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Abstract. Wavelet transforms have shown superior performance in bioa-
coustic recognition tasks compared to the more commonly used Mel-
Frequency Cepstral Coefficients, and offer the ability to more closely
model the frequency response behaviour of the basilar membrane within
the cochlea. In this paper we evaluate a gammatone wavelet as a pre-
processor for the Hierarchical Temporal Memory (HTM) model of the
neocortex, as part of the broader development of a biologically moti-
vated approach to sound recognition. Specifically, we implement a gam-
matone/equivalent rectangular bandwidth wavelet transform and apply
it, in conjunction with the HTM’s spatial pooler, to recognise frog calls,
bird songs and insect sounds. We demonstrate the improved performance
of wavelets for feature detection and the potential viability of using HTM
for bioacoustic recognition. Our classification accuracy of 99.5% in de-
tecting insect sounds and 96.3% in detecting frog calls are significant
improvements on results previously published for the same datasets.
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1 Introduction

In order to apply machine learning to auditory detection and classification, a
suitable source signal preprocessing method is required. Such methods have the
goal of revealing salient features in the data that will best facilitate the learning
process. The choice of preprocessor is typically based on the nature of the signal
and the desired properties of the extracted features, without considering the
theoretical principles on which the learning algorithm is based.

Traditionally, Mel-Frequency Cepstral Coefficients (MFCCs) have been used
to preprocess signals for audio recognition. MFCCs are obtained via a short time
Fourier transform (STFT) to produce the power spectrum, which is thought to
model human vocal tract characteristics [1]. The spectrum is then warped on
the perceptual Mel-frequency scale in order to model the frequency response be-
haviour of the basilar membrane. The resulting features are therefore a combi-
nation of modelling both speech production and auditory response mechanisms.
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An alternative approach is the extraction of audio features by means of a
wavelet function [2]. The wavelet transform (WT) uses basis functions with lim-
ited duration which are isolated in time and frequency, where each wavelet has a
characteristic location and scale. Wavelets offer a number of benefits: improved
time-frequency resolution compared to MFCCs; the envelope of the wavelet is
mathematically tractable [3]; there are a variety of established basis functions
available; and they can be used to model aspects of mammalian auditory per-
ception.

In this paper we evaluate WTs as a preprocessor for the Hierarchical Tem-
poral Memory (HTM) model of the neocortex, and as part of the broader de-
velopment of a biologically motivated approach to sound recognition. HTM is
a high level implementation of mammalian neocortical structure that aims to
minimise unexpected interactions with the environment by learning to predict
future input. As such it fits within the framework of the free energy principle [4],
but differs from Friston’s Hierarchical Predictive Coding (HPC) model by im-
plementing neocortical regions as networks of artificial mini-columns that learn
sequences of input received from lower regions with the assistance of feedback
from higher regions.

To the best of our knowledge, HTM has not previously been applied to bioa-
coustic recognition, nor has the idea of using a biologically-inspired model for
processing bioacoustics. To address this we introduce a gammatone/equivalent
rectangular bandwidth (ERB) wavelet transform as a model of biological au-
dition and evaluate its performance on three bioacoustic datasets, using a k -
Nearest Neighbour classifier. Our results show the gammatone/ERB WT out-
performs the previously reported best classification accuracies on two of our
datasets. However, we found that classification accuracies fall significantly when
the WTs are further processed through an HTM spatial pooler, indicating that
raw WTs are not the best form of input for an HTM system. On this basis we
conclude that further work, modelling processes already occurring in the brain-
stem, will be needed before an HTM can perform competitively in this domain.

2 Related Work

The primary challenges in bioacoustic recognition are the handling of a diverse
range of animal sounds [5] and the difficulty of identifying them against a back-
ground of ambient noise. While MFCCs have been popular, it has been shown
that other feature detection methods may offer better performance.

