,
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Hypothesis 5:  

The mean execution time for the basic cyclic descent algorithm (method = 

2) is less than the mean execution time for the enhanced cyclic descent 

algorithm (method = 3) which is less than the mean execution time for the 

enhanced simulated annealing algorithm (method = 5) and the mean 

execution time for the basic simulated annealing algorithm (method = 4) : 

 

µ µ µmethod ExecutionTime method ExecutionTime method ExecutionTime= = =< <2 3 5, , ,

µ µmethod ExecutionTime method ExecutionTime= =<3 4, ,  

 

Hypothesis 6:  

The mean value of WeightedSchedule for the manual method (method = 1) 

is greater than to the mean value of WeightedSchedule for the enhanced 

cyclic descent algorithm (method = 3) : 

 

 µ µmethod WeightedSchedule method WeightedSchedule= =>1 3, ,  

 

Hypothesis 7:  

The mean value of WeightedShift for the manual method (method = 1) is 

greater than to the mean value of WeightedShift for the enhanced cyclic 

descent algorithm (method = 3) :  

 

µ µmethod WeightedShift method WeightedShift= =>1 3, ,  
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3.5 Limitations 
 

3.5.1 Schedule Quality and Differences between Nurses 

 

The method of criteria generation provides an average measure of two aspects of schedule 

quality : 1) the distribution of days off and 2) the length of work stretch. Individual nurses 

will have different perceptions about the quality of a schedule which cannot be captured 

in an averaging approach. For example, a nurse may find a pattern with three consecutive 

days off and one single day off preferable to a pattern with two stretches of two days off. 

A human rosterer may deliberately consider such factors when selecting schedules for a 

nurse. In such circumstances, the criteria score will not accurately reflect the schedule 

quality. However, the alternative of finding schedule quality criteria weights for each 

nurse in the study is not considered feasible. This is firstly because of the large number of 

nurses involved, secondly because many of the nurses no longer work in the hospital and 

thirdly because nurses may be unable to remember the criteria that would have applied in 

previous rosters.  

 

3.5.2 Human Preprocessing of Rosters 
 

The computerised rostering approaches will be presented with roster problems that have 

already been solved. A human rosterer will have eliminated any inconsistencies in the 

original problem, such as infeasible requests. Also, additional staff will have been 

acquired for days when shortages have arisen. Therefore, the comparison between manual 

and computerised methods assumes that some human intervention has occurred. To fully 

replace human expertise, problem preprocessing software would have to be developed. 

This issue was previously discussed in relation to the development of an expert system 

shell (see Chapter 2, Section 2.3.2). 
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3.5.3 Measuring the Overall Roster Quality 
 

The final judgement on the quality of a roster is subjective, and dependent on the values 

and priorities of the person making the judgement. It is consequently difficult to put a 

quantitative value on the quality of a roster (Smith and Wiggins 1977). An attempt to 

codify good rostering policy was made by the Australian Nurses Federation (1992). 

However, the principles laid down do not specify quantifiable measures. It is therefore 

recognised that criteria used in this study can only show that one approach differs from 

another within the confines of the criteria definition. As these criteria were developed for 

a specific rostering problem, it would be unwise generalise the results to other rostering 

situations. 

 

3.5.4 Omission of Criteria 

 

The criteria generated in the study attempt to measure the important aspects of roster 

quality. Some areas, such as the provision of days off after night shifts, are not included 

because they are automatically granted in all cases. The proportion of requests granted is 

also not measured because the data indicating disallowed requests is unavailable. 

Nevertheless, there are other dimensions of roster quality which are not assessed. For 

instance, there is the fairness of distribution of different shift types amongst nurses. In 

addition, no measure of the financial cost of staff for each shift is made. Some of these 

criteria are included in the algorithms, but have been omitted from the empirical study 

due to their lesser importance. It is noted however, that the relative importance of 

different rostering criteria are defined by an informal hospital rostering policy. This 

policy can differ from ward to ward and from time period to time period. 

 

3.5.5 Sample Size 
 

Out of a total of 150 rosters made available by the hospital, the study uses 52 rosters, (26 

each from two wards) for the statistical analysis. The sample sizes are limited by the 

amount of time required to encode a roster into a format suitable for the various 

algorithms and by the time required to encode the roster solutions for statistical analysis 
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(approximately 2 hours in total per roster). In addition, algorithm solution times can vary 

from several seconds to several hours. Given the scope and level of the current study, the 

sample size is considered adequate. However, it is noted that a larger sample size would 

be desirable, especially in comparing rosters between different years, or between different 

hospitals.   

 

3.5.6 Different Platforms 

 

The comparison of rostering algorithms across a Sun®/Unix and a PC/DOS platform 

introduces uncertainty as to the applicability of the integer linear programming (ILP) 

algorithm on a PC. A Unix-based ILP product was chosen for the research because a 

similar PC-based product capable of solving large problems was not immediately 

available. Whilst a comparison of execution times between platforms was made using a 

simple roster simulation program, this does not mean that the ILP program used could run 

on a PC. Other PC-based linear programming products were found to run slowly on a PC 

and were unable to access sufficient memory to solve any of the roster problems used in 

the research.  

 

A better comparison of execution times between algorithms would be obtained by 

compiling the PC-based algorithms on a Sun®/Unix platform and then regenerating the 

results. Due to time constraints, this additional generation of results was not attempted. 

Therefore, the relative execution times will only be fully accurate between the PC-based 

algorithms. 

 

3.5.7 Generalisability 

 

The study is not intended to be directly generalised to other rostering problems. The 

ability of the various algorithms to adapt to different problem situations would have to be 

tested through direct application. This must be left for further research. 
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3.6 Summary  

 
The empirical research in this study is primarily designed to show whether the enhanced 

cyclic descent algorithm warrants further investigation. In the first part of the study, this 

will be done by statistically comparing the output of the algorithm against a set of rosters 

already generated by human experts. The algorithm will also be compared against the 

cyclic descent algorithm on which it is based, against two simulated annealing algorithms 

and against an existing Integer Linear Programming (ILP) algorithm. 

 

Criteria have been developed with which all the methods can be compared. These criteria 

quantitatively measure average schedule quality, shift allocation quality and execution 

times for each roster. The task of generating an overall and valid measure of schedule 

quality is considered too ambitious for the current study. 

 

In the empirical study, the significance of differences between mean scores on each 

criteria, for each method and each ward, will be evaluated using a multivariate analysis of 

variance. The study hypothesises that the enhanced cyclic descent algorithm will produce 

scores on the criteria that are better than the scores for the manually generated rosters, 

better than the basic cyclic descent algorithm in the dimension of shift distribution, and as 

good as scores produced by the simulated annealing and ILP algorithms, but executing in 

a shorter time. 
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Chapter 4: Implementation
 

 

In order to reproduce the techniques used in the study, information is needed 

describing the method of schedule generation, the type of cost function used and the 

actual roster generating algorithms. The current chapter provides this information, and 

is intended to assist readers interested in replicating or extending the current study. 

Much of the material assumes a familiarity with rostering concepts and terms which 

are explained more fully in Appendices 1 to 4. The programs developed in the study 

were written in object-orientated Borland® C++ version 3.1 and run under      MS-

DOS® version 6.2 using an IBM® compatible 486 DX50 microcomputer with 8Mb of 

RAM. The ILP algorithm was run under Unix on a Sun® workstation having 16Mb of 

RAM.  

 

4.1 Feasible Schedule Generation 

 

A major part of the program development was spent in finding the best form of 

problem representation. Borrowing from Warner (1976), it was decided that all 

feasible schedules for each nurse should be generated and used in the rostering 

algorithm. It was found that for complex problems, an exhaustive iteration of feasible 

schedules soon uses up available memory resources. In addition, as the number of 

feasible schedules grows, the execution time for each iteration of a cyclic descent 

algorithm increases proportionately. Therefore, it became an important issue to 

develop a more economic form of feasible schedule representation, without 

eliminating possible solutions.   

 

4.1.1 Separating the Allocation of Late and Early Shifts 

 

As described in Chapter 2, the number of feasible schedules in a problem can be 

reduced by solving the allocation of late and early shifts as a separate heuristic 

procedure. This results in feasible schedules that have 3 possible shift values (day on, 
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night on, day off), rather than 4 (early shift, late shift, night shift, day off). In an 

unconstrained 14 day schedule this reduces the number of possible schedules from 

268 million to 5 million. The separation of the late/early allocation is possible 

because, in most cases, late and early shifts are interchangeable. To ensure a valid 

roster solution is obtained, all matching late and early shift constraints are summed to 

form new day shift constraints. For example, the minimum staff constraint for a 

particular day shift equals the minimum staff for an early shift plus the minimum staff 

for a late shift.   

 

The allocation of early and late shifts occurs once a roster solution has been found 

that meets all the fixed constraints. The task is then to allocate the correct number of 

early and late shifts for each day, according to the constraints for each shift type, 

whilst minimising nurse schedule dissatisfaction. Considerations in solving this 

problem are that nurses generally require: 

 

1. An early shift before days off. 

2. A late shift after days off. 

3. As few late shifts followed by early shifts as possible. 

4. A fairly even balance of late and early shifts over the whole schedule.  

 

This is a relatively small problem and can be formulated and solved as an integer 

linear program. However, in the current research, the late/early allocation is solved 

heuristically, providing a “good enough” rather than optimum solution. Obtaining 

optimality was not considered crucial as it is accepted hospital policy for nurses to 

renegotiate or swap late and early shifts after the roster has been posted. 

 

4.1.2 Night Shift Representation 

 

It is not possible to separate the allocation of night shifts in the same manner as late 

and early shifts because of the special constraints on a night shift, i.e. a night shift 

must be followed by another night shift or a day off. However, the exhaustive 

iteration of all night shift possibilities can be avoided by using the roster cost 
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evaluation function to convert night shifts to day shifts where allowable and necessary 

(see Section 4.2). In this way, only the maximum number of nights a nurse needs to 

work need be expressed in a schedule, rather than each individual pattern. For 

example, consider a nurse who can work up to 4 night shifts in a particular roster and 

is constrained to working these nights in one continuous block (this is a typical 

situation). Given a fixed pattern of days off, the following table illustrates all possible 

combinations of day and night shifts for the selected nurse: 

 

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Day Day Day Day Day Off Off Day Night Night Night Night Off Off

Day Day Day Day Day Off Off Day Day Night Night Night Off Off

Day Day Day Day Day Off Off Day Day Day Night Night Off Off

Day Day Day Day Day Off Off Day Day Day Day Night Off Off

Day Day Day Day Day Off Off Day Day Day Day Day Off Off

Day Night Night Night Night Off Off Day Day Day Day Day Off Off

Day Day Night Night Night Off Off Day Day Day Day Day Off Off

Day Day Day Night Night Off Off Day Day Day Day Day Off Off

Day Day Day Day Night Off Off Day Day Day Day Day Off Off

Table 11: All night shift combinations (block size 1, length 4) for given days off 

 

Given the ability of the roster cost evaluation function to eliminate night shifts as 

needed (whilst still maintaining that all night shifts are followed by another night or a 

day off), the nine schedules in table 11 can be represented by the two schedules as 

shown in the following table:  

 
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Day Day Day Day Day Off Off Day Night Night Night Night Off Off

Day Night Night Night Night Off Off Day Day Day Day Day Off Off

Table 12: Reduced night shift representation 
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4.1.3 Two Phase Schedule Generation 

 

Schedules are generated in the program in two phases: 

 

• Phase 1: Generating all feasible schedule patterns of days off. 

• Phase 2: Adding all feasible night shifts to the phase one schedule patterns. 

 

The schedule pattern generating algorithm works by generating all possible day on 

and off patterns for the first week of the roster (this results in 27 = 128 schedule 

patterns for each nurse). Then, by applying schedule constraints for each nurse, illegal 

patterns are eliminated. For the remaining feasible patterns, the pattern generating 

algorithm is recursively called, and patterns for the second week are added, and so on 

until the total number of weeks in the roster are reached (in this case two), and all 

feasible patterns for all nurses are generated. The schedule constraints defined in the 

current application require the following information: 

 

• Maximum and minimum shifts to be worked per schedule and per week. 

• Maximum and minimum generally and exceptionally7 allowable unbroken 

stretches of days on and of days off. 

• Size of unbroken stretch of days on worked at the end of the last roster. 

• Size and type of unbroken stretch of the same shift type worked at the end 

of the last roster. 

• List of any requests for each day of the roster (requests can either be 

normal or fixed, and for any shift type or for a day off: a normal request can 

be replaced by a day off, however a fixed request must be honoured). 

 

The phase two allocation of night shifts takes each day off schedule pattern and 

calculates how many schedules containing night shifts can be generated from the 

given pattern. The night shift schedules are then generated and added to a linked list 

of schedules for each nurse. As previously mentioned, night shifts are constrained in 

                                                 
7The difference between a general and an exceptional constraint is that an exceptional constraint can be 
allowed once in a schedule and after this the general constraint holds. 
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having to be followed by another night shift or by a day off. The following night 

constraints are also defined, based on hospital policy and individual preferences : 

 

• Maximum and minimum nights due for the schedule. 

• Number of unbroken blocks of nights allowed and maximum size of blocks. 

• Minimum generally and exceptionally allowable block of days off after a 

night shift. 

 

When all feasible schedules for all nurses have been generated, a schedule score for 

each schedule is calculated according to the WeightedSchedule function defined in 

Section 3.4.3. The schedules are then stored in a three dimensional dynamic array 

ready for use in the main algorithm. Tailoring this system of schedule generation to 

individual nurses, it is possible to generate any schedule pattern currently employed at 

the Gold Coast Hospital. The result is that a typical full-time nurse working night 

shifts will have between 100-200 feasible schedules. However, some part-time nurses 

are able to work more flexible schedules and can still generate more than 30,000 

feasible schedules in a particular roster. 

 

4.1.4 Unconstrained Schedule Generation 

 

For part-time nurses able to work single days on and not requiring a minimum of two 

consecutive days off, it becomes uneconomic to exhaustively generate all feasible 

schedules. In the normal operation of the cyclic descent algorithm, all feasible 

schedules for a particular nurse are tried out in the roster and the schedule having the 

lowest cost is selected. The cost evaluation function is fairly complex, and for nurses 

with thousands of schedules, a complete evaluation can take several seconds. In such 

circumstances it is easier to calculate the best schedule than to iterate through all 

feasible schedules. For a nurse working days only, the task is to evaluate the cost of 

the nurse working each day of the roster versus the cost of not working. If the nurse is 

due to work five days, then the five days that result in the lowest cost are selected. 

The problem becomes more complex if the nurse is to work nights, but the basic 

principles remain the same. 
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4.1.5 Evaluation of the Schedule Representation Techniques 
 

The various techniques described above have the combined advantage of reducing the 

number of feasible schedules that need to be stored in memory in order to solve a 

given roster problem. At the same time optimality has been maintained, in that no 

feasible solution possibility has been discarded. This results in an approach that can 

execute faster and use less memory than the alternative approach of using an explicit 

enumeration of all feasible schedules. 

 

However, the use of a special cost function that can change shift values as it evaluates 

schedules, and the use of an algorithm to generate schedules during the execution of 

the main rostering algorithm, means that the method of schedule representation 

becomes tied to a cyclic descent approach to rostering. In order to present a roster 

problem to an Integer Linear Programming (ILP) algorithm it is necessary to “turn 

off” some of the schedule generation features, ie all night shift possibilities and all 

part-time staff schedules must be explicitly generated. This can increase the problem 

size by a factor ranging from x2 to x500 depending on individual staff preferences 

and constraints.  

 

4.2 Cost Evaluation Function 
 

The cost evaluation function used in the study evaluates all fixed constraints for the 

problem. The objective of minimising nurse dissatisfaction with schedules is dealt 

with separately in the schedule selection process of the cyclic descent algorithm. The 

evaluation function counts any deviations away from the fixed problem constraints 

and, by summing these deviations, an overall roster score is produced. The constraints 

considered in the research problem are as follows (remembering that day shift 

constraints are an amalgamation of early shift and late shift constraints): 

• Maximum and minimum total staff for each day shift and night shift of the 

roster. 

• Maximum and minimum staff of level CN and above for each day shift and 

night shift of the roster. 
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• Maximum and minimum staff of level senior RN or above for each day 

shift and night shift of the roster. 

• Maximum and minimum staff of level EN for each day shift and night shift 

of the roster. 

  

The special feature of the cost evaluation function is that it can selectively change 

night shifts into day shifts. This occurs if the shift change is allowable and results in a 

reduced overall cost. As described previously, feasible schedules are generated which 

contain the longest allowable blocks of nights for each nurse. These night blocks can 

then be “trimmed” by the cost function in the following way:  

 

• Night shift constraints are evaluated sequentially by day, starting with the 

earliest day in the roster. 

• If, for a particular day and a particular constraint, there are too many night 

shifts being worked, then each night shift participating in the constraint is 

considered for conversion to a day shift. A night shift is converted to a day 

shift if: 

1. The night shift has not been specifically requested by the nurse 

concerned. 

2. The shift immediately preceding the night concerned is not a night 

shift. 

• Individual night shift staffing level constraints are evaluated first, then the 

total night shift staff constraints. Finally, the day shift constraints are 

considered. 

 

Appendix 5 illustrates the process of night shift conversion with a simplified example.

 (50) 



Chapter 4  Implementation 

4.3 The Basic Cyclic Descent Algorithm 

 

Using the design described by Miller et al. (1976), an algorithm was developed, and 

set within the framework of the schedule generation algorithms and cost evaluation 

function previously described. In order to obtain an overall measure of roster cost that 

includes schedule quality (as per Miller et al.) the following equation was used: 

 

Roster Cost = Total summed fixed constraint deviations + (Total roster grade/1000) 

 

where the total summed fixed constraint deviations is given by the return value of the 

cost evaluation function described earlier (see Section 4.2) and the total roster grade is 

given by summing the individual schedule grades of each schedule appearing in the 

roster (schedule grades are calculated using the formula given in Section 3.4.3).  

 

As the total roster grade is integral and typically ranges from 0 to 700, and the 

summed deviations are also integral ranging from 0 upwards, the above cost equation 

ensures an algorithm will always accept a lower fixed constraint score before trying  

to minimise the total roster grade.  

 

Given these definitions, the basic cyclic descent algorithm is described by the 

following pseudocode (see also Section 2.2.1.4) : 

 

 (51) 



Chapter 4  Implementation 

cyclic descent algorithm 
{ 
 calculate a set of feasible schedules for each nurse 
 calculate the schedule grade  of each schedule 
 select best grade schedule for each nurse to create an initial roster solution 
 best cost = cost of initial roster solution 
 current nurse = first nurse on roster 
 cycle = 0 
 while cycle < total number of nurses on roster  
 { 
  cycle = cycle + 1 
  new schedule = first schedule in feasible schedule set for current nurse 
  while more feasible schedules for current nurse   
            and current nurse not unconstrained   
  { 
   remove existing schedule in roster for current nurse 
   insert new schedule into roster for current nurse   
   new cost = cost of new roster solution 
   if new cost  <  best cost    
   { 
    best cost = new cost 
    cycle = 0 
   } 
   else    
   { 
    remove new schedule from roster 
    return previous existing schedule to roster 
   } 
   new schedule = next feasible schedule for current nurse 
  } 
  if current nurse is unconstrained 
  { 
   calculate new schedule for current nurse 
   remove existing schedule in roster for current nurse 
   insert new schedule into roster for current nurse   
 
  } 
  if current nurse = last nurse on roster 
   current nurse = first nurse on roster 
  else 
   current nurse = next nurse on roster 
 } 
} 
 
 

Figure 5: Cyclic descent algorithm (based on Miller et al. 1976) 
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The principle of the algorithm is that all feasible schedules for a particular nurse are 

evaluated in the roster whilst holding constant the schedules for all other nurses. Each 

nurse is tried in turn until no further improvement in the roster score is possible.  

 

4.4 The Enhanced Cyclic Descent Algorithm 

 

Three strategies were developed to improve the performance of the basic cyclic 

descent algorithm. These are described in the following sections: 

 

4.4.1 Multiple Starting Positions 
 

It was found that the basic cyclic descent algorithm converges quickly on a roster 

solution, even in more complex problem situations (usually within 30 seconds). The 

first, and simplest strategy employed was to repeatedly run the algorithm over the 

same problem. With each run, the order of the nurses in the problem is changed, 

which in turn causes the algorithm to follow a different path of descent. At the end of 

each descent the roster solution is evaluated against the best solution found so far, and 

if an improvement is found, the solution is kept, else it is discarded. As there is no 

guarantee of convergence for such an algorithm, it is run until either a predefined 

minimum score is found, or until a maximum number of iterations have been 

completed. 

 

Although increasing the execution time of the program, the use of multiple starting 

positions was found to be an effective strategy in obtaining better quality roster 

solutions. This is because the basic cyclic descent algorithm can converge on a variety 

of different roster solutions according to the starting position, rather than repeatedly 

finding the same solution. As a rule of thumb, it was found that little improvement in 

roster score can be expected after 20 to 30 trial iterations, but that within those trials 

roster scores can vary noticeably.  
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4.4.2 Schedule Grade Selection Bias 

 

Whilst the basic cyclic descent algorithm was found to be effective in finding roster 

solutions within the bounds of the fixed constraints, the algorithm did not appear 

effective in finding solutions with good quality schedule grades. A way of rectifying 

this would be to increase the importance of the schedule grade component in the cost 

function. However, the primary objective of a rostering algorithm is to meet all the 

fixed constraints. To increase the weight of the schedule grade component in the cost 

function could cause minimum cost solutions to contain violated constraints, where a 

solution meeting all fixed constraints would have been possible.  

 

In order to address this problem it was decided to remove the schedule grade 

component from the cost function and introduce a schedule grade selection bias into 

the cyclic descent algorithm. Firstly, during the normal execution of the algorithm, all 

schedules for a particular nurse that can cause any improvement in the deviations 

from the fixed constraints are selected and stored as candidate schedules. Once all 

schedules for the nurse have been evaluated, the candidate schedule with the lowest or 

best grade is selected and inserted into the roster. If several schedules with the same 

minimum grade exist then the schedule causing the greatest reduction in deviations 

from fixed constraints is chosen. If multiple candidates still exist, a schedule is chosen 

from this final group at random. This contrasts with the basic cyclic descent algorithm 

which automatically selects the schedule with the lowest combined deviation and 

schedule grade cost. 

 

The schedule grade selection bias should therefore cause the selection of higher 

quality schedules, at the expense of descending more slowly towards a solution. 

 

4.4.3 Hill Climbing Algorithm 

 

The main weakness of the cyclic descent algorithm is that it has no facility to climb 

out of local non-optimal solutions and continue to search for possibly superior 

solutions. From a given starting position, each iteration of the algorithm is directed by 
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the solution from the previous iteration, until the solution becomes “stuck”. A final 

solution is accepted after all feasible schedules for all nurses have been tried in the 

roster and no overall improvement in the roster score is found. However, by accepting 

a new schedule in the roster that either causes the roster score to remain the same, or 

even to deteriorate, the possibility exists that further iterations of the algorithm may 

find a superior solution. The ability to accept solutions that cause a deterioration in 

score distinguishes simulated annealing from a straightforward cyclic descent (see 

Section 2.2.5), and is often referred to as “hill climbing” (Lo and Bavarian, 1992, p. 

324). 

 

The third strategy for improving the cyclic descent algorithm was to develop a hill 

climbing algorithm that is invoked each time the basic algorithm becomes stuck in a 

local minima. From an observation of roster solutions it became apparent that the 

cyclic descent algorithm becomes stuck on certain columns or days of the roster. This 

means it becomes impossible to improve the deviation score for a stuck column 

without causing a deterioration in score for some other column of the roster. The 

initial approach of the hill climbing algorithm is to reduce the roster score for a stuck 

column by moving the problem to some other column in the roster. This is done with 

the following steps: 

 

1. Identify the stuck column as the column having the highest deviation score. 

2. Identify any schedules from the set of all feasible schedules that cause the 

deviation score on the stuck column to improve. 

3. From this set of schedules, select the schedule that causes the smallest 

deterioration in the overall deviation score for the roster. 

4. Insert the selected schedule into the roster and then continue with the normal 

operation of the cyclic descent algorithm. 

  

The problem with this approach is that the roster solution will tend to “flip-flop” 

between a series of two or more solutions without effectively descending. For 

example, a new schedule is selected by the hill climbing algorithm that causes the 

roster score to deteriorate, but when control is returned to the cyclic descent algorithm 

the new schedule is immediately replaced with the schedule that it replaced and the 
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roster is returned to the original stuck position. This problem is addressed by creating 

a one dimensional “stuck-shift” array with an element for each column or day of the 

roster. Each time the hill climbing algorithm is invoked, the new reduced deviation 

score for the stuck column in the roster is inserted into the stuck-shifts array. From 

then on, no schedule is accepted either by the cyclic descent algorithm or by the hill 

climbing algorithm that causes the score for the stuck column to exceed the deviation 

score recorded in the stuck-shifts array. The total algorithm continues until the hill-

climbing algorithm is unable to select a schedule without violating the stuck-shifts 

array constraints.  

 

All three strategies used to develop the enhanced cyclic descent algorithm are 

expressed in the following two pages of pseudocode (the hill climbing algorithm is 

referred to as “move roster from minima”): 
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enhanced cyclic descent algorithm  {        
 
calculate a set of feasible schedules for each nurse 
calculate the grade of each schedule for each nurse 
select schedule with best grade for each nurse to create an initial current roster 
solution found = FALSE; stuck counter = 0 
while (solution found = FALSE) and (stuck counter < MAXIMUM STUCKS)   {  
 current nurse = first nurse on roster 
       while more nurses on the roster    { 
           number of candidate schedules = 0 
           previous grade = grade of schedule in roster for the current nurse 
           best grade = a predefined constant indicating a very poor grade 
           previous best cost = cost of current roster 
           previous roster = current roster 
           current schedule = first feasible schedule for current nurse 
           while more feasible schedules for the current nurse and current nurse not unconstrained { 
                  remove existing schedule in current roster for current nurse 
                  insert current schedule into current roster for current nurse   
                  new cost = cost of current roster  
                  if current roster solution does not repeat a previous stuck solution {  
                      new grade = current schedule grade 
                      if (new cost = previous best cost) and (new grade <= previous grade) { 
                           if new grade < previous grade { 
                               number of candidate schedules = 0 
                               previous grade = new grade 
                           }  
                           add schedule to set of candidate schedules 
                           number of candidate schedules = number of candidate schedules + 1  
                       } 
                       else if  (new cost < previous best cost) and  (new grade <= previous best grade)
 { 
                               number of candidate schedules = 0 
              previous best cost = new cost 
                               if new grade < previous best grade  { 
                   previous best grade = new grade; 
                   previous grade = new grade; 
                               } 
              add schedule to set of candidate schedules  
                               number of candidate schedules =  number of candidate schedules + 1  
                         }                
            }  
   current schedule = next feasible schedule for current nurse 
  } 
  if current nurse is unconstrained 
   calculate best schedule for current nurse 
  else 
         randomly select a schedule from the set of candidate schedules for current nurse 
        insert selected schedule into current roster for current nurse   
        new cost = cost of current roster 
        current nurse = next nurse on roster 
       } 
       if current roster = previous roster      { 
           if  new cost <= predefined acceptable cost 
               solution found = TRUE  
           else    { 
               move roster from minima 
               if current roster = previous roster {  
                    stuck counter = stuck counter + 1 
                    change order of nurses in roster 
                    select schedule with best grade for each nurse to create a new current roster   
   } 
  } 
 } 
} 
 
}                     
                           

Figure 6: Pseudocode for the enhanced cyclic descent algorithm  
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move roster from minima 
{ 
worst shift = shift on roster with highest deviation from shift constraints 
worst shift score = numeric measure of deviation for worst shift 
previous best cost = predefined large cost 
new cost = previous best cost  
previous best grade = predefined poor grade 
number of candidate schedules = 0 
current nurse = first nurse on roster 
while more nurses on the roster 
{ 
       original schedule = existing schedule in roster for current nurse 
       current schedule = first feasible schedule for current nurse 
       while more feasible schedules for current nurse 
       { 
            if current schedule <> original schedule 
            { 
                  previous cost = cost of current roster 
                  remove existing schedule in current roster for current nurse 
                  insert current schedule into current roster for current nurse   
                  new cost = cost of current roster  
                  if current roster does not exceed shift threshold score for a previous worst shift                
                  { 
                      current worst shift score = score for worst shift in current roster 
                      if current worst shift score < worst shift score 
                      { 
                           new grade = current schedule grade 
                           if (new cost = previous best cost) and (new grade <= previous best grade) 
                         { 
                                add schedule to set of candidate schedules 
                                if new grade < previous best grade    
                                { 
                                     previous best grade = new grade; 
                    number of candidate schedules = 0 
                } 
                                 number of candidate schedules =  
       number of candidate schedules + 1   
                           } 
                           else if new cost < previous best cost 
                              { 
                                   number of candidate schedules = 0  
                                   add schedule to set of candidate schedules 
                                   number of candidate schedules =  
       number of candidate schedules + 1 
                                   previous best cost = new cost 
                                   previous best grade = new grade  
                              }     
                      } 
   } 
                     else 
                         new cost = previous cost 
            } 
            current schedule = next feasible schedule for current nurse 
       } 
       replace current schedule in roster for current nurse with original schedule 
       current nurse = next nurse in roster 
} 
if candidate schedules exist 
{ 
  randomly select a candidate schedule 
        insert the randomly selected schedule into the current roster 
} 

} 

 

Figure 7: Pseudocode for “move roster from minima” function 
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4.5 The Basic Simulated Annealing Algorithm 

 

Due to the inherent similarities between simulated annealing and the cyclic descent 

approach to rostering, a simulated annealing algorithm can be easily inserted into the 

existing framework of the basic cyclic descent algorithm. Instead of sequentially 

cycling through each nurse and each schedule, the simulated annealing algorithm 

randomly selects a nurse and then randomly selects a schedule from that nurse’s set of 

feasible schedules (this approach was found to perform better than randomly selecting 

schedules directly from the total set of feasible schedules). The selected schedule then 

replaces the existing schedule for the selected nurse, and a new roster cost is 

calculated as before. When the roster cost improves, a schedule is automatically 

accepted, otherwise it is accepted only if a randomly selected probability is less than 

the probability returned by a given probability function (see Section 2.2.5 and below). 

In the case of a nurse using the unconstrained schedule generation algorithm (see 

Section 4.1.4), no set of feasible schedules will exist. To handle this situation in the 

simulated annealing algorithm, an additional function is used which randomly 

generates feasible nurse schedules according to the number of shifts the nurse is to 

work, whether night shifts are allowed and any requests, etc. Pseudocode for the basic 

simulated annealing algorithm is shown in figure 8. During the actual running of the 

program to generate test data, the program constants were set at the following values: 

 

minimum score = score obtained by the enhanced cyclic descent algorithm for the      

same problem, max iterations = 1,000,000, start temperature = 5, chain length = 2000, 

cooling rate = 0.6 

 

As described in Section 2.2.5, the basic simulated annealing algorithm uses a 

geometric cooling schedule of the form: temperaturen = temperaturen-1 * cooling rate, 

where the temperature is decremented after each chain length (i.e. 2000) iterations 

and also uses a Bolzman probability distribution of the form: e
change in t

temperature
− _ _cos

.  
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basic simulated annealing 
{ 
 calculate a set of feasible schedules for each nurse 
 calculate the grade of each schedule for each nurse 
 select schedule with best grade for each nurse to create an initial current roster 
 roster score = current roster deviation score + (current roster grade / 1000) 

 temperature = start temperature 
 markov chain length = chain length 
 loop counter = 0 
 while roster score > minimum score and loop counter < max iterations  
 { 
  previous roster score = roster score 
  randomly select current nurse 
  previous schedule = existing schedule for current nurse 
  if current nurse is unconstrained 
   randomly generate current schedule for current nurse 
  else 
   randomly select current schedule for current nurse 
  increment loop counter; 
  insert current schedule for current nurse into roster 
  calculate new roster deviation score 
  calculate new roster grade 
  roster score = new roster deviation score + (new roster grade / 1000) 
  score change = roster score - previous roster score 
  if score change > 0 
  { 
   if loop counter modulus markov chain length = 0 
     temperature = temperature * cooling rate 
   acceptance probability = e**-(score change / temperature)  
   generate random probability between 0 and 1 
      if random probability > acceptance probability 
   { 
    insert previous schedule for current nurse into roster 
    roster score = previous roster score 
   } 
  }   
 } 
} 
 
 

Figure 8: Pseudocode for the basic simulated annealing algorithm 
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4.6 The Enhanced Simulated Annealing Algorithm  

 

In initial trials, the basic simulated annealing algorithm was able to find roster 

solutions within the fixed constraints of a problem reasonably quickly. However the 

quality of schedule grade for these solutions was consistently poor in comparison to 

results from the cyclic descent algorithms. When left to search for comparable 

solutions, the basic simulated annealing algorithm became very slow and was often 

unable to find a solution even after several hours of execution.  

 

Following the concept used for the enhanced cyclic descent algorithm, it was decided 

to introduce a schedule selection bias into the simulated annealing algorithm. Firstly, 

all schedule grades for each nurse are normalised so that each nurse’s minimum 

schedule grade = 0 and maximum grade = 1. Then, within the annealing algorithm, an 

additional criterion is added that a schedule is only accepted if the randomly 

generated probability is also greater than or equal to the normalised schedule grade, or 

if the schedule has a lower grade than the schedule which it replaces.  

 

In addition, once a zero deviation score is found, a simple cyclic descent algorithm is 

invoked which repeatedly tries all feasible schedules in the roster until no further 

improvement in the overall roster grade is possible (named “try all schedules” in the 

pseudocode below). Once a zero score is found, the algorithm automatically 

terminates.  

 

The above ideas are expressed in the following pseudocode, which would appear 

within the main while loop of the basic simulated annealing algorithm (see figure 8): 
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 if zero deviation score found 
  try all schedules in roster 
 min = minimum schedule grade for current nurse 
         max = maximum schedule grade for current nurse  
    if min < max and current schedule grade > previous schedule grade 
        grade probability = 1 - (min + current schedule grade)/(min + max); 
    else 
        grade probability = 1; 
    if zero deviation score not found and 
                (random probability > acceptance probability or  
       random probability > grade probability) 
        { 
  insert previous schedule for current nurse into roster 
  roster score = previous roster score 
 } 

 

Figure 9: Additional pseudocode for the enhanced simulated annealing algorithm 

 

 

4.7 Integer Linear Programming Implementation 

 

A detailed description of the mathematical model used in the ILP implementation is 

provided in Appendix 3. The objective function and constraints described in the 

model are generated for each roster and stored in a text file using a specially written 

program. This program takes the feasible schedules as they are represented to the 

other algorithms and expands them to form a full set of feasible schedules. Firstly, 

schedules containing night shifts are expanded in a reversal of the process described 

in Section 4.1.2. Then feasible schedules are generated for all nurses categorised as 

having unconstrained schedules. Using the full feasible schedule set in conjunction 

with the staffing level constraints and the WeightedSchedule scores for each roster, 

the system of ILP equations can be constructed.  

 

For the purposes of the research, the ILP model is forced into being a single rather 

than a two phase process. This is done by setting the desired level for each overall 

staff constraint equal to the minimum level. Deviations below desired staff levels can 

therefore not occur and the phase one optimisation becomes redundant (see Appendix 

3, Section A3.4). The objective of the model therefore becomes one of minimising 
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overall schedule score subject to the maximum and minimum constraints defined in 

Section 4.2. This is the same objective set for the other algorithms. Attempts to 

minimise deviations from desired staffing levels were abandoned for the following 

reasons: 

 

1. The use of a two phase solution doubles the necessary execution time for 

the ILP algorithm. 

2. It was judged more important to obtain a better quality allocation of 

schedules within the upper and lower constraints, than to obtain a 

marginally better allocation of shifts at the expense of schedule quality. 

 

4.8 Summary 
 

A major objective of the research was to find an efficient form of problem 

representation. It was decided to formulate the rostering task as one of finding the best 

combination of feasible schedules. This makes the problem suitable for an optimising 

algorithmic approach. The drawback to such an approach is the large computer 

memory resource required to hold all feasible schedules for a realistic rostering 

scenario. Therefore several techniques were devised to reduce the number of feasible 

schedules needed to express the problem. Firstly, the allocation of late and early shifts 

was considered as a separate problem. Secondly, night shift representations were 

simplified by allowing the cost function to eliminate unnecessary nights. Finally an 

algorithm was developed to calculate schedules for part-time nurses able to work 

flexible schedules. 

 

Two techniques suggested by the literature were implemented in the current research. 

Firstly, Miller et al.’s cyclic descent algorithm (1976) was adapted to run within 

feasible schedule representation system previously described. The basic algorithm 

was then enhanced by adding a hill-climbing heuristic, a schedule selection bias and 

repeatedly running the algorithm from different starting positions. Secondly, a basic 

simulated annealing algorithm was developed using standard techniques described in 

the literature. The algorithm was then enhanced by adding a probabilistic bias towards 
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selecting better grade schedules, and by invoking a cyclic descent algorithm to 

terminate each run.  

 

As a result of programming implementation work,  four algorithms have been created:  

 

1. Basic cyclic descent algorithm 

2. Enhanced cyclic descent algorithm 

3. Basic simulated annealing algorithm 

4. Enhanced simulated annealing algorithm 

 

In addition, a program was developed to convert the roster problem into a system of 

linear equations suitable for solution by an existing branch and bound ILP algorithm. 

The remainder of the research tests the results obtained from these algorithms using a 

set of manually generated rosters supplied by the Gold Coast Hospital. 
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Chapter 5: Results 

 

 

This chapter presents the results of the statistical analysis outlined in Chapter 3. The 

various roster generation methods are evaluated using three factorial Multiple Analysis of 

Variance (MANOVA) designs. Any significant main effects are further investigated by 

univariate tests of significance and then by testing the significance of differences between 

individual means. A detailed listing of results for each MANOVA analysis is provided in 

Appendix 7.  