In 2006, Mitrovic et al. described a set of time-based low-level features which
they compared to MFCCs. They found that a combination of their new features
provided significant improvement over MFCCs in bioacoustic classification [6].
Gonzalez compared MFCCs against a selection of spectral features on a range of
sound classes (e.g. music, frog calls, rain, etc.), and demonstrated that variations
to the Principle Component Analysis (PCA) approach were competitive [7]. In
the LifeCLEF 2014 Identification Challenge for birdsong classification, Stow-
ell and Plumbley’s winning audio-only submission used spherical k -means to
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learn features from PCA-whitened Mel spectral frames which significantly out-
performed MFCC-based approaches [8]. Wavelets have also outperformed spec-
trogram template matching techniques for classifying Humpback whale song [9],
and STFT and MFCC for classifying bat echolocation calls [10].

3 Wavelet Transforms

MFCCs, while efficient to compute and considered to perform well, are suscep-
tible to noise and have poor time-frequency resolution. This means that while
the transform is able to extract frequencies with a high degree of accuracy, the
time at which they occur within the signal is lost. As sound has a fundamentally
temporal nature, the loss of timing information is likely to impact on a system’s
ability to perform classification. The STFT attempts to address this shortcom-
ing by applying the Fourier transform in sliding windows that move with time.
The downside is that the length of the window limits the frequency resolution
according to the well-known Heisenberg Uncertainty relationship [3].

In order to achieve greater time resolution while maintaining good frequency
detail, the WT may be used. The translation of the wavelet basis function across
the signal allows identification of the temporal location of the obtained frequen-
cies, and by varying the scale of the wavelet, high frequency resolution is main-
tained. This multi-scale approach makes wavelets ideal for extracting features
from the non-stationary signals typical of bioacoustics.

An attractive aspect of WTs is the ability to modify the envelope (or window)
of the wavelet and thereby optimise the quality of extracted features with respect
to the target application. Various implementations using wavelet bases have been
developed, with the discrete wavelet transform (DWT) being one of the most
widely used. This is due to its non-redundant and invertible nature, which are
key requirements for techniques aimed at signal compression and decompression
(e.g. JPEG 2000).

Morlet Wavelet: The Morlet (or Gabor) wavelet was one of the first basis
functions developed. The sinusoid of the Morlet wavelet is modified by a smooth
Gaussian window, producing a waveform that is symmetrical about the peak
amplitude. In a Morlet WT the translation and scaling factors are typically
calculated as a linear progression.

Gammatone Wavelet: The mechanical frequency analysis of the cochlea is of-
ten modelled using a gammatone filter, which is considered to give a reasonable
first-order approximation of basilar membrane impulse responses [14]. A gam-
matone filter is the product of a gamma distribution function and a sinusoidal
tone centred at frequency fc, calculated as:

g(t, B, fc) = K t(n−1)e−2πBtej2πfct t > 0 (1)

where K is the amplitude factor; n is the filter order; fc is the central frequency
in Hertz; and B represents the duration of the impulse response [15].
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Basilar membrane impulse responses are nearly linear for frequencies ranging
between 20–1,000 Hz and approximately logarithmic between 1–20 kHz. Glas-
berg and Moore’s Equivalent Rectangular Bandwidth (ERB) calculation may
be used to model the basilar membrane’s progressive bandwidth scaling [16]. By
modifying the B term of the gammatone wavelet function according to the ERB
scale, we obtain a filter bank considered to be a close match to the biology:

B = ERB(f) = 2.47 × (4.37 × f + 1) (2)

Using the gammatone/ERB wavelet transform, which models only biological
audition, as a preprocessor for HTM, which models the neocortex, we can con-
struct a biologically plausible processing pipeline which is coherently focussed
on auditory processing.

4 Hierarchical Temporal Memory

The theoretical principles of HTM have been developed as a set of Cortical
Learning Algorithms [12], which implement sparse coding, distributed represen-
tation, Hebbian learning, and