 

5.1 Raw Data Analysis 
 

The raw data was generated for six roster generation methods over two hospital wards. 

Each method was presented with 52 rosters, from which overall values of WeightedShift, 

WeightedSchedule were obtained for each roster solution. In addition ExecutionTime 

values were calculated for the computerised roster solutions. As expected, all methods 

except the integer linear programming algorithm (ILP Method 6) were able to process the 

full data set. The ILP algorithm was able to solve 34 of the 52 rosters, including all 26 

rosters from Ward 1. 

 

5.1.1 Data Transformations 

 

An examination of the raw data indicated problems with outliers and non-normality for all 

dependent variable distributions. As approximately normal data is a requirement for 

MANOVA (Tabachnick and Fidell 1989), the following transformations were performed 

(see Section 5.1.4 for a further discussion):  

 

• Transformed WeightedShift  = loge(2 + WeightedShift) 

• Transformed WeightedSchedule = √WeightedSchedule 

• Transformed ExecutionTime = √loge(2 + ExecutionTime) 
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5.1.2 Platform Adjustment Factor 

 

An additional data transformation used was to multiply the ExecutionTime values for the 

ILP algorithm by the platform adjustment factor (see Section 3.3.3). The evaluation of the 

adjustment factor was not straightforward. The Unix operating system provides three 

measures of execution time for a given program or process. These are: 

 

1. Real Time  : the actual time the program takes to run on the network. 

2. User Time  : the time spent in execution of the program. 

3. Sys Time  : the time spent in execution of system commands. 

 

In calculating the platform adjustment factor, the user time was used. However, this is 

probably a conservative measure. Larger problems (in excess of 5,000 variables) tended 

to use proportionally more real time to execute than smaller problems on the Unix system. 

This may have been because the problems were too large to hold in memory at one time, 

resulting in frequent disk read and write operations. Given limited RAM resources, it 

would be expected that a similar program operating on an IBM® compatible machine 

running under Windows® would encounter the same lengthening of execution times. 

Bearing this qualification in mind, a series of different sized problems were run on both 

the IBM® PC and Sun® systems using the same program. After averaging the results a 

platform adjustment factor of 4.171 was derived. This means, on average, a roster 

calculating program taking 1 second of user time to execute on the Sun® network will 

take 4.171 seconds to execute on the stand-alone IBM® PC used in the research. All ILP 

ExecutionTimes used in the subsequent analysis have been calculated using the following 

formula: 

 

• ILP ExecutionTime = 4.171 * User time recorded by Unix operating system in seconds 
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5.1.3 Evaluation of MANOVA Assumptions 

 

After transformation, the raw data was evaluated against the basic requirements for a 

MANOVA analysis (Tabachnick and Fidell 1989) : 

 

Unequal Sample Sizes and Missing Data: No results were obtained for eighteen of the 

Ward 2 rosters from the ILP algorithm. For sixteen of these cases the problem size 

became too large for the available computer memory (> 20,500 variables), for one case 

the problem was rejected as infeasible and a final case remained unsolved after four days 

of processing and so was terminated. To avoid problems with missing data, a separate 

MANOVA 3 analysis was devised which considers only those rosters which the ILP 

algorithm was able to solve. This resulted in a 2 x 5 factorial model, representing the two 

wards and the five rostering algorithms used in the study (MANOVA 3 does not consider 

the manual roster data). The elimination of unsolved rosters from the analysis, means that 

cell sizes are no longer equal: the five cells relating to Ward 2 having eight cases each 

whilst Ward 1 cells have a full set of 26 cases. Unequal cell sizes are allowable in 

MANOVA, if there are more cases than dependent variables (DVs) in every cell 

(Tabachnick and Fidell 1989, p. 377). As MANOVA 3 uses three DVs, a minimum cell 

size of eight is sufficient. In addition, MANOVA requires homogeneity of variance-

covariance matrices for each cell so that a reliable pooled estimate of error can be 

calculated (Tabachnick and Fidell 1989, pp. 378-379). If cell sizes are equal, homogeneity 

can be assumed. However, with unequal cell sizes an additional test is required. To this 

end, a Boxes M test was employed on the MANOVA 3 data and found to be not 

significant with p > .001. This indicates that the variance-covariance matrices for each 

cell can be considered homogeneous. It is therefore concluded that the MANOVA 3 

model is robust with respect to unequal cell sizes. 

 

Multicollinearity and Singularity: Tests for multicollinearity and singularity were made 

via an examination of the correlation matrices for each cell of each MANOVA design. As 

no correlations greater than 0.9 were found, and general correlations were less than 0.4, it 

is concluded that multicollinearity and singularity are not a problem for the current 

designs.   
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Multivariate Normality, Linearity and Outliers: MANOVA is considered “robust to 

modest violations of normality so long as the violations are not caused by outliers” 

(Tabachnick and Fidell 1989, p. 378). The data transformations described in Section 5.1.1 

were used both to normalise the distributions of the dependent variables and to reduce the 

effects of outliers. In order to assess the transformations, a cell by cell analysis was 

performed for each design used in the research. Factors considered for each cell were: 

 

• Multivariate outliers: these were measured using the Mahalanobis distance for each 

case, with the probability of a case being an outlier set at p < .001. 

• Univariate outliers: these were defined as any case deviating by more than ± 3 standard 

deviations from a dependent variable cell mean. 

• Normality: the normality of each cell dependent variable was assessed using the 

Kolmogoroff-Smirnoff goodness of fit test with p < .05. Skewness and kurtosis were 

also considered and graphical analysis performed on suspicious distributions. 

• Linearity: any cell variables with suspected non-normal distributions were further 

analysed for linearity using within cell bi-variate scatter plots. 

 

The cell by cell analysis revealed one outlier in the MANOVA 1 model. This was a low 

transformed WeightedShift score for a manually solved roster (Ward 2, 1/2/93, outlier 

score = 0, next highest score = 11, total score range 0 to 379). It was decided to rescore 

the untransformed WeightedShift score, rather than delete the case, so that equality of cell 

sizes could be maintained (as suggesting in Tabachnick and Fidell 1989, p. 70).  Due to 

the logarithmic transformation of the WeightedShift scores, the effect of low scoring 

outliers is considerably magnified. Therefore a relatively small increase in the 

untransformed score from 0 to 9 was sufficient to cure the outlier problem in the 

transformed score (this increased from 0.6931 to 2.3979 in a range of 5.2497). 

 

Of the 74 within cell distributions examined, 5 were found to deviate from normal 

(Kolmogoroff-Smirnoff p < .05). No outliers were found in these distributions, so the 

deviations were considered acceptable. In addition, bi-variate scatter plots for the non-

normal variables did not reveal any significant non-linear relationships. 

  

 (68)



Chapter 5  Results 

The generally normal univariate distribution of dependent variables and the robustness of 

MANOVA to violations of normality indicate that the assumption of multivariate 

normality can be accepted. Problems with outliers have been eliminated by data 

transformations and the rescoring of one case. Additionally, no evidence was found of 

non-linear relationships between variables. It is therefore concluded that the transformed 

data set is suitable for MANOVA analysis. 

 

5.1.4 Raw and Transformed Data Values 

 

The following tables give a comparison between the raw and transformed mean criteria 

scores for each ward and method, with their associated skewness and kurtosis measures. 

The transformations were developed on a trial and error basis and were based on 

transformation functions recommended in Tabachnick and Fidell (1989, pp. 83-87): 

 

 WeightedShift before and after Transformation (loge(2+x)) 
 Mean  → after Skewness → after Kurtosis → after 

Enhanced Cyclic 42.9423 3.2510 2.9754 -0.2485 11.6999 -0.0789

Basic Cyclic 87.6538 4.0318 1.4101 -0.1407 0.9826 -0.5526

Manual 109.8654 4.3482 1.2714 -0.1980 0.8975 -0.5629

Basic Annealing 43.5385 3.2481 2.8666 -0.2295 10.8324 -0.1865

Enhanced Annealing 44.5385 3.2585 2.8758 -0.0187 8.9139 -0.0293

ILP 53.4118 3.5328 2.5969 -0.0897 8.4961 -0.0643

Ward 1 82.8707 3.9121 1.6418 0.0662 1.8855 -0.8331

Ward 2 51.5288 3.3429 2.6292 -0.3675 8.0600 -0.3194

Table 13: Mean scores for WeightedShift 
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 WeightedSchedule before and after Transformation (√x) 

 Mean  → after Skewness → after Kurtosis → after 

Enhanced Cyclic 13.4455 3.6403 0.1266 -0.2461 0.0700 0.1835

Basic Cyclic 13.6537 3.6688 0.2820 -0.1034 0.5088 0.1586

Manual 18.2310 4.2480 -0.0803 -0.4143 0.1540 0.4491

Basic Annealing 13.7953 3.6889 0.0596 -0.3565 0.4248 0.5471

Enhanced Annealing 13.6400 3.6680 0.0108 -0.4542 0.5020 0.9785

ILP 12.4877 3.5084 0.5499 0.1656 0.6766 0.2795

Ward 1 15.3887 3.8983 0.6996 0.3595 0.5773 0.2307

Ward 2 13.7175 3.6673 0.2183 -0.1371 -0.2639 -0.2845

Table 14: Mean scores for WeightedSchedule 

 

 ExecutionTime before and after Transformation (√loge(2+x)) 
 Mean  → after Skewness → after Kurtosis → after 

Enhanced Cyclic 452.6352 2.2122 3.6551 -0.1085 14.1130 -0.6863

Basic Cyclic 18.9381 1.7059 0.8533 -0.4527 0.4798 -0.0332

Basic Annealing 6419.776 2.8665 0.3378 -0.8261 -1.1919 -0.4477

Enhanced Annealing 1436.712 2.4239 2.9966 0.6193 9.0278 -0.4612

ILP 3381.498 2.4037 5.3868 0.3361 30.1000 0.0557

Ward 1 1971.534 2.2823 2.1201 0.0441 3.4505 -1.1133

Ward 2 2192.496 2.3219 2.0748 0.0123 3.2831 -1.2713

Table 15: Mean scores for ExecutionTime 

 

 

5.2 MANOVA 1 Results 

 

MANOVA 1 is designed to measure differences between all methods, except ILP, in the 

dimensions of WeightedSchedule and WeightedShift. A 5 x 2 factorial MANOVA design 

is used, representing the five methods and two wards included in the model. All five 

methods were able to find solutions to the sample of 52 rosters, resulting in 26 cases per 

cell, and 260 cases in total.  

 

 (70)



Chapter 5  Results 

The following table and graphs show the mean schedule and shift score values for each 

method and ward. In all cases a lower mean score represents a better quality solution.  
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Figure 10: MANOVA 1 Comparison of method means 
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Figure 11: MANOVA 1 Comparison of ward means 
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 Shift Mean ± Standard Error 

(loge(2 + WeightedShift)) 
Schedule Mean ± Standard Error

(√WeightedSchedule) 
Enhanced Cyclic 3.25 ± 0.16 3.64 ± 0.06 
Basic Cyclic 4.03 ± 0.14 3.67 ± 0.06 
Manual 4.35 ± 0.13 4.25 ± 0.06 
Basic Annealing 3.25 ± 0.16 3.69 ± 0.06 
Enhanced Annealing 3.26 ± 0.15 3.67 ± 0.06 
Ward 1 3.91 ± 0.09 3.90 ± 0.04 
Ward 2 3.34 ± 0.10 3.67 ± 0.05 
Table 16: MANOVA 1 Mean Data 

 

The mean data results confirm the expectation that the manual method would score more 

highly than the computerised methods for both shift and schedule scores. Also, as 

expected, the basic cyclic descent algorithm has a generally higher shift score than the 

other algorithms. The remainder of the MANOVA 1 analysis investigates which of these 

differences between means are statistically significant. Table 17 gives the multivariate 

tests of significance for the model, showing that that both Method and Ward effects are 

significant and that there is no interaction effect between Method and Ward. 

 

Effect Pillais (sig of F) Hotellings (sig of F) Wilks (sig of F) 

Method 0.35025 (0.000) 0.46463 (0.000) 0.66937 (0.000) 

Ward 0.11410 (0.000) 0.12880 (0.000) 0.88590 (0.000) 

Method by Ward 0.02038 (0.741) 0.02078 (0.741) 0.97963 (0.741) 

Table 17: MANOVA 1 Multivariate tests of significance 

 

Following from the multivariate tests of significance, univariate tests of significance were 

conducted to discover which dependent variables are responsible for the multivariate 

effect. These tests are shown in table 18, and indicate that shift and schedule scores differ 

between methods and that shift and schedule scores differ between wards (p < .05) 
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Effect Variable F-value Significance of F 

Method WeightedShift 13.77009 0.000

Method WeightedSchedule 19.32899 0.000

Ward WeightedShift 18.96420 0.000

Ward WeightedSchedule 20.18990 0.000

Table 18: MANOVA 1 Univariate tests of significance 

 

 

To complete the MANOVA 1 analysis, a series of contrasts were made between the mean 

of the enhanced cyclic descent method and all other methods for both shift and schedule 

scores. A significant contrast is recognised if the joint univariate 95% Bonferroni 

confidence interval does not pass through zero. The Bonferroni confidence interval 

compensates for the inflated Type 1 error rate caused by making multiple contrasts 

(Tabachnick and Fidell 1989). This results in an overall α level of 0.05. The mean 

contrasts are shown in the following table (the final two columns showing the Bonferroni 

intervals) : 

 

 

Variable 1st Mean 2nd Mean t-value significance 
of t 

lower  
c-level 

upper  
c-level 

Weighted 
Shift 

Enhanced 
Cyclic 

Basic Cyclic 3.89853 0.00012 0.27691 1.28469

  Manual 
 

5.47800     0.00000     0.59325    1.60103

  Basic 
Annealing 

-0.01478 0.98822 -0.50685 0.50093

  Enhanced 
Annealing 

0.03730 0.97027 -0.49642 0.51136

Weighted 
Schedule 

Enhanced 
Cyclic 

Basic Cyclic 0.33899 0.73490 -0.18252 0.23936

  Manual 
 

7.24798 0.00000 0.39674 0.81862

  Basic 
Annealing 

0.57856 0.56341 -0.16243 0.25945

  Enhanced 
Annealing 

0.32962 0.74197 -0.18330 0.23857

Table 19: MANOVA 1 Contrasts with 95% Bonferroni confidence intervals 
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Using the Bonferroni confidence intervals we can conclude that the mean value of the 

enhanced cyclic descent algorithm for WeightedShift is significantly different from the 

mean values of WeightedShift for both the basic cyclic descent algorithm and the manual 

method. In addition, we can conclude that the mean value of the enhanced cyclic descent 

algorithm for WeightedSchedule is significantly different from the WeightedSchedule 

mean of the manual method. These differences are expressed in the following scatter 

plots: 
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Figure 12: MANOVA 1 Scatter Plot of schedule scores for each method 
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Figure 13: MANOVA 1 Scatter Plot of shift scores for each method 
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5.3 MANOVA 2 Results 

 

MANOVA 2 is designed to look at differences in execution times between those 

algorithms that were able to solve all 52 rosters. Manual roster solutions were not 

included because execution time data was not available, and ILP roster solutions were not 

included because of missing data for the rosters the algorithm was unable to solve. 

MANOVA 2 therefore considers the four DOS-based algorithms (the enhanced cyclic 

descent algorithm, the basic cyclic descent algorithm, the basic simulated annealing 

algorithm and the enhanced simulated annealing algorithm). All three criteria measures 

are included in the model, but only differences in ExecutionTime are considered in detail. 

Differences in WeightedShift and WeightedSchedule have already been analysed in 

MANOVA 1. A 4 x 2 factorial MANOVA design is used, representing the four methods 

and two wards included in the model. Each cell in the design contains 26 cases, resulting 

in a total of 208 cases. 

 

The following graphs and table summarise the mean criteria values for each ward and 

method (again a lower value indicates a better quality solution) : 
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Figure 14: MANOVA 2 Comparison of method means 
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Figure 15: MANOVA 2 Comparison of ward means 

 

 Shift Mean ± 
Standard Error 

loge(2+WeightedShift)

Schedule Mean ±
Standard Error 

√WeightedSchedule

Time Mean ± 
Standard Error 

√loge(2+ExecutionTime)
Enhanced Cyclic 3.25 ± 0.16 3.64 ± 0.06 2.21 ± 0.05 
Basic Cyclic 4.03 ± 0.14 3.67 ± 0.06 1.71 ± 0.02 
Basic Annealing 3.25 ± 0.16 3.69 ± 0.06 2.87 ± 0.03 
Enhanced Annealing 3.26 ± 0.15 3.67 ± 0.06 2.42 ± 0.04 
Ward 1 3.80 ± 0.10 3.78 ± 0.04 2.28 ± 0.05 
Ward 2 3.10 ± 0.11 3.28 ± 0.05 2.32 ± 0.05 
Table 20: MANOVA 2 Mean Data 

 

The shift and schedule mean results for each method are the same as those reported for 

MANOVA 1. New shift and schedule means have been obtained for each ward due to the 

removal of the manual method from the MANOVA 2 analysis. However, these ward 

mean values repeat the relative size and direction of difference observed in the previous 

analysis. Of more interest are the mean time values for each level of independent variable. 

As hypothesised, the basic cyclic descent algorithm has the fastest mean execution time. 

Also, as expected, both simulated annealing algorithms execute more slowly than the 

enhanced cyclic descent algorithm. Finally, a relatively small difference in mean 

execution time is recorded between wards. 

 

The remainder of the MANOVA 2 analysis examines whether the differences between 

execution time means are statistically significant. Also, the new shift and schedule means 
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for each ward are examined to see if the MANOVA 1 results are confirmed. Table 21 

shows the multivariate tests of significance for the model. As with MANOVA 1, the tests 

show both Method and Ward effects are significant and that there is no interaction effect 

between Method and Ward. 

 

Effect Pillais (sig of F) Hotellings (sig of F) Wilks (sig of F) 

Method 0.75945 (0.000) 2.69859 (0.000) 0.26403 (0.000)

Ward 0.14454 (0.000) 0.16896 (0.000) 0.85546 (0.000)

Method by Ward 0.00730 (0.997) 0.00733 (0.998) 0.99271 (0.997)

Table 21: MANOVA 2 Multivariate tests of significance 

 

Univariate tests of significance were conducted to discover which dependent variables 

were responsible for the multivariate effects. These tests are shown in table 22. Firstly, 

WeightedShift and ExecutionTime are shown to differ between methods, whereas 

WeightedSchedule does not. Secondly, WeightedShift and WeightedSchedule are shown 

to differ between wards, whereas ExecutionTime does not (p > .05). Given these results 

we can conclude there is no significant difference between wards for ExecutionTime and 

that the significance of differences between wards for WeightedSchedule and 

WeightedShift are the same as those reported for MANOVA 1. 

 
Effect Variable F-value Significance of F 

Method WeightedShift 7.22767 0.000

Method WeightedSchedule 0.11209 0.953

Method ExecutionTime 172.77560 0.000

Ward WeightedShift 23.25399 0.000

Ward WeightedSchedule 14.63097 0.000

Ward ExecutionTime 1.16362 0.282

Table 22: MANOVA 2 Univariate tests of significance 

 

In comparing WeightedShift and WeightedSchedule means for each method, MANOVA 

2 repeats the findings of MANOVA 1 (i.e. the Basic Cyclic Descent algorithm is found to 

be significantly different for the criteria of WeightedShift). To investigate the significance 

of differences in ExecutionTime between methods, further contrasts were made between 

the mean of the enhanced cyclic descent method and the means for the other three 
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methods. These are shown in the following table (the final two columns showing the 

Bonferroni intervals) : 

 

Variable 1st Mean 2nd Mean t-value significance 

of t 

lower  

c-level 

upper  

c-level 

Execution 

Time 

Enhanced 

Cyclic 

Basic  

Cyclic 

-9.76211 0.00000 -0.63143 -0.38103

  Basic 

Annealing 

12.61874 0.00000 0.52917 0.77956

  Enhanced 

Annealing 

4.08317 0.00006 0.08654 0.33694

Table 23: MANOVA 2 Contrasts with 95% Bonferroni confidence intervals  

 

Using the 95% Bonferroni confidence intervals (overall α = .05), we can conclude that 

the mean value of the enhanced cyclic descent algorithm for ExecutionTime is 

significantly different from the mean values of ExecutionTime for all methods tested. 

These differences and their direction are expressed in the following scatter plot: 
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Figure 16: MANOVA 2 Scatter Plot of execution times for each method 
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5.4 MANOVA 3 Results 

 

MANOVA 3 compares results for all five computerised methods, considering only those 

rosters which the ILP algorithm was able to solve. For these rosters, the ILP solutions 

provide an optimum measure of shift and schedule quality from which the other methods 

can be assessed. The speed of execution for the ILP algorithm is also of interest. 

Therefore all three criteria measures are included in the analysis.  

 

The ILP algorithm found solutions for twenty-six Ward 1 rosters and eight Ward 2 

rosters. The remaining eighteen Ward 2 rosters were unsolved for the following reasons: 

 

1. Sixteen rosters were unable to be processed because the ILP matrices became 

too large to hold in memory. The largest problem to be successfully solved 

contained 20,325 variables (= 20,325 feasible schedules). 

2. One roster problem was allowed to run for 4 days without finding a solution 

and was then terminated. 

3. One roster problem was rejected as infeasible by the ILP software, although 

feasible solutions to this problem were found by the other algorithms. 

 

A 5 x 2 factorial MANOVA design is used. Of the ten cells in the model, five contain 26 

cases each and five contain 8 cases each, making 170 cases in total. Issues relating to 

unequal cell sizes are discussed in Section 5.1.3. Firstly, the relative mean criteria values 

for each ward and method are summarised in the following graphs and table: 
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1 = Enhanced Cyclic 
2 = Basic Cyclic 
3 = Basic Annealing 
4 = Enhanced Annealing 
5 = ILP 

Figure 17: MANOVA 3 Comparison of method means 
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Figure 18: MANOVA 3 Comparison of ward means 

    Ward 1   Ward 2                      Ward 1   Ward 2                      Ward 1   Ward 2   
    Shift Means               Schedule Means              Time Means 

 

 Shift Mean ± 
Standard Error 

loge(2+WeightedShift)

Schedule Mean ±
Standard Error 

√WeightedSchedule

Time Mean ± 
Standard Error 

√ loge(2+ExecutionTime)
Enhanced Cyclic 3.54 ± 0.17 3.72 ± 0.06 2.22 ± 0.06 
Basic Cyclic 4.20 ± 0.17 3.71 ± 0.07 1.68 ± 0.03 
Basic Annealing 3.54 ± 0.18 3.77 ± 0.06 2.86 ± 0.04 
Enhanced Annealing 3.53 ± 0.18 3.73 ± 0.06 2.37 ± 0.05 
ILP 3.53 ± 0.18 3.51 ± 0.07 2.40 ± 0.07 
Ward 1 3.76 ± 0.09 3.73 ± 0.03 2.29 ± 0.04 
Ward 2 3.39 ± 0.16 3.55 ± 0.06 2.36 ± 0.08 
Table 24: MANOVA 3 Weighted Mean Data 
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An inspection of the mean data values indicates the differences between wards and 

methods are in line with results from MANOVA 1 and MANOVA 2. Of interest are the 

new results for the ILP method. As expected, the ILP algorithm has generated the lowest 

mean WeightedSchedule score, whilst matching the best WeightedShift score of the other 

methods. ILP ExecutionTime is second slowest being faster than the basic simulated 

annealing algorithm but slower than the enhanced simulated annealing algorithm. 

 

The remainder of the MANOVA 3 analysis tests the observed differences between means 

to see which are statistically significant. Table 25 shows the multivariate tests of 

significance for the model. As with MANOVA 1 and MANOVA 2, the tests show both 

Method and Ward effects are significant and that there is no interaction effect between 

Method and Ward (p > .05). 

 

Effect Pillais (sig of F) Hotellings (sig of F) Wilks (sig of F) 

Method 0.72649 (0.000) 1.90997 (0.000) 0.32592 (0.000)

Ward 0.05740 (0.025) 0.06090 (0.025) 0.94260 (0.025)

Method by Ward 0.03752 (0.911) 0.03876 (0.911) 0.96258 (0.911)

Table 25: MANOVA 3 Multivariate tests of significance 

 

Univariate tests of significance were conducted to discover which dependent variables 

were responsible for the multivariate effects. These tests are shown in table 26. Firstly, 

WeightedShift and ExecutionTime are shown to differ between methods, whereas 

WeightedSchedule does not. Secondly, WeightedShift and WeightedSchedule are shown 

to differ between wards, whereas ExecutionTime does not (p > .05). Given these results 

we can conclude there is no significant difference between wards for ExecutionTime and 

that the differences between wards for WeightedSchedule and WeightedShift are the same 

as those reported for MANOVA 1. 
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Effect Variable F-value Significance of F 

Method WeightedShift 2.90218 0.024

Method WeightedSchedule 2.50178 0.045

Method ExecutionTime 71.08434 0.000

Ward WeightedShift 4.01229 0.047

Ward WeightedSchedule 7.11016 0.008

Ward ExecutionTime 1.51221 0.221

Table 26: MANOVA 3 Univariate tests of significance 

 

Multiple univariate F-tests cause an inflated Type 1 error rate. In order to compensate for 

this error, a Bonferroni type adjustment was used (Tabachnick and Fidell 1989, p. 399). 

For an overall α of 0.05, this results in individual dependent variable α levels of 0.017.  

Using the adjusted α level, it can be seen from Table 26 that ExecutionTime means differ 

significantly between methods and that WeightedSchedule means differ significantly 

between wards. For all other means no significant difference is observed. It can therefore 

be concluded that (as before) the two wards have significantly different 

WeightedSchedule mean scores. However, with the smaller sample size, there is no longer 

a significant difference between each ward’s WeightedShift mean score. In comparing 

each method, it is possible for no overall difference to be observed between means, but 

for a significant difference to exist between a pair of means. Therefore an additional 

contrast analysis was performed considering all dependent variable means for each 

method. As before, the enhanced cyclic descent algorithm mean is taken as the base from 

which the other means are contrasted. This is shown in the following table (the final two 

columns giving the Bonferroni intervals) : 
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Variable 1st Mean 2nd Mean t-value significance 

of t 

lower  

c-level 

upper  

c-level 

Weighted 

Shift 

Enhanced 

Cyclic 

Basic Cyclic 2.13673 0.03414 -0.11368 1.36078

  Basic 

Annealing 

-0.05175 0.95879 -0.75233 0.72213

  Enhanced 

Annealing 

-0.30160 0.76335 -0.82524 0.64921

  ILP 

 

-0.00880 0.99299 -0.73980 0.73466

Weighted 

Schedule 

Enhanced 

Cyclic 

Basic Cyclic -0.28653 0.77485 -0.30690 0.24437

  Basic 

Annealing 

0.30909 0.75765 -0.24191 0.30936

  Enhanced 

Annealing 

-0.03162 0.97482 -0.27908 0.27218

  ILP 

 

-1.90768 0.05822 -0.48377 0.06749

Execution 

Time 

Enhanced 

Cyclic 

Basic Cyclic -6.45642 0.00000 -0.75252 -0.32925

  Basic 

Annealing 

7.74756 0.00000 0.43741 0.86068

  Enhanced 

Annealing 

1.55211 0.12261 -0.08161 0.34166

  ILP 

 

3.05721 0.00262 0.04448 0.46775

Table 27: MANOVA 3 Contrasts with 95% Bonferroni confidence intervals 
 

Looking at those 95% Bonferroni confidence intervals that pass through zero we can 

conclude, as indicated by the univariate F-tests, that there are no significant differences 

between methods for WeightedSchedule and WeightedShift mean scores. Conversely, for 

mean ExecutionTime scores we can conclude that all methods are significantly different 

from the enhanced cyclic descent algorithm except the enhanced simulated annealing 

algorithm. These results are summarised in the following two scatter plots: 
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Figure 19: MANOVA 3 Scatter Plot of execution times for each method 
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Figure 20: MANOVA 3 Scatter Plot of schedule scores for each method 
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5.5 Supplementary Results 
 

5.5.1 Differences Between Wards 

 

The previous sections have reported significant differences between wards for both 

WeightedSchedule and WeightedShift mean scores. To further explain these differences, 

the original problem specifications for each ward were re-examined. Firstly, the relative 

numbers of staff allocated to each ward were considered. A count was made of the 

number of shifts allocated to each ward for each roster. Then a similar count was made of 

the minimum allowable number of shifts required for each ward for each roster. By 

subtracting and averaging these two quantities a surplus staff measure was obtained, as 

shown in the following table:  

    

 Mean Surplus Staff  

Ward 1   9.7692 

Ward 2 12.5769 

         Table 28: Mean surplus staff for each ward 

 

Whilst Ward 1 was allocated less surplus staff than Ward 2, using a t-test, the difference 

was not found to be statistically significant ( p > 0.05, samples approximately normally 

distributed). Secondly, the difference in problem size was examined. This was measured 

by taking the mean of the number of feasible schedules generated for each ILP roster 

problem for each ward. This is shown in the following table: 

 

 Mean Feasible Schedules 

Ward 1   2,637.54 

Ward 2 26,212.04 

           Table 29: Mean feasible schedules for each ward 

 

Using a t-test, a significant difference was found in problem size between wards ( p < .05,  

samples approximately normally distributed). 
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5.5.2 Measurement of Full-Time Schedule Scores 
 

The WeightedSchedule scoring criteria described in Chapter 3 was initially developed to 

measure full-time schedule quality. It was then generalised to include part-time schedules. 

Whilst being a good measure of full-time schedule quality, it provides a simplified 

measure of part-time schedule quality. The question arises whether human schedulers are 

applying more complex criteria when evaluating part-time schedules. If this is the case, 

then the WeightedSchedule comparison between computerised and manual methods may 

be biased against the manual method. To provide an additional test, the MANOVA 1 

analysis was repeated, using only full-time WeightedSchedule scores. The mean values of 

the transformed full-time WeightedSchedule scores used in the design are shown in the 

following table: 

 
Independent Variable Level Full-Time WeightedSchedule Mean 

± Standard Error 
Method Enhanced Cyclic 2.71 ± 0.10 
 Basic Cyclic 2.67 ± 0.10 
 Manual 3.53 ± 0.09 
 Basic Annealing 2.71 ± 0.09 
 Enhanced Annealing 2.69 ± 0.09 
Ward Ward 1 2.83 ± 0.07 
 Ward 2 2.89 ± 0.07 
Table 30: Full-time WeightedSchedule means 

 

Univariate tests of significance confirmed there was a significant difference between 

method means. Contrasting the manual method mean with the enhanced cyclic descent 

method mean again showed a significant difference, with a 95% Bonferroni confidence 

interval of 0.4752 to 1.16046. This demonstrates that the removal of part-time schedule 

scores from the model does not alter the relative positioning of method means. However, 

no significant difference was found between ward means when considering full-time 

schedules (previously Ward 1 had scored more highly). This indicates the difference in 

total WeightedSchedule scores between wards is primarily explained by differences in 

part-time schedule scores.   
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Chapter 6: Discussion 

 

 

This chapter analyses and interprets the results presented in Chapter 5. Firstly an 

overview of the research findings is given and the experimental hypotheses are examined. 

The general findings are then qualified by a more detailed analysis of the results for 

selected methods and for each ward. Finally the limitations of the methods used in the 

study are examined and areas for further research are recommended. 

 

6.1 Overview 
 

The main finding of the empirical research is that of all the methods considered, the 

enhanced cyclic descent algorithm has the best overall performance. A secondary finding 

is that rosters generated for Ward 2 were of a generally higher quality than those 

generated for Ward 1.  

 

Looking in turn at the hypotheses presented in Chapter 3:  

 

Hypothesis 1: It was expected that the mean value of WeightedSchedule for the ILP 

algorithm would be less than the mean value of WeightedSchedule for the enhanced 

cyclic descent algorithm. The MANOVA 3 results showed no significant difference 

between these means and so hypothesis 1 can be rejected. The expectation of a lower 

WeightedSchedule score for the ILP algorithm was theoretically based on the algorithm 

being able to find an optimum solution. Whilst ILP scores for WeightedSchedule were 

without exception less than or equal to WeightedSchedule scores for all other 

computerised methods, this difference was not found to be significant at α = 0.05.  

 

Hypothesis 2: It was expected that the mean value of WeightedShift for the basic cyclic 

descent algorithm would be greater than the mean value of WeightedShift for the 

enhanced cyclic descent algorithm. In MANOVA 1 a significant difference in the 

expected direction was found and so hypothesis 2 can be accepted. This result confirms 
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that the enhancements made to basic cyclic descent algorithm have produced a noticeable 

improvement in the quality of roster generated. 

 

Hypothesis 3: It was expected that no significant difference would exist between the 

mean values of WeightedShift for all computerised methods excluding the basic cyclic 

descent algorithm. This hypothesis was confirmed in all three MANOVA analyses. 

 

Hypothesis 4: It was expected that no significant difference would exist between the 

mean values of WeightedSchedule for all computerised methods excluding the ILP 

algorithm. This hypothesis was again confirmed in all three MANOVA analyses. 

 

Hypothesis 5: In examining execution times it was expected that the basic cyclic descent 

algorithm would execute faster than the enhanced cyclic descent algorithm, whilst the 

enhanced cyclic descent algorithm would execute faster than both simulated annealing 

algorithms. Hypothesis 5 was confirmed by the significant differences found between 

execution times in MANOVA 2.  However, with the reduced data set used in MANOVA 

3 a significant difference was no longer found between the enhanced simulated annealing 

algorithm and the enhanced cyclic descent algorithm.  

 

Hypotheses 6 and 7: These hypotheses expected the mean values of WeightedSchedule 

and WeightedShift for the manual method to be greater than the corresponding measures 

for the enhanced cyclic descent algorithm. Both hypotheses were confirmed by significant 

differences found in MANOVA 1. 

 

In looking for the best overall method of roster generation, a predefined order of criteria 

importance is assumed: 

 

1. WeightedShift (most important) 

2. WeightedSchedule 

3. ExecutionTime (least important) 
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Using this ordering of criteria, the manual method and the basic cyclic descent method 

can be eliminated from contention. This is because both methods scored poorly on the 

WeightedShift criteria. The manual method also scored poorly on the WeightedSchedule 

criteria. For the remaining methods, no significant differences in WeightedShift or 

WeightedSchedule scores were found. Therefore these methods can be separated entirely 

on the basis of ExecutionTime. As the enhanced cyclic descent algorithm had a 

significantly faster execution time than the ILP algorithm and both simulated annealing 

algorithms, it can be concluded that the enhanced cyclic descent algorithm is the best 

overall method. 

 

The relative position of each method and ward in the dimensions of WeightedShift and 

WeightedSchedule from MANOVA 1 are shown in the following diagram: 
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Improving 

  

Figure 21 shows the separation of the basic cyclic descent method and the manual method 

from the other methods and explains how these methods were eliminated from contention 

(lower scores on both axes indicate a better quality solution). The significant difference 

between wards for both criteria is also illustrated. Figure 22 shows the relative positions 

of selected methods from MANOVA 3 for the criteria of WeightedSchedule and 

ExecutionTime: 
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Figure 22: MANOVA 3 Selected means comparison 

 

Given that all methods in figure 22 score equally on WeightedShift, it can be seen that the 

enhanced cyclic descent algorithm clearly exceeds the enhanced simulated annealing 

algorithm in the dimension of ExecutionTime. Therefore, the final decision over the best 

method lies between the enhanced cyclic descent algorithm and the ILP algorithm. The 

enhanced cyclic descent algorithm is finally chosen because it has a significantly faster 

ExecutionTime, whereas no significant difference in WeightedSchedule scores was found 

between the selected methods at α = 0.05. 

 

 

6.2 Evaluation of the ILP Algorithm 

 

6.2.1 Sample Size 

 

The study has found no significant difference between the ILP algorithm and the other 

enhanced algorithms for the WeightedSchedule and WeightedShift criteria. This result is 

unlikely to be upheld for larger sample sizes of rosters that the ILP algorithm is able to 

solve. This is because an ILP roster solution will always be optimal with respect the 

objective function and constraints defined for the problem. By definition, other methods 

used in the study might approach, but can never exceed, an optimal solution. Therefore it 
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is to be expected that as sample size increases the distinction between ILP solutions and 

the other methods will grow.  

 

6.2.2 Problem Size and Execution Times 
 

It was expected that for larger rostering problems the ILP algorithm would be unable to 

find solutions within an acceptable period of time. However, the algorithm found 

solutions to most problems up to a size of 20,000 variables within 1 hour of Unix user 

time (approximately 4 hours of DOS time, see Section 5.1.2). Larger problems remained 

unsolved due to a shortage of computer memory and not because an upper limit to the 

capabilities of the ILP algorithm was found. A clear idea of the relationship between 

problem size and execution time could not be gauged. This was partly due to an uneven 

distribution of problem sizes, as illustrated in the following graph: 
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Figure 23: Scatter Plot of ILP DOS execution times against problem size 

 

Figure 23 indicates that ILP solution times tend to be unpredictable for problem sizes over 

3000 variables (noting that one 11,992 variable problem remained unsolved after four 

days of processing). However, for problems of under 3000 variables, the algorithm is able 

to consistently find optimal solutions within reasonable time.  
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6.2.3 Applicability of an ILP Approach 

 

Three points arise from the above discussion: 

 

1. An ILP solution will always be as good as or better than a solution produced by 

any other method in the study.   

2. The ILP algorithm is consistently able to solve problems up to 3,000 variables. 

3. ILP tests have only been conducted on a Sun®/Unix platform. 

 

From this it is concluded that an ILP algorithm would be the preferred approach for the 

solution of smaller rostering problems, given the availability of a Sun®/Unix platform. 

With greater memory resources and/or a more powerful processor there is reason to 

expect an ILP algorithm would consistently solve larger problems. Conclusions as to the 

applicability of a DOS-based ILP algorithm must be left for further testing.  

 

6.3 Evaluation of the Enhanced Simulated Annealing algorithm 

 

Both simulated annealing algorithms were found to execute significantly more slowly 

than the enhanced cyclic descent algorithm considering the full set of rosters. Given the 

nature of a simulated annealing search, this result is to be expected (see Section 2.2.5). 

However, for the reduced set of rosters used in MANOVA 3, no significant difference in 

execution time was found between the enhanced simulated annealing algorithm and the 

enhanced cyclic descent algorithm (although on average the enhanced cyclic descent 

algorithm was still executing slightly faster). This indicates that for smaller problem sizes, 

there is little to choose between the enhanced cyclic and enhanced annealing approaches. 

The results also show that the simple addition of a schedule selection bias into the 

simulated annealing algorithm causes a noticeable speeding up of execution time. Further, 

it should be remembered that a general simulated annealing algorithm was applied to the 

problem. Faster simulated annealing algorithms have been reported in the literature (Lo 

and Bavarian 1992), and the application of such algorithms to the nurse rostering problem 

may further decrease execution times. Whether such a decreases in execution time would 

be paid for by poorer quality solutions must be left for further research to investigate.  
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6.4 Distinctions between Algorithms 

 

From the discussion so far it can be concluded that the enhanced cyclic descent algorithm 

has the best overall performance of the methods considered, but that this difference is 

only significant for larger problem sizes. The distinguishing feature of a large roster 

problem is the presence of part-time staff with relatively unconstrained schedule 

requirements. As explained in Section 4.1.4, the enhanced cyclic descent algorithm is able 

to calculate the best schedule for each unconstrained staff member whilst the algorithm 

descends towards a solution. Without such a calculation, the algorithm would have to 

generate and test thousands of additional feasible schedules, meaning that larger problems 

would execute more slowly and finally run out of memory.  

 

The ILP problem formulation used in the research requires that all feasible schedules for 

all nurses are specified in advance. It was the presence of staff with unconstrained 

schedules that caused the ILP method to run out of memory and fail to solve 16 roster 

problems. The relatively fixed nature of an ILP algorithm means that schedules cannot be 

calculated during the solution process. However, it may be possible to develop a new 

formulation of the problem constraints that would eliminate unconstrained nurse 

schedules from the model. If successful, such an approach could greatly expand the size 

of problem that an ILP algorithm is able to solve. This provides an interesting avenue for 

further research and is explored in more detail in Appendix 8.  

 

The simulated annealing algorithm was able to use the reduced set of schedules generated 

for the enhanced cyclic descent algorithm. However instead of calculating the best 

schedule for an unconstrained nurse, in keeping with the simulated annealing search 

strategy, a schedule is randomly generated (see Section 4.5). Whilst this approach avoids 

the large memory overhead associated with the ILP algorithm, the size of the search space 

is not reduced (i.e. instead of immediately calculating the best schedule for a given roster, 

a simulated annealing algorithm must still ‘guess’ a solution from the thousands of 

possible unconstrained schedules). This could explain the slower execution times for the 

enhanced simulated annealing algorithm for those problems containing unconstrained 

nurse schedules. This finding suggests a hybrid solution may be effective: firstly a 

simulated annealing approach could be used to select from constrained schedule sets, 
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whilst the schedule calculating algorithm from the cyclic descent algorithm could be used 

to generate unconstrained schedules. 

 

6.5 Differences between Wards 
 

The results from the MANOVA analyses indicate that Ward 2 has significantly better 

scores than Ward 1 for both WeightedShift and WeightedSchedule, whilst no difference 

was found in ExecutionTime. In looking for reasons for the generally better performance 

of Ward 2, measures were taken both of the mean size of problem and of the amount of 

surplus staff above minimum requirements. It was found that Ward 2 had significantly 

larger problem sizes, and slightly more surplus staff (see Section 5.5.1). As the main 

intent of the study is to investigate the differences between methods, further statistical 

analysis of differences between wards was not performed. However, it seems reasonable 

to suggest that the generally better solutions for Ward 2 were related to the greater 

number of feasible schedules and surplus staff available. A greater number of feasible 

schedules would produce a greater number of possible solutions to a problem. Given this 

enlarged pool of solutions, the possibility of a high quality solution must also increase. In 

addition, the presence of surplus staff means the chances of understaffing are reduced and 

the chances of overstaffing are increased. Referring to the WeightedShift criteria scores 

described in Section 3.3.1, it can be seen that understaffing is penalised more severely 

than overstaffing. Therefore a larger supply of surplus staff would tend to reduce the 

WeightedShift score for a roster. 
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6.6 Limitations and Further Research 

 

6.6.1 Practical Application of a Rostering Algorithm 
 

A discussion of the limitations of the research is provided in Section 3.5. However, a 

basic limitation of the computerised approaches used in the study must be discussed 

further, in order that the study’s results are not misinterpreted. As mentioned in Section 

3.5.2, all rosters presented to the computer algorithms have already been solved by 

human experts. A feasible problem solution is defined as any solution that is as good as or 

better than the manual solution. This means a feasible solution to every problem is 

guaranteed (i.e. the manual solution is always a feasible solution). If no manual solution 

exists, as would be the case in the normal implementation of a rostering algorithm, then 

there is no guarantee that a feasible solution exists for a given set of constraints. For 

instance, there may be insufficient staff available for a particular night shift. A human 

expert’s response would be to find an extra member of staff to work the shift, either by 

finding extra staff from outside the ward or reassigning staff within the ward.  

 

The area of resolving conflicting and infeasible constraints is not addressed in the current 

study. However, for the past year, the enhanced cyclic descent algorithm has been used to 

generate the rosters for one of the wards used in the study. Experience has shown that a 

problem often has to be run several times through the algorithm before a feasible solution 

is found. With each unsuccessful run, the best infeasible solution is examined and any 

unattainable constraints are suitably adjusted. This can be a time consuming process, 

lasting anywhere from 30 minutes to several hours. 

 

 

6.6.2 An Expert System Approach to Constraint Resolution 

 

The need for human intervention in the solution process tends to make rostering software 

unattractive. The inability of mathematical algorithmic approaches to resolve conflicting 

constraints has already been highlighted in the literature review (see Section 2.3.2). 

Artificial Intelligence researchers have therefore recommended the use of expert or 

knowledge-based systems for rostering (Chow and Hui 1993). However, expert system 
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approaches, whilst providing flexibility, do not necessarily find the best quality solutions. 

The current research has demonstrated that mathematical algorithmic techniques are 

capable of finding optimal or near optimal solutions to realistic rostering problems. 

Practical experience with the enhanced cyclic descent algorithm has indicated there are 

difficulties in finding a feasible set of problem constraints. A logical next step for the 

research would be to look into the development of an expert system approach to the 

resolution of conflicting constraints, whilst still using a mathematical algorithmic 

technique for roster calculation. 
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Chapter 7: Conclusion 

 

 

In conclusion, the contributions and findings of the current study are summarised. Firstly, 

due to a lack of empirical research in the literature, original criteria were developed with 

which to measure the performance of a set of roster generation methods. As previously 

stressed, these criteria were generated in relation to the hospital wards used in the study, 

and are not necessarily applicable to other rostering problems. In addition, based on 

previous research, two new roster generation algorithms were developed: the enhanced 

cyclic descent algorithm and the enhanced simulated annealing algorithm. The 

development of enhanced algorithms was necessary due to recognised deficiencies in 

existing rostering algorithms. The study also introduces several new techniques which 

reduce the size of the roster problem without reducing the set of feasible solutions to the 

problem. 

 

Using the criteria developed in the study, the performance of the enhanced cyclic descent 

algorithm was measured against manually generated rosters and against four other 

computerised methods. These were a basic cyclic descent algorithm, basic and enhanced 

simulated annealing algorithms and an ILP algorithm. A series of MANOVA analyses 

produced the conclusion that the enhanced cyclic descent algorithm has the best overall 

performance of the methods considered. Additional significant findings that emerged 

from the research were: 

 

• In almost all cases, the computerised methods produced better quality rosters 

than the manually generated solutions actually used at the hospital (as 

measured by the criteria developed in the study). 

  

• Contrary to expectations, the ILP algorithm was able to solve a large proportion 

of the roster problems (34 from 52), and was consistently able to solve 

problems of up to 3,000 variables. 
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• The quality of solutions generated by the enhanced cyclic descent algorithm 

and the simulated annealing algorithms was not significantly different from the 

optimum quality rosters generated by the ILP algorithm. 

 

Three methods, the enhanced cyclic descent algorithm, the enhanced simulated annealing 

algorithm and the ILP algorithm, produced the most promising results in the study. The 

enhanced cyclic descent algorithm was considered superior because it had the smallest 

average execution time and because the ILP algorithm was unable to solve larger 

problems. However, the study indicates that improvements to both the simulated 

annealing approach and to the ILP approach are possible. Therefore, a categorical 

conclusion as to the superiority of one method over another cannot be made. Of the 

algorithms used in the study, the enhanced cyclic descent algorithm would be preferred. 

However, given the increasing power of computer technology and the development of a 

better mathematical formulation of the problem, an ILP approach to nurse rostering looks 

increasingly promising. 

 

The two main criticisms raised against mathematical optimising approaches to rostering 

are that they are inflexible to changing or conflicting constraints and are also unable to 

solve large realistic problems. The current study has shown that given a careful 

formulation of the problem, mathematical optimising techniques such as the branch and 

bound ILP algorithm can solve realistic rostering problems. If an ILP approach fails, an 

enhanced cyclic descent approach has been shown to generate near optimal solutions 

within an acceptable time. Given a set of feasible problem constraints, a systematic 

algorithmic optimising approach (e.g. ILP, cyclic descent or simulated annealing) must be 

the preferred approach over a heuristic or rule based search for a satisficing solution. The 

main weakness of the algorithmic approaches presented in the study is their inability to 

cope with or solve problems with inconsistent or unattainable constraints. It is in this area 

that a rule based or expert system approach could be used to resolve conflicting 

constraints and reformulate a problem so that a feasible/optimal solution can be found. 

The marriage of an expert system controller with an ILP or cyclic descent roster 

generating engine would bring together the strengths of both approaches, and is a 

recommended next step for nurse rostering research. 
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Appendix 1: Clarification of Rostering Terms 
 
 
A1.1 Shifts 
A shift is a predefined period of duty that is worked by an individual nurse. Each shift has 
a start time and an end time, with the maximum length of a shift being limited either by 
law or by agreement. A nurse is either on duty or off duty for a particular shift. If a nurse 
is off duty for all shift types on a particular day, it follows that the nurse has a day off. As 
an example, three types of shift considered in the current study are: 
 
• Early Shift: 7.00am - 3.30pm 
• Late Shift: 2.30pm - 11.00pm 
• Night Shift: 10.45pm - 7.30am 
 
Most hospitals operate on a similar three shift system. Other types of shift may be worked 
according to fluctuations in daily patient load (eg 12.30pm - 9.00pm). Additionally, some 
hospitals implement more flexible shifts, with variable starting times and lengths 
(Ozkarahan and Bailey 1988). 
 
 
A1.2 Schedules 
The term schedule has been used rather loosely in the nurse rostering literature, referring   
both to the shifts allocated to an individual nurse, and to describe the roster as a whole. 
For the purposes of this study, a schedule is defined as the pattern of shifts allocated to an 
individual nurse, lasting for the duration of the rostering period. In other words, a 
schedule defines the times during which a nurse is expected to be on duty during the 
rostering period. Table a shows an example one week schedule, using the three shift 
system previously introduced. 
 
 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Night Night Off Off Late Early Early 

Table a: An example nurse schedule 
 
 
 
A1.3 Feasible and Infeasible Schedules 
In all rostering problems, there are explicit and/or implicit rules governing the type of 
schedules that employees are expected to work. From this arises the concept of an 
infeasible schedule. An infeasible schedule is a schedule that breaks one or more of the 
accepted scheduling rules, and therefore should not be considered in a final roster 
solution. By discarding all infeasible schedules, the set of feasible schedules for a given 
nurse and a given roster can be generated (Warner 1976). 
As an example, consider the following situation: 
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•  A ward operates one shift type, so a nurse is either on duty or off duty on any one day.  
• No nurse is expected to work longer than six days or less than four days without a day 

off. 
• All days off are given in consecutive pairs.  
• A schedule lasts for fourteen days. 
• A full-time nurse works exactly ten shifts in any one schedule. 
• A selected full-time nurse has ended the preceding schedule with two days off. 
  
Given these rules and conditions, the following table shows all feasible schedules for the 
selected nurse: 
 
Mo Tue We Th Fri Sat Sun Mo Tue We Th Fri Sat Sun

On On On On Off Off On On On On Off Off On On 

On On On On Off Off On On On On On Off Off On 

On On On On Off Off On On On On On On Off Off 

On On On On On Off Off On On On On Off Off On 

On On On On On Off Off On On On On On Off Off 

On On On On On On Off Off On On On On Off Off 

Table b: Set of feasible schedules for an individual nurse 
 
Table b illustrates how the application of rules and constraints can dramatically reduce the 
total number of feasible schedules for a particular nurse. In a situation where no rules 
were to apply, the total number of feasible schedules would have been 214  (16,384). Of 
these, 99.96% have been eliminated. 
 
 
A1.4 Rosters 
A nurse roster is a collection of nurse schedules. It defines all schedules that will actually 
be worked, for all nurses on a particular ward or unit, within a given time period. In doing 
this, the roster sets the number and identities of the staff working each shift. Therefore, a 
roster is not only concerned with providing nurses with feasible schedules, but also with 
providing adequate patient care on each shift, by supplying sufficient numbers of 
qualified staff.  
 
As with the generation of feasible schedules, a roster is governed by rules and constraints 
that severely limit the number of possible solutions. Using the schedule constraints from 
the previous section, consider a ward with four nurses (nurses one, two, three and four), 
and the following additional constraints: 
 
 
 
• Hospital policy states that there must be at least two nurses on duty each day 
• The most desirable schedules are those which contain unbroken work stretches of 

exactly five shifts 
• Each nurse worked the following number of days at the end of the previous roster: 
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• Nurse one:   0 days (ie the previous schedule ended in days off) 
• Nurse two:   4 days 
• Nurse three:  5 days 
• Nurse four:  2 days  

The number of days worked at the end of the previous roster is used to calculate the 
length of unbroken work stretches between rosters. The following table represents the 
best feasible roster solution to this problem: 
 
Nurse Mo Tu We Th Fri Sat Su Mo Tu We Th Fri Sat Su 

One On On On On On Off Off On On On On On Off Off 

Two On Off Off On On On On On Off Off On On On On 

Three Off Off On On On On On Off Off On On On On On 

Four On On On Off Off On On On On On Off Off On On 

Table c: Example two week roster for four nurses 
 
Table c represents the best roster solution because it not only meets all the hard 
constraints defined, it also achieves the soft constraint of granting all nurses exact work 
stretches of five days. A soft constraint is a constraint whose attainment is desirable, but 
not mandatory. Conversely, hard constraints are constraints that must be met, or the 
solution becomes infeasible. A simple inspection of the problem reveals that no other 
configuration of shifts would provide all nurses with five day stretches. The solution is 
therefore feasible, optimal and unique. 
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Appendix 2: A Mathematical Introduction to the Problem  
 
In the following discussion, a mathematical notation for the problem is put forward, based 
on the models of Warner (1976) and Miller et al. (1976). The distinguishing feature of 
these models, is that they are based on the use of feasible schedules. 
 
Using the roster problem introduced in Appendix 1 : 
• Let i denote the index of n nurses, such that i = 1 . . n. In this case n =  4, as there are 

four nurses. 
• Let j be the index of all feasible schedules for each nurse, and let Ji be the total number 

of feasible schedules for the ith nurse. Given the constraints defined in section A1.3 
and A1.4, each nurse will have the following number of feasible schedules: 

• For nurse one,  J1 = 6, so j = 1 . . 6 
• For nurse two,  J2 = 9, so j = 1 . . 9 
• For nurse three,  J3 = 6, so j = 1 . . 6 
• For nurse four,  J4 = 9, so j = 1 . . 9 

• Let aij be a vector of length 14 representing the jth schedule for the ith nurse. Each 
position in the vector represents a particular day in the schedule, and can have a value 
of 0 or 1. A value of 1 indicates the nurse is on duty for that day and a 0 value indicates 
a day off. The resulting set of vectors, for a particular nurse, represent all the feasible 
schedules for that nurse. In order to clarify this, the following table shows all the aij 
vectors for nurse one:  

      
a1j Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

a11 1 1 1 1 0 0 1 1 1 1 0 0 1 1 
a12 1 1 1 1 0 0 1 1 1 1 1 0 0 1 
a13 1 1 1 1 0 0 1 1 1 1 1 1 0 0 
a14 1 1 1 1 1 0 0 1 1 1 1 0 0 1 
a15 1 1 1 1 1 0 0 1 1 1 1 1 0 0 
a16 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
Table d: Full set of schedule vectors for nurse one  
 
Note that Table d and Table b (the set of feasible schedules for nurse one) represent the 
same information. Also, by reading Table d and referring back to the final roster solution 
in Table c it can be seen that nurse one was given the schedule represented by vector a15.  
 
• Now let Xij represent the variables in the problem, such that : 

 ijX =
⎧
⎨
⎩

 1 if nurse  is to work schedule 
0 if not                                        

i ija
 

  
 Again considering nurse one from the previous roster solution, it can be seen that 
 X15 = 1, and all other X1j = 0 
• From the definition of Xij it follows that for any nurse i, with a total number of feasible 

schedules Ji , ijj

j XiJ
=

=∑ =1 1, as a nurse can only work one schedule in any one roster. 
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• In the example problem, a constraint was defined such that there must be at least two 
nurses on duty during each shift. This can be expressed as a vector btot with 14 
elements. Each element of btot  then represents the minimum number of staff required 
for each day of the roster, such that btot = (2,2,2,2,2,2,2,2,2,2,2,2,2,2) 

• Finally, a measure of the quality of each schedule needs to be introduced into the 
model. For the present example, let us assign a coefficient cij to each schedule j, 
belonging to nurse i, indicating the schedule’s quality. A zero value of cij represents a 
perfect schedule, so as schedule quality decreases, the value of cij  will increase. cij is 
defined such that: 

 

 ijc =

⎧

⎨
⎪

⎩
⎪

0 if a schedule contains only 5 day work stretches                                     
1 if a schedule contains no more than one 6 or 4 day work stretch            
2 otherwise                                                                                                  

 

 
Given these definitions, the complete problem can be expressed in the following form: 
 
 minimise    z J

ijj

j

i

i n

ijc Xi= =

=

=

= ∑∑ 11    (1) 

 subject to     =  1,   = 1..ijj

j XiJ
=

=∑ 1 i n   (2) 

                    ijj

j

i

i n

ij
iJ Xa=

=

=

= ∑∑ ≥11 totb    (3) 

        ( )
ijX = 0 or 1  =  1.. ;  = 1.., i n  j J i    

 
The objective of these equations is to find the combination of schedules with the 
minimum cij values (equation 1), whilst ensuring that each nurse works only one schedule 
(equation 2), and that there are sufficient staff working each shift (equation 3). The 
restriction that Xij should be either 0 or 1 reflects that a nurse can only either work (Xij = 
1) or not work (Xij = 0) a schedule (ie 0.25 of a schedule would have no meaning).  
 
The equation system, as defined, can be solved using existing integer programming 
techniques. This is illustrated in the following worked example of the previously defined 
problem:  
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A2.1 Feasible Schedules 
The following tables define the feasible schedules for each nurse as aij vectors, where i is 
an index of nurses, i = 1 . . n, n = 4, and j is an index of schedules, j = 1 . . Ji, J1 = 6, J2 = 
9, J3 = 6, J4 = 9.  
 
a1j Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

a11 1 1 1 1 0 0 1 1 1 1 0 0 1 1 
a12 1 1 1 1 0 0 1 1 1 1 1 0 0 1 
a13 1 1 1 1 0 0 1 1 1 1 1 1 0 0 
a14 1 1 1 1 1 0 0 1 1 1 1 0 0 1 
a15 1 1 1 1 1 0 0 1 1 1 1 1 0 0 
a16 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
Table e: Feasible schedules for nurse one (last roster ended in days off) 
 
a2j Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

a21 0 0 1 1 1 1 0 0 1 1 1 1 1 1 
a22 0 0 1 1 1 1 1 0 0 1 1 1 1 1 
a23 0 0 1 1 1 1 1 1 0 0 1 1 1 1 
a24 1 0 0 1 1 1 1 0 0 1 1 1 1 1 
a25 1 0 0 1 1 1 1 1 0 0 1 1 1 1 
a26 1 0 0 1 1 1 1 1 1 0 0 1 1 1 
a27 1 1 0 0 1 1 1 1 0 0 1 1 1 1 
a28 1 1 0 0 1 1 1 1 1 0 0 1 1 1 
a29 1 1 0 0 1 1 1 1 1 1 0 0 1 1 
Table f: Feasible schedules for nurse two (last roster ended with 4 days on) 
 
a3j Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

a31 0 0 1 1 1 1 0 0 1 1 1 1 1 1 
a32 0 0 1 1 1 1 1 0 0 1 1 1 1 1 
333 0 0 1 1 1 1 1 1 0 0 1 1 1 1 
a34 1 0 0 1 1 1 1 0 0 1 1 1 1 1 
a35 1 0 0 1 1 1 1 1 0 0 1 1 1 1 
a36 1 0 0 1 1 1 1 1 1 0 0 1 1 1 
Table g: Feasible schedules for nurse three (last roster ended with 5 days on) 
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a4j Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

a41 1 1 0 0 1 1 1 1 0 0 1 1 1 1 
a42 1 1 0 0 1 1 1 1 1 0 0 1 1 1 
a43 1 1 0 0 1 1 1 1 1 1 0 0 1 1 
a44 1 1 1 0 0 1 1 1 1 0 0 1 1 1 
a45 1 1 1 0 0 1 1 1 1 1 0 0 1 1 
a46 1 1 1 0 0 1 1 1 1 1 1 0 0 1 
a47 1 1 1 1 0 0 1 1 1 1 0 0 1 1 
a48 1 1 1 1 0 0 1 1 1 1 1 0 0 1 
a49 1 1 1 1 0 0 1 1 1 1 1 1 0 0 
Table h: Feasible schedules for nurse four (last roster ended with 2 days on) 
 
 
A2.2 Daily Minimum Staff Constraints 
The constraints for the minimum number of staff working each day were defined as: 
 
                   ijj

j

i

i n

ij
iJ Xa b=

=

=

= ∑∑ ≥11 tot    

        where btot = (2,2,2,2,2,2,2,2,2,2,2,2,2,2) 
 
This results in 14 constraints, one for each element of the btot vector, representing each 
day of the week. Therefore, the first constraint is obtained by reading off all the aij 
coefficients from the Monday column of the above tables (a zero aij coefficient removes 
the corresponding  Xij variable from the equation, otherwise it is included): 
 
First Monday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 + X24 + X25 + X26 + X27 + X28 + X29 + 
  X34 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2 
First Tuesday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 +  
  X27 + X28 + X29 + X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2  
First Wednesday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 + 
  X21 + X22 + X23 + X31 + X32 + X33 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2  
First Thursday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 + X21 + X22 + X23 +  
  X24 + X25 + X26 + X31 + X32 + X33 + X34 + X35 + X36 + X47 + X48 + X49 ≥ 2 
First Friday Constraint: 
 X14 + X15 + X16 + X21 + X22 + X23 + X24 + X25 + X26 +  
  X27 +  X28 + X29 + X31 + X32 + X33 + X34 + X35 + X36 + X41 + X42 + X43 ≥ 2  
First Saturday Constraint: 
 X16 + X21 + X22 + X23 + X24 + X25 + X26 + X27 + X28 + X29 + 
  X31 + X32 + X33 + X34 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X46 ≥ 2  
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First Sunday Constraint: 
 X11 + X12 + X13 + X14 +  
 X22 + X23 + X24 + X25 + X26 + X27 + X28 + X29 + X32 + X33 +  
  X34 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2  
Second Monday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X23 + X25 + X26 + X27 + X28 + X29 + 
  X33 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2  
Second Tuesday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 + X21 + X26 +  
  X28 + X29 + X31 + X36 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 ≥ 2  
Second Wednesday Constraint: 
 X11 + X12 + X13 + X14 + X15 + X16 + X21 +  
  X22 + X24 + X29 + X31 + X32 + X34 + X43 + X45 + X46 + X47 + X48 + X49 ≥ 2 
Second Thursday Constraint: 
 X12 + X13 + X14 + X15 + X16 + X21 + X22 + X23 +  
  X24 + X25 + X27 + X31 + X32 + X33 + X34 + X35 + X41 + X46 + X48 + X49 ≥ 2  
Second Friday Constraint: 
 X13 + X15 + X16 + X21 + X22 + X23 + X24 + X25 + X26 +  
  X27 + X28 + X31 + X32 + X33 + X34 + X35 + X36 + X41 + X42 + X44 + X49 ≥ 2  
Second Saturday Constraint: 
 X11 + X21 + X22 + X23 +  X24 + X25 + X26 +  X27 +  X28 +  X29 + 
  X31 + X32 + X33 + X34 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X47 ≥ 2  
Second Sunday Constraint: 
 X11 + X12 + X14 +  
 X21 + X22 + X23 + X24 + X25 + X26 + X27 + X28 + X29 + X31 + X32 +  
  X33 + X34 + X35 + X36 + X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 ≥ 2  
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A2.3 One Schedule per Nurse Constraints 
The constraints to limit the number of schedules allocated to each nurse were defined as: 
   =  1,   = 1..ijj

j XiJ
=

=∑ 1 i n  
This leads to the following 4 constraints for each nurse: 
Nurse one: 
X11 + X12 + X13 + X14 + X15 + X16 = 1 
Nurse two: 
X21 + X22 + X23 +  X24 + X25 + X26 +  X27 +  X28 +  X29 = 1 
Nurse three: 
X31 + X32 + X33 + X34 + X35 + X36 = 1 
Nurse four: 
X41 + X42 + X43 + X44 + X45 + X46 + X47 + X48 + X49 = 1 
 
A2.4 The Objective Function 
The objective of the problem is to select the four schedules (one for each nurse), that are 
of the highest quality. This is expressed in the objective function: 
 
minimise    z J

ijj

j

i

i n

ijc Xi= =

=

=

= ∑∑ 11  
 

where ijc =

⎧

⎨
⎪

⎩
⎪

0 if a schedule contains only 5 day work stretches                                     
1 if a schedule contains no more than one 6 or 4 day work stretch            
2 otherwise                                                                                                  

 

 
this results in the following equation: 
 
minimise z   = 2X11 + 1X12 + 2X13 + 1X14 + 0X15 + 2X16  
  + 2X21 + 1X22 + 2X23 + 1X24 + 0X25 + 1X26 + 2X27 + 1X28 + 2X29 

  +  1X31 + 0X32 + 1X33 + 2X34 + 1X35 + 2X36 

  +  2X41 + 1X42 + 2X43 + 1X44 + 0X45 + 1X46 + 2X47 + 1X48 + 2X49
 
 
A2.5 The Solution 
By entering the objective function and the above constraints into a computerised integer 
linear programming application, the following result can be obtained: 
X15 = 1,  X25 = 1,  X32 = 1 and X45 = 1, all other Xij = 0, and z = 0. 
This result can be verified by a simple inspection of the equations: the minimum value of 
z (ie z = 0), given the constraints that each nurse should work exactly one schedule, will 
be given by those four Xij variables associated with 0 cij coefficients, ie X15, X25, X32 and 
X45. By constructing a roster with these four schedules, as in section A1.4, Table c, it can 
be shown that the additional minimum staffing constraints have been met.  
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Appendix 3: The Research Problem 
 
The following material is based on data collected from a series of interviews with senior 
nursing personnel at the Gold Coast Hospital, in Southport, Queensland. The policies and 
practices laid out below refer specifically to two 30 bed medical wards within the 
hospital: 
 
A3.1 General Features of the Problem  
 
• Rostering Period: The rostering period lasts for 14 days, and rosters are prepared at 

least one week in advance of the period to be worked. 
• Hours of Duty: Nursing care is provided 24 hours a day, and 7 days a week. 
• Shifts: Nurses can work early, late and night shifts (see section A1.1). 
• Shift Combinations: Nurses can work combinations of all three shift types without 

separating days off.  
• Full and Part-Time Staffing: Nursing staff can be either full-time or part-time. Full-

time staff work 10 shifts per roster, whilst part-time staff can work from 1 to 9 shifts 
per roster. 

• Days Off: There are two types of days off : 
1. Scheduled days off : these are days off that normally occur within a roster. For 

instance, a full-time nurse working 10 shifts per roster will have 4 scheduled 
days off in a 14 day roster. 

2. Arranged days off : these days off occur in addition to scheduled days off and 
reduce the number of a shifts a nurse will work in a roster. Arranged days off 
can be due to annual leave, unpaid leave, sickness or reallocation of a nurse to 
other duties. 

 
• Staff Seniority Levels: There are 4 official levels of staff, shown below in order of 

seniority: 
1. Clinical Nurse Consultant (CNC) : the CNC is the head nurse for a ward, and 

works Monday to Friday early shifts. There is one CNC per ward. 
2. Clinical Nurse (CN) : Usually there are 4 CN’s per ward. These nurses take 

charge of shifts when the CNC is off duty. 
3. Registered Nurse (RN) : An RN is a fully qualified nurse and is capable of 

performing the same nursing duties as a CNC or a CN. In practice, RN’s will 
occasionally be in charge of shifts in the absence of senior staff. Not all RN’s 
are considered to have sufficient expertise to perform the in-charge role, and so 
there is a further unofficial division of staff: 

• Senior RN: considered capable of performing an in-charge role. 
• Junior RN: not considered capable of performing an in-charge role.  

4. Enrolled Nurse (EN) : An EN receives less training than an RN, and is legally 
barred from performing certain essential nursing tasks, such as the 
administration of injections and drugs. 
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A3.2 Specific Features of the Problem 
 
• Requesting Policy: Nurses are free to request any arrangement of shifts and scheduled 

days off within a particular roster. These requests are dealt with at ward level, and are 
accepted or denied at the discretion of the person responsible for rostering (usually a 
senior nurse). Requests for arranged days off are dealt with by nursing administration. 

• Fixed Schedules: In agreement with the CNC, certain members of staff may arrange to 
work a fixed schedule, ie a pattern of shifts that repeats from roster to roster. Typically, 
nurses with child care responsibilities and nurses exclusively working night shifts will 
be granted fixed or restricted schedules.  

• Overall Staffing Levels: The number of staff working on a ward can vary 
dramatically over time depending on hospital policy. For the ward considered in this 
study, staff numbers have varied from 24 to 30 nurses during any one roster. 

• Shift Staffing Levels: Shift staffing levels can vary from week to week according to 
the patient load. Nevertheless, the following figures show some typical levels and are 
given to illustrate the complexity of the staffing level problem: 

• General Rules for Early and Late Shifts: There should be at least one CNC 
or CN in charge of each shift and at least one senior RN on duty. There should 
be no more than two EN’s on any one shift. In the event that no CNC or CN is 
available for a shift, a senior RN may “act up” or be temporarily promoted to 
the CN role for the duration of the shift.   

• Early Shift Staffing Levels: staffing levels can vary according to patient load, 
with the absolute minimum total number of staff for an early shift being 6. 
Often this minimum is raised to 7 during weekdays, with a desired total number 
of staff of 7 during the week and 6 at weekends. A maximum a level of staff 
may also be stipulated: this would range from 8-9 during the week and from 7-
8 during the weekend (depending on the total staff available). 

• Late Shift Staffing Levels: For weekdays, the minimum total number of staff 
for a late shift is 5, with the desired level being 5 or 6 depending on patient 
load. At weekends, the minimum and desired level is 5. The maximum late 
shift staff level is one less than the total number of early shift staff during the 
week, and equal to the total number of early shift staff during the weekend. 

• Night Shift Staffing Levels: the night shift comprises of exactly 3 staff for 
each day of the week. One CN, one RN (senior or junior) and one EN are 
required to be on duty. An RN may replace the EN, and a senior RN may act as 
a CN. 

  
• Feasible Schedule Guidelines:  

• Full-Time Nurses, No Requests: full-time nurses, making no requests, are not 
expected to work more than 7 days, or less than three days, without a day off. 
These nurses would also expect to receive two sets of two consecutive days off 
within the roster period (this is similar to the example problem illustrated in 
Table b).  

• Full-Time Nurses, with Requests: If a full-time nurse requests shift patterns 
that break the previous guidelines, these are allowed. However, no nurse is 
allowed to work more than 10 days without a day off. Also, if the constraints of 
a roster mean that certain guidelines cannot be met, then nurses making 
requests are the first to receive less desirable schedules. 
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• Part-Time Nurses: Part-time nurses are liable to work any combination of 
days on and off. In practice, however, long stretches without days off are 
avoided, whilst patterns of consecutive days off are encouraged. Typically, 
part-time nurses are those nurses with child care responsibilities, or who work 
exclusively on night shifts. In these cases, fixed or restricted schedules are 
often negotiated (see Fixed Schedules above). 

• Late and Early Shift Policy: Generally, nurses will be rostered to work an 
early shift before days off and a late shift after days off, thereby extending the 
time off period. A nurse can elect not to work an early shift immediately after a 
late shift. In practice this is rarely done, because it means a nurse cannot 
reliably expect to receive the extended time off period. Also, most nurses  
prefer not to work long stretches of the same shift type, and like a balance of 
both late and earlies. Within these constraints, the number of consecutive 
late/early shift combinations is minimised. 

• Night Shift Policy: Staff can elect to work exclusively on night shifts. The 
remaining night shift duties are shared out as evenly as possible between the 
other staff members. Generally, a nurse can expect to work a block of between 
one and four consecutive night shifts, followed by two days off. Only one such 
block of nights is worked in any one schedule, and a nurse can expect a period 
of between two to four weeks before working another night shift.  

• Schedule Quality: Unless a nurse requests otherwise, the best quality schedule 
for a full-time nurse is considered to be one with 5 day consecutive work 
stretches, separated by two days off. As work stretches get longer or shorter 
then schedule quality decreases (as in section A.2.4).  

 
 
A3.3 The Rostering Objectives 
 
Given the policies and practices defined above, the person in charge of rostering will also 
have a set of prioritised objectives that are used when constructing a roster. An example 
ordered list of priorities is laid out below, reflecting current rostering practice on the ward 
being studied: 
 
1. To meet the minimum total staffing requirements for each shift. If this is impossible to 

achieve, then additional staff can be brought into the ward from elsewhere in the 
hospital. 

2. To meet the minimum staffing requirements for each level of staff. As discussed 
previously, some of these requirements can be met by temporarily promoting junior 
staff into more senior positions. 

3. To meet the desired total staffing requirements for each shift. 
4. To provide all non-requesting full-time staff with a minimum standard of schedule. 
5. To grant as many requests as possible, given the previous objectives are satisfied. 
6. Not to exceed the maximum staffing requirements for each shift. 
7. To provide the fairest distribution of schedules between nurses. This means that shift 

types and requests should be evenly allocated.   
8. To provide the best quality of schedule day on and day off pattern to each staff 

member, given the previous objectives have been satisfied. 
9. To provide the best mix of late and early shifts to each staff member. 
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A3.4 A Mathematical Formulation of the Complete Problem 
 
The basic mathematical model developed in Appendix 2 is now taken and expanded so 
that it can describe the full problem specifications. This is the formulation that is used for 
the integer linear programming algorithm used in the main body of the research. 
 
A3.4.1 The Problem Constraints 
 
The initial constraints developed in Appendix 2 still hold. Namely, each nurse still has to 
work one and only one schedule, and the minimum staffing levels still have to be met for 
each shift. However, in the original example there were 14 minimum staffing level 
constraints, as there was only one shift type per day, whereas in the current problem there 
will be 28 constraints of this type (14 days x 2 shifts). The two shift types are day shifts 
and night shifts. The allocation of late and early shifts is carried out in a separate heuristic 
procedure, as described in Chapter 4. Therefore, btot is redefined as a vector with 28 
elements, such that: 
 
• The first 14 elements are the minimum total staff requirements for each day shift. 
• The second 14 elements are the minimum total staff requirements for each night shift. 
 
Given the staffing levels defined in the previous section, 
btot = (12,12,12,12,12,11,11,12,12,12,12,12,11,11,3,3,3,3,3,3,3,3,3,3,3,3,3,3) 
Likewise, aij now becomes a vector of 28 elements, each element describing whether a 
particular shift is worked on a particular day. For example if  the first element of a23 = 1, 
this means that in the third feasible schedule, of the second nurse, a day shift is allocated 
on the first Monday of the schedule (assuming the rostering period starts on a Monday).  
 
Given these redefinitions, and that n and J are no longer fixed, the following constraints 
still hold: 
         ijj

j XiJ
=

=∑ 1  =  1,   = 1..i n   (1) 

                    ijj

j

i

i n

ij
iJ Xa=

=

=

= ∑ b∑ ≥11 tot    (2)   

        ( )
ijX = 0 or 1  =  1.. ;  = 1.., i n  j J i  (3) 

 
However, there are now both minimum and maximum constraints for the total number of 
staff on each shift. Letting bmintot and bmaxtot represent these minimum and maximum staff 
numbers, then bmintot = btot, and the previous constraint (2) becomes:   

  (4)                maxtot mintotb a≥
=

=

=

= ∑∑ ijj

j

i

i n

ij
iJ X11 b≥

 
In addition, there are constraints for each level of staff, remembering that staff can also be 
reassigned between levels during the rostering period. To express this, let ri be a vector of 
length 28, with each element representing a shift on a particular day as before, such that: 
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 ir =
⎧
⎨
⎩

1 if nurse i is a CN or CNC
0 otherwise                         

 

 
Similarly, let si be a vector of length 28, such that: 
 

 is =
⎧
⎨
⎩

1 if nurse i is a senior RN,  CN or CNC
0 otherwise                                           

 

 
and let ei be a vector of length 28, such that: 
 

 ie =
⎧
⎨
⎩

1 if nurse i is an EN                              
0 otherwise                                           

 

 
Now let bmincharge and bmincharge be vectors of length 28, representing the minimum and 
maximum number of staff required to be in charge of a shift. In this case, the in charge 
constraint would be 
        min arg max argch e i ij ij ch ei

i

i

i n XiJb r a≥ ≤
=

=

=

= ∑∑ 11 b  (5) 

Now let bminsenior and bmaxsenior be vectors of length 28, representing the minimum and 
maximum number of senior staff required to work each shift. In this case, the senior staff 
constraint would be 
        min maxsenior i ij ij seniori

i

i

i n XiJb s a≥
=

=

=

= ∑∑ 11 b≤  (6) 

Now let bminen and bmaxen be vectors of length 28, representing the minimum and 
maximum number of enrolled nurses required to work each shift. In this case, the enrolled 
nurse constraint would be 
        min maxen i ij ij eni

i

i

i n XiJb e a≥
=

=

=

= ∑∑ 11 b≤   (7) 
 
Finally, there is also a desired level of staff for each shift. Let this desired level of staff be 
defined as a 28 element vector bdesired as before. Also let d- be a vector of 28 elements 
representing the deviations below the desired level of staff for each shift. The desired 
level of staff constraint is then given by: 
  (8)                    ijj

j

i

i n

ij
iJ Xa d b=

=

=

= −∑∑ + ≥
11 desired

  where for each element dk of d-, k = 1 . . 28,  dk ≥ 0 
It follows that the closer the individual values of dk are to zero, the closer the solution is 
to achieving the desired levels of staff for each shift. 
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A3.4.2 A Two-Phase Optimising Approach 
 
The rostering objectives proposed in Section A3.3 fall into two categories 
 
1. The primary objectives are to achieve the best staffing levels (objectives 1 - 3 and 6). 
2. The secondary objectives are to provide staff with the best possible schedules 

(objectives 4, 5, 7, 8 and 9). 
 
Using this division of objectives into categories, a two phase optimising approach can be 
developed: 
 
 
Phase One 
Firstly the problem is to meet all the fixed staffing constraints and to minimise the 
deviations below the desired staffing levels. This is expressed in the following model: 
 
 minimise    z =

=

=∑ kk

k d1

28
 

 subject to     =  1,   = 1..ijj

j XiJ
=

=∑ 1 i n

b
  

                    mintot maxtotb a≤ ≤
=

=

=

= ∑∑ j

j

i e

i n

ij ij
iJ X1  

                    mincharge maxchargeb r a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                    minsenior maxseniorb s a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                    minen maxenb e a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                     ijj

j

i

i n

ij
iJ Xa d b=

=

=

= −∑∑ + ≥
11 desired

         ( )
ijX = 0 or 1  =  1.. ;  = 1.., i n  j J i  

         and for each element dk of d-, k = 1 . . 28, dk ≥ 0 
  
From this the minimum possible level of  kk

k d=

=∑ 1

28
 can be obtained. This minimum level 

represents the closest a solution can come to meeting the desired staffing levels without 
violating any of the other constraints. Letting this minimum level be dmin, a new model 
can be created with the additional constraint that  kk

k d d=

=∑ =
1

28

min  
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Phase Two 
The objective of the second phase model is to minimise nurse dissatisfaction with 
schedules. As in Appendix 2, this can be expressed as: 
 minimise    z J

ijj

j

i

i n

ijc Xi=
=

=

=

= ∑∑ 11   

 where cij represents the relative value nurse i places on schedule j, such that cij ≥ 0 
 and the value of cij increases as nurse dissatisfaction with a schedule increases. 
 
However, the definition of cij is now more complex than the (0,1,2) values used in Section 
2.2.1. Each cij must reflect nurse preferences for requests, shift patterns and day off 
patterns. In addition, the model should also consider a nurse’s previous schedule history 
in evaluating cij. For example, if a nurse has not worked a night shift for a long period, 
relative to other nurses, then schedules containing night shifts for that nurse should have a 
reduced cij value. In this way the night shifts can be evenly distributed over time. The 
evaluation of cij is therefore a complicated task. The current research retains a fairly 
simplistic method of calculating cij. More sophisticated methods, involving nurse 
questionnaires, are described in the literature (see Miller et al. 1976, Warner 1976, 
Kostreva and Jennings 1991). 
 
The following equations show the full second phase model: 
 
 minimise    z J

ijj

j

i

i n

ijc Xi=
=

=

=

= ∑∑ 11  

 subject to     =  1,   = 1..ijj

j XiJ
=

=∑ 1 i n  

                    mintot maxtotb a≤ ≤
=

=

=

= b∑∑ j

j

i e

i n

ij ij
iJ X1  

                    mincharge maxchargeb r a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                    minsenior maxseniorb s a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                    minen maxenb e a≤ ≤
=

=

=

= b∑∑ ij

j

i e

i n

ij ij
iJ X1  

                     ijj

j

i

i n

ij
iJ Xa d b=

=

=

= −∑∑ + ≥
11 desired

         kk

k d d=

=∑ =
1

28

min  

         ( )
ijX = 0 or 1  =  1.. ;  = 1.., i n  j J i  

         and for each element dk of d-, k = 1 . . 28, dk ≥ 0 
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Appendix 4: A Numerical Comparison of US and Australian  
      Rostering Practices 
 
A4.1 An Australian Example 
The following table shows all the allowable patterns of days off for a particular nurse, 
abiding by the constraints laid out in Appendix 2. It is assumed the nurse has worked the 
last two days of a previous roster. A ‘0’ in the table represents a day off and a blank 
represents a day worked. The Total column shows the total allowable schedules for the 
given row of the table: 
 
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Total 

 0 0    0 0       316
 0 0     0 0      316
 0 0      0 0     312
 0 0       0 0    312
 0 0        0 0   312
  0 0    0 0      348
  0 0     0 0     352
  0 0      0 0    344
  0 0       0 0   344
  0 0        0 0  344
   0 0    0 0     368
   0 0     0 0    368
   0 0      0 0   360
   0 0       0 0  360
   0 0        0 0 592
    0 0    0 0    376
    0 0     0 0   376
    0 0      0 0  368
    0 0       0 0 608
     0 0    0 0   376
     0 0     0 0  376
     0 0      0 0 608

 
Total Feasible Schedules : 8436

Table i: Total feasible schedules for a full-time nurse 
 
As an example to illustrate how these figures were derived, consider the first row pattern: 
- 0 0 - - - 0 0 - - - - - -  

First, let an ‘E’ represent an early shift, and ‘L’ represent a late shift, an ‘N’ represent a 
night shift and a ‘-’ represent an undecided shift. The following pattern represents the 
situation where a nurse works early and late shifts only (remembering that, whenever 
possible, a nurse receives an early shift before days off and a late shift after days off ) : 
E 0 0 L - E 0 0 L - - - - - 

In this case there are 6 undecided shifts that can be either a late shift or an early shift. This 
means there are 26 = 64 possible non night shift schedules for this pattern of days off. The 
complete pattern set of allowable night shifts, for the given day off pattern, is shown by 
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the following (remembering that night shifts must be followed by days off, and must 
occur in a single block of 4 shifts or less): 
 
N 0 0 L - E 0 0 L - - - - -   = 6 undecided shifts = 26 = 64 possible schedules 
E 0 0 L - N 0 0 L - - - - -  = 6 undecided shifts = 26 = 64 possible schedules 
E 0 0 L N N 0 0 L - - - - - = 5 undecided shifts = 25 = 32 possible schedules 
E 0 0 N N N 0 0 L - - - - - = 5 undecided shifts = 25 = 32 possible schedules 
E 0 0 L - E 0 0 L - - - - N = 5 undecided shifts = 25 = 32 possible schedules 
E 0 0 L - E 0 0 L - - - N N = 4 undecided shifts = 24 = 16 possible schedules 
E 0 0 L - E 0 0 L - - N N N = 3 undecided shifts = 23 =   8 possible schedules 
E 0 0 L - E 0 0 L - N N N N = 2 undecided shifts = 22 =   4 possible schedules 
 
This makes the total allowable schedules that include night shifts to be: 
64 + 64 + 32 + 32 + 32 + 32 + 16 + 8 + 4 = 252 
Adding this to the 64 allowable non night shift schedules gives the total allowable 
schedules for the given day off pattern as 252 + 64 = 316. This corresponds to the total 
figure for row one of the above table. All the other rows in the table were calculated in a 
similar fashion. 
 
 
A4.2 Adding US Constraints 
In the case where every change of shift type must be separated by days off (relating to US 
rostering practices), then the shift type from the previous roster will already be known, 
and will fix the shift type at the beginning of the new roster. For example, if a nurse 
worked an early shift at the end of the last roster, then early shifts must be worked up to 
the first day off in the current roster. Using this. the following patterns show the total 
feasible schedules for the row one pattern from the above table: 
 
E 0 0 E E E 0 0 E E E E E E 
E 0 0 E E E 0 0 L L L L L L 
E 0 0 E E E 0 0 N N N N N N  
E 0 0 L L L 0 0 E E E E E E 
E 0 0 L L L 0 0 L L L L L L  
E 0 0 L L L 0 0 N N N N N N 
E 0 0 N N N 0 0 E E E E E E 
E 0 0 N N N 0 0 L L L L L L  
E 0 0 N N N 0 0 N N N N N N 

 
In the above case there are two blocks of shifts to be assigned, each separated by days off. 
As each block can have three shift types, the total number of patterns is 32 = 9. The same 
will hold for the other day off patterns in the above table, except for those patterns ending 
or beginning with a day off. Those ending with a day off have only one block to assign, 
and so there are only three possibilities. Those beginning with a day off have three blocks 
to assign, so there are 33 = 27 possibilities. 
Referring to the original table above, there are zero patterns beginning with a day off, 
three ending with a day off, and 19 remaining. Therefore, the total number of feasible 
schedules is given by: (3 x 3) + (19 x 9) = 180. 
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Appendix 5: Selective Elimination of Night Shifts  
 
To illustrate the process of night shift elimination used in the cyclic descent algorithm 
cost function, consider the following simplified rostering problem: a ward consists of 5 
nurses, all of the same seniority level, and for each day there must be at least 2 and no 
more than 4 nurses on duty on a day shift and exactly one on a night shift. A possible 
combination of schedules for the five nurses is shown below: 
 

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
N1 Day Day Day Day Day Off Off Day Night Night Night Night Off Off 
N2 Off Off Day Day Day Day Day Day Off Off Night Night Night Night
N3 Day Night Night Night Night Off Off Day Day Day Day Day Off Off 
N4 Night Off Off Day Day Day Off Off Day Day Day Day Day Day
N5 Day Day Day Night Night Night Night Off Off Day Day Day Off Off 
Day 0 0 0 0 0 0 1 0 0 0 0 0 1 1 

Night 0 0 0 1 1 0 0 1 0 0 1 1 0 0 
Total 0 0 0 1 1 0 1 1 0 0 1 1 1 1 
Table j: Possible combination of schedules for a five nurse roster problem 
 
The scores for the roster in the above table are shown in the last three rows. Each score is 
a count of the deviation away for either the maximum or minimum constraint for each day 
or column. Therefore the day score for the final Sunday of the roster is one because only 
one nurse is working that day where a minimum of two are required (2 - 1 = 1). Similarly, 
the night score for the first Thursday of the roster is one because two nurses are working 
the night shift, where a maximum of one is required. The total row is obtained by 
summing each day and night column. The final roster score for the  roster is obtained by 
summing the total row, ie 1+1+1+1+1+1+1+1 = 8.  The next table shows how the same 
roster would appear after the application of the night swapping algorithm : 
 

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
N1 Day Day Day Day Day Off Off Day Night Night Night Night Off Off 
N2 Off Off Day Day Day Day Day Day Off Off Day Day Night Night
N3 Day Night Night Night Night Off Off Day Day Day Day Day Off Off 
N4 Night Off Off Day Day Day Off Off Day Day Day Day Day Day
N5 Day Day Day Day Day Night Night Off Off Day Day Day Off Off 
Day 0 0 0 0 0 0 1 0 0 0 0 0 1 1 

Night 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Total 0 0 0 0 0 0 1 1 0 0 0 0 1 1 
Table k: Table j Roster after Application of Night Swapping Algorithm 
 
By comparing the previous two tables, it can be seen that nurse five’s (N5) night shifts on 
the first Thursday and Friday of the roster have been changed to day shifts, and nurse 
two’s (N2) night shifts on the second Thursday and Friday of the roster have also been 
changed to day shifts. Consequently, for the days where a shift exchange has been made 
there is no longer an excess of nights, and the overall roster score is reduced from 8 to 4. 
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Appendix 6: Schedule Grade Selection Bias 
 
To illustrate the schedule grade selection bias introduced into the enhanced cyclic descent 
algorithm, consider the following situation: a nurse has 150 feasible schedules and at a 
particular iteration in the cyclic descent algorithm, 5 of the 150 schedules are found to 
cause an improvement in the deviation score for the overall roster. The schedules and 
their various scores are shown in the following table: 
 
Schedule Number Schedule Grade Deviation Score 

Improvement 
Formula Based 

Roster Cost 
12 0 1 9.277 
44 12 3 7.289 
57 9 3 7.286 
89 5 2 8.282 
113 4 1 9.281  

Table l: Example schedule selection scenario 
 
The above table assumes the existing roster deviation score is 10 and the existing total 
roster grade is 277. Hence schedule 89 causes the deviation score to improve by 2 giving 
a new deviation of 10 - 2 = 8, and creates a new total roster grade of 277 + 5 = 282. Using 
the basic cyclic descent cost formula, this results in a new roster cost of : 
 
 8 + (282/1000) = 8.282 
 
Using the cost formula, schedule 57 would be selected as it results in the lowest overall 
cost of 7.286. However, using the schedule grade selection bias method, schedule 12 
would be selected, because out of the schedules that cause any improvement in deviation 
score (regardless of the size of improvement), schedule 12 has the best or lowest grade. 
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Appendix 7: SPSS® Output for Statistical Analysis 
 
A7.1 MANOVA 1 Results 
 
* * * * * * A n a l y s i s   o f   V a r i a n c e * * * * * * 
 
        260 cases accepted. 
        RTTSCHED = WeightedSchedule 
        LN_SHIFT = WeightedShift 
        METHOD 1 = Enhanced Cyclic Descent Algorithm 
        METHOD 2 = Basic Cyclic Descent Algorithm 
        METHOD 3 = Manual Method 
 METHOD 4 = Basic Simulated Annealing Algorithm 
 METHOD 5 = Enhanced Simulated Annealing Algorithm   
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
               CELL NUMBER 
                 1    2    3    4    5    6    7    8    9   10 
 Variable 
   METHOD        1    1    2    2    3    3    4    4    5    5 
   WARD          1    2    1    2    1    2    1    2    1    2 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Cell Number .. 1 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .375 
 LN_SHIFT         .512      1.011 
 
 Cell Number .. 2 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .489 
 LN_SHIFT         .175      1.129 
 
 Cell Number .. 3 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .370 
 LN_SHIFT         .126      1.022 
 
 Cell Number .. 4 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .495 
 LN_SHIFT        -.172       .963 
 
 Cell Number .. 5 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .411 
 LN_SHIFT         .505      1.010 
 
 Cell Number .. 6 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .430 
 LN_SHIFT         .259       .819 
 
 Cell Number .. 7 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .376 
 LN_SHIFT         .405      1.009 
 
 Cell Number .. 8 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .461 
 LN_SHIFT         .076      1.153 
 
 Cell Number .. 9 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .345 
 LN_SHIFT         .348      1.028 
 
 Cell Number .. 10 Correlation matrix with Standard Deviations on Diagonal 
 
              RTTSCHED   LN_SHIFT 
 RTTSCHED         .489 
 LN_SHIFT         .136      1.032
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 Multivariate test for Homogeneity of Dispersion matrices 
 
 Boxs M =                         26.64610 
 F WITH (27,166501) DF =            .95537, P =   .530 (Approx.) 
 Chi-Square with 27 DF =          25.79935, P =   .530 (Approx.) 
 
 Combined Observed Means for METHOD 
 Variable .. RTTSCHED 
        METHOD 
             1           3.64035 
             2           3.66877 
             3           4.24803 
             4           3.68885 
             5           3.66798 
 
 Variable .. LN_SHIFT 
        METHOD 
             1           3.25104 
             2           4.03184 
             3           4.34818 
             4           3.24808 
             5           3.25851 
 
 Combined Observed Means for WARD 
 Variable .. RTTSCHED 
          WARD 
             1           3.89826 
             2           3.66734 
 
 Variable .. LN_SHIFT 
          WARD 
             1           3.91211 
             2           3.34295 
 
 EFFECT .. METHOD BY WARD 
 Multivariate Tests of Significance (S = 2, M = 1/2, N = 123 1/2) 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .02038     .64356       8.00     500.00       .741 
 Hotellings       .02078     .64409       8.00     496.00       .741 
 Wilks            .97963     .64384       8.00     498.00       .741 
 Roys             .01961 
 Note.. F statistic for WILKS' Lambda is exact. 
 
  
 Univariate F-tests with (4,250) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 RTTSCHED       .03561   45.69130     .00890     .18277     .04871       .996 
 LN_SHIFT      4.93297  260.73143    1.23324    1.04293    1.18248       .319 
  
 
 EFFECT .. WARD 
 Multivariate Tests of Significance (S = 1, M = 0, N = 123 1/2) 
 Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .11410   16.03572       2.00     249.00       .000 
 Hotellings       .12880   16.03572       2.00     249.00       .000 
 Wilks            .88590   16.03572       2.00     249.00       .000 
 Roys             .11410 
 Note.. F statistics are exact. 
 
 Univariate F-tests with (1,250) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 RTTSCHED      3.46600   45.69130    3.46600     .18277   18.96420       .000 
 LN_SHIFT     21.05657  260.73143   21.05657    1.04293   20.18990       .000 
 
 EFFECT .. METHOD 
 Multivariate Tests of Significance (S = 2, M = 1/2, N = 123 1/2) 
 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .35025   13.26912       8.00     500.00       .000 
 Hotellings       .46463   14.40353       8.00     496.00       .000 
 Wilks            .66937   13.83627       8.00     498.00       .000 
 Roys             .28023 
 Note.. F statistic for WILKS' Lambda is exact. 
 
 EFFECT .. METHOD (Cont.) 
 Univariate F-tests with (4,250) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 RTTSCHED     14.13067   45.69130    3.53267     .18277   19.32899       .000 
 LN_SHIFT     57.44474  260.73143   14.36119    1.04293   13.77009       .000 
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Estimates for RTTSCHED 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   .028421878     .08384     .33899     .73490    -.18252     .23936 
        3   .607682903     .08384    7.24798     .00000     .39674     .81862 
        4   .048507393     .08384     .57856     .56341    -.16243     .25945 
        5   .027635523     .08384     .32962     .74197    -.18330     .23857 
  
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   -.23091775     .05303   -4.35479     .00002    -.33535    -.12648 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        7   .006934232     .16768     .04135     .96705    -.41494     .42881 
        8   -.03503899     .16768    -.20896     .83465    -.45692     .38684 
        9   -.05725033     .16768    -.34142     .73307    -.47913     .36463 
       10   -.02429388     .16768    -.14488     .88492    -.44617     .39758 
 
 Estimates for LN_SHIFT 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   .780801153     .20028    3.89853     .00012     .27691    1.28469 
        3   1.09714055     .20028    5.47800     .00000     .59325    1.60103 
        4   -.00295951     .20028    -.01478     .98822    -.50685     .50093 
        5   .007470681     .20028     .03730     .97027    -.49642     .51136 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   -.56916362     .12667   -4.49332     .00001    -.81864    -.31969 
  
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        7   .154804834     .40056     .38647     .69948    -.85297    1.16258 
        8   .644202707     .40056    1.60825     .10904    -.36358    1.65198 
        9   -.04481936     .40056    -.11189     .91100   -1.05260     .96296 
       10   -.12903974     .40056    -.32215     .74761   -1.13682     .87874 
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A7.2 MANOVA 2 Results 
 
 
* * * * * * A n a l y s i s   o f   V a r i a n c e * * * * * * 
 
        208 cases accepted. 
 RTTSCHED = WeightedSchedule 
        LN_SHIFT = WeightedShift 
 RTL_TIME = ExecutionTime 
        METHOD 1 = Enhanced Cyclic Descent Algorithm 
        METHOD 2 = Basic Cyclic Descent Algorithm 
        METHOD 3 = Basic Simulated Annealing Algorithm 
 METHOD 4 = Enhanced Simulated Annealing Algorithm           
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
               CELL NUMBER 
                 1    2    3    4    5    6    7    8 
 Variable 
   METHOD        1    1    2    2    3    3    4    4 
   WARD          1    2    1    2    1    2    1    2 
 
  
 Cell Number .. 1 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.011 
 RTTSCHED         .512       .375 
 RTL_TIME        -.205      -.022       .345 
 
 Cell Number .. 2 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.129 
 RTTSCHED         .175       .489 
 RTL_TIME         .046      -.110       .351 
 
 Cell Number .. 3 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.022 
 RTTSCHED         .126       .370 
 RTL_TIME        -.119      -.387       .157 
 
 Cell Number .. 4 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT         .963 
 RTTSCHED        -.172       .495 
 RTL_TIME        -.430       .352       .129 
 
 Cell Number .. 5 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.009 
 RTTSCHED         .405       .376 
 RTL_TIME         .242       .269       .249 
 
 Cell Number .. 6 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.153 
 RTTSCHED         .076       .461 
 RTL_TIME         .132      -.086       .181 
 
 Cell Number .. 7 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.028 
 RTTSCHED         .348       .345 
 RTL_TIME         .121       .138       .281 
 
 Cell Number .. 8 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 
 LN_SHIFT        1.032 
 RTTSCHED         .136       .489 
 RTL_TIME        -.006       .213       .319 
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 Combined Observed Means for METHOD 
 Variable .. LN_SHIFT 
        METHOD 
             1            3.25104 
             2            4.03184 
             3            3.24808 
             4            3.25851 
 Variable .. RTTSCHED 
        METHOD 
             1            3.64035 
             2            3.66877 
             3            3.68885 
             4            3.66798 
 Variable .. RTL_TIME 
        METHOD 
             1            2.21215 
             2            1.70592 
             3            2.86652 
             4            2.42389 
 Combined Observed Means for WARD 
 Variable .. LN_SHIFT 
          WARD 
             1            3.79684 
             2            3.09789 
 Variable .. RTTSCHED 
          WARD 
             1            3.78031 
             2            3.55267 
 Variable .. RTL_TIME 
          WARD 
             1            2.28234 
             2            2.32190 
 
 EFFECT .. METHOD BY WARD 
 Multivariate Tests of Significance (S = 3, M = -1/2, N = 98 ) 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .00730     .16272       9.00     600.00       .997 
 Hotellings       .00733     .16017       9.00     590.00       .998 
 Wilks            .99271     .16127       9.00     482.03       .997 
 Roys             .00438 
 
 Univariate F-tests with (3,200) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT       .55294  218.49253     .18431    1.09246     .16871       .917 
 RTTSCHED       .03281   36.83487     .01094     .18417     .05939       .981 
 RTL_TIME       .05731   13.98342     .01910     .06992     .27321       .845 
 
 EFFECT .. WARD 
 Multivariate Tests of Significance (S = 1, M = 1/2, N = 98 ) 
 Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .14454   11.15140       3.00     198.00       .000 
 Hotellings       .16896   11.15140       3.00     198.00       .000 
 Wilks            .85546   11.15140       3.00     198.00       .000 
 Roys             .14454 
 Note.. F statistics are exact. 
 
 Univariate F-tests with (1,200) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT     25.40412  218.49253   25.40412    1.09246   23.25399       .000 
 RTTSCHED      2.69465   36.83487    2.69465     .18417   14.63097       .000 
 RTL_TIME       .08136   13.98342     .08136     .06992    1.16362       .282 
 
 EFFECT .. METHOD 
 Multivariate Tests of Significance (S = 3, M = -1/2, N = 98 ) 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .75945   22.59699       9.00     600.00       .000 
 Hotellings      2.69859   58.96929       9.00     590.00       .000 
  Wilks            .26403   39.01128       9.00     482.03       .000 
 Roys             .72717 
 
 Univariate F-tests with (3,200) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT     23.68788  218.49253    7.89596    1.09246    7.22767       .000 
 RTTSCHED       .06193   36.83487     .02064     .18417     .11209       .953 
 RTL_TIME     36.23990   13.98342   12.07997     .06992  172.77560       .000 
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Estimates for LN_SHIFT 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   .780801153     .20498    3.80911     .00019     .28592    1.27569 
        3   -.00295951     .20498    -.01444     .98850    -.49785     .49193 
        4   .007470681     .20498     .03645     .97096    -.48742     .50236 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        5   -.69895688     .14494   -4.82224     .00000    -.98477    -.41314 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   .154804834     .40996     .37761     .70612    -.83497    1.14458 
        7   -.04481936     .40996    -.10932     .91305   -1.03459     .94495 
        8   -.12903974     .40996    -.31476     .75327   -1.11881     .86073 
 
Estimates for RTTSCHED 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   .028421878     .08416     .33770     .73595    -.17477     .23162 
        3   .048507393     .08416     .57634     .56503    -.15469     .25170 
        4   .027635523     .08416     .32835     .74299    -.17556     .23083 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        5   -.22764045     .05951   -3.82504     .00017    -.34499    -.11029 
 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   .006934232     .16833     .04119     .96718    -.39946     .41333 
        7   -.05725033     .16833    -.34011     .73413    -.46364     .34914 
        8   -.02429388     .16833    -.14432     .88539    -.43069     .38210 
 
 Estimates for RTL_TIME 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   -.50623084     .05186   -9.76211     .00000    -.63143    -.38103 
        3   .654366296     .05186   12.61874     .00000     .52917     .77956 
        4   .211739743     .05186    4.08317     .00006     .08654     .33694 
 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        5   .039554532     .03667    1.07871     .28201    -.03275     .11186 
 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   .067905849     .10371     .65475     .51338    -.18249     .31830 
        7   .051207971     .10371     .49374     .62203    -.19919     .30160 
        8   .090090083     .10371     .86864     .38608    -.16030     .34048 
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A7.3 MANOVA 3 Results 
 
 
* * * * * * A n a l y s i s   o f   V a r i a n c e * * * * * * 
 
        170 cases accepted. 
 RTTSCHED = WeightedSchedule 
        LN_SHIFT = WeightedShift 
 RTL_TIME = ExecutionTime 
        METHOD 1 = Enhanced Cyclic Descent Algorithm 
        METHOD 2 = Basic Cyclic Descent Algorithm 
        METHOD 3 = Basic Simulated Annealing Algorithm 
 METHOD 4 = Enhanced Simulated Annealing Algorithm  
 METHOD 5 = ILP Algorithm   
        
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
               CELL NUMBER 
                 1    2    3    4    5    6    7    8    9   10 
 Variable 
   METHOD        1    1    2    2    3    3    4    4    5    5 
   WARD          1    2    1    2    1    2    1    2    1    2 
  
 Cell Number .. 1 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.011 
 RTTSCHED         .512       .375 
 RTL_TIME        -.205      -.022       .345 
 
 Cell Number .. 2 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.084 
 RTTSCHED         .100       .380 
 RTL_TIME        -.559      -.119       .396 
 
 Cell Number .. 3 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.022 
 RTTSCHED         .126       .370 
 RTL_TIME        -.119      -.387       .157 
 
 Cell Number .. 4 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT         .812 
 RTTSCHED         .258       .407 
 RTL_TIME        -.826      -.010       .159 
 
 Cell Number .. 5 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.009 
 RTTSCHED         .405       .376 
 RTL_TIME         .242       .269       .249 
 
 Cell Number .. 6 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.162 
 RTTSCHED        -.118       .348 
 RTL_TIME         .320      -.123       .197 
 
 Cell Number .. 7 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.028 
 RTTSCHED         .348       .345 
 RTL_TIME         .121       .138       .281 
 
 Cell Number .. 8 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT         .985 
 RTTSCHED        -.008       .352 
 RTL_TIME         .393       .454       .300 
 
 Cell Number .. 9 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.016 
 RTTSCHED         .498       .433 
 RTL_TIME        -.090      -.305       .393 

  (xxvii)



  Appendices 

 Cell Number .. 10 Correlation matrix with Standard Deviations on Diagonal 
 
              LN_SHIFT   RTTSCHED   RTL_TIME 
 LN_SHIFT        1.084 
 RTTSCHED         .168       .429 
 RTL_TIME        -.118      -.099       .288 
 
 Multivariate test for Homogeneity of Dispersion matrices 
 
 Boxs M =                         64.92509 
 F WITH (54,6647) DF =             1.06114, P =   .354 (Approx.) 
 Chi-Square with 54 DF =          57.82874, P =   .336 (Approx.) 
 
 
 Combined Observed Means for METHOD 
 Variable .. LN_SHIFT 
        METHOD 
             1        WGT.     3.53673 
                    UNWGT.     3.46765 
             2        WGT.     4.20255 
                    UNWGT.     4.09120 
             3        WGT.     3.53992 
                    UNWGT.     3.45255 
             4        WGT.     3.53342 
                    UNWGT.     3.37964 
             5        WGT.     3.53280 
                    UNWGT.     3.46508 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Variable .. RTTSCHED 
        METHOD 
             1        WGT.     3.71523 
                    UNWGT.     3.68192 
             2        WGT.     3.71373 
                    UNWGT.     3.65065 
             3        WGT.     3.77193 
                    UNWGT.     3.71564 
             4        WGT.     3.73467 
                    UNWGT.     3.67847 
             5        WGT.     3.50843 
                    UNWGT.     3.47378 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Variable .. RTL_TIME 
        METHOD 
             1        WGT.     2.22220 
                    UNWGT.     2.22634 
             2        WGT.     1.68169 
                    UNWGT.     1.68546 
             3        WGT.     2.86051 
                    UNWGT.     2.87539 
             4        WGT.     2.37164 
                    UNWGT.     2.35637 
             5        WGT.     2.40373 
                    UNWGT.     2.48246 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Combined Observed Means for WARD 
 Variable .. LN_SHIFT 
          WARD 
             1        WGT.     3.75607 
                    UNWGT.     3.75607 
             2        WGT.     3.38637 
                    UNWGT.     3.38637 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Variable .. RTTSCHED 
          WARD 
             1        WGT.     3.73209 
                    UNWGT.     3.73209 
             2        WGT.     3.54809 
                    UNWGT.     3.54809 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Variable .. RTL_TIME 
          WARD 
             1        WGT.     2.29263 
                    UNWGT.     2.29263 
             2        WGT.     2.35778 
                    UNWGT.     2.35778 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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 EFFECT .. METHOD BY WARD 
 Multivariate Tests of Significance (S = 3, M = 0, N = 78 ) 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .03752     .50665      12.00     480.00       .911 
 Hotellings       .03876     .50606      12.00     470.00       .911 
 Wilks            .96258     .50611      12.00     418.32       .911 
 Roys             .03451 
 
 Univariate F-tests with (4,160) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT       .45022  166.71743     .11256    1.04198     .10802       .980 
 RTTSCHED       .06589   23.30456     .01647     .14565     .11310       .978 
 RTL_TIME       .45366   13.73896     .11341     .08587    1.32079       .264 
 
 EFFECT .. WARD 
 Multivariate Tests of Significance (S = 1, M = 1/2, N = 78 )  
 Test Name         Value    Exact F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .05740    3.20714       3.00     158.00       .025 
 Hotellings       .06090    3.20714       3.00     158.00       .025 
 Wilks            .94260    3.20714       3.00     158.00       .025 
 Roys             .05740 
 Note.. F statistics are exact. 
 
 Univariate F-tests with (1,160) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT      4.18074  166.71743    4.18074    1.04198    4.01229       .047 
 RTTSCHED      1.03562   23.30456    1.03562     .14565    7.11016       .008 
 RTL_TIME       .12985   13.73896     .12985     .08587    1.51221       .221 
 
 EFFECT .. METHOD 
 Multivariate Tests of Significance (S = 3, M = 0, N = 78 ) 
 Test Name         Value  Approx. F Hypoth. DF   Error DF  Sig. of F 
 
 Pillais          .72649   12.78182      12.00     480.00       .000 
 Hotellings      1.90997   24.93568      12.00     470.00       .000 
 Wilks            .32592   18.39440      12.00     418.32       .000 
 Roys             .64606 
 
 Univariate F-tests with (4,160) D. F. 
 Variable   Hypoth. SS   Error SS Hypoth. MS   Error MS          F  Sig. of F 
 
 LN_SHIFT     12.09608  166.71743    3.02402    1.04198    2.90218       .024 
 RTTSCHED      1.45757   23.30456     .36439     .14565    2.50178       .045 
 RTL_TIME     24.41562   13.73896    6.10391     .08587   71.08434       .000 
 
 
 
 Estimates for LN_SHIFT 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   .623551973     .29183    2.13673     .03414    -.11368    1.36078 
        3   -.01510208     .29183    -.05175     .95879    -.75233     .72213 
        4   -.08801436     .29183    -.30160     .76335    -.82524     .64921 
        5   -.00256791     .29183    -.00880     .99299    -.73980     .73466 
 
WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   -.36970008     .18457   -2.00307     .04686    -.73420    -.00520 
 
METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        7   -.15969353     .58365    -.27361     .78474   -1.63415    1.31476 
        8   -.06910450     .58365    -.11840     .90590   -1.54356    1.40535 
        9   -.32000984     .58365    -.54829     .58426   -1.79446    1.15444 
       10   .005135823     .58365     .00880     .99299   -1.46932    1.47959 
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Estimates for RTTSCHED 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   -.03126208     .10911    -.28653     .77485    -.30690     .24437 
        3   .033724097     .10911     .30909     .75765    -.24191     .30936 
        4   -.00344982     .10911    -.03162     .97482    -.27908     .27218 
        5   -.20814124     .10911   -1.90768     .05822    -.48377     .06749 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   -.18400219     .06901   -2.66649     .00845    -.32028    -.04772 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        7   -.11243368     .21821    -.51524     .60709    -.66370     .43883 
        8   -.08681693     .21821    -.39785     .69127    -.63808     .46445 
        9   -.08646457     .21821    -.39624     .69246    -.63773     .46480 
       10   -.00505600     .21821    -.02317     .98154    -.55632     .54621 
 
 Estimates for RTL_TIME 
 --- Joint univariate .9500 BONFERRONI confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 
 METHOD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        2   -.54088081     .08377   -6.45642     .00000    -.75252    -.32925 
        3   .649045162     .08377    7.74756     .00000     .43741     .86068 
        4   .130026779     .08377    1.55211     .12261    -.08161     .34166 
        5   .256115151     .08377    3.05721     .00262     .04448     .46775 
 
 WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        6   .065154639     .05298    1.22972     .22061    -.03948     .16979 
 
 
 METHOD BY WARD 
 
  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 
 
        7   -.00139409     .16755    -.00832     .99337    -.42466     .42188 
        8   .040565703     .16755     .24211     .80900    -.38270     .46384 
        9   -.07333584     .16755    -.43770     .66219    -.49661     .34993 
       10   .281764559     .16755    1.68169     .09458    -.14151     .70503 
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Appendix 8: Unconstrained Schedules in an ILP Model 
 
A promising approach to reducing the size of an ILP roster problem containing nurses 
with unconstrained schedules would be to model the unconstrained schedule shift by shift 
instead of modelling all feasible schedules. For instance, consider a nurse able to work 
any six shifts in a roster, up to three of which can be night shifts and requiring one day off 
at the end of each night shift block (this is an example taken from Ward 2 in the study). 
Instead of generating variables to represent all feasible schedules for such a nurse, a 
reasonably simple set of constraints can be developed to define the schedule:  
 
Let the unconstrained schedule be defined by 28 variables x1 .. x14 and y1 .. y14 

 
 where  x1 .. x14 represent the 14 day shifts in the roster,  
  x1 = first Monday, x2 = first Tuesday etc,  
  such that xi = 1 or 0,  
  if xi = 1 then a day shift is worked on day i,  
  if xi = 0 then a day shift is not worked on day i, i = 1..14 
  similarly y1 .. y14 represent the 14 night shifts in the roster.  
 
The variables can be simply incorporated into the existing model, ie for each Monday day 
shift constraint x1 is added to the left hand side of the equation, and so on for each day 
constraint, each night constraint and each seniority level constraint in which the 
unconstrained schedule participates. 
 
Additional constraints can then be defined to limit the total shifts in the schedule to six, 
with no more than three nights and a day off after each night block: 
 
Firstly, to ensure either a day or a night shift is worked, or neither, but not both, the 
following constraints can be defined: 
 
 x yi i+ ≤ 1 for i = 1..14 
 
Secondly to ensure the correct total number of shifts are worked: 
 
  x yii

i
jj

j

=

=

=

=∑ ∑+ =1

14

1

14
6

 
Thirdly to ensure the correct number of nights are worked 

  yii

i

=

=∑ ≤
1

14
3

 

Finally to ensure that night shifts are not immediately followed by day shifts: 

 y xi i+ ≤+1 1 for i = 1..13 
 

Whilst adding 29 new constraints to the model this is much less overhead than the 20,000 

to 30,000 feasible schedules that would otherwise have been generated for this nurse.  
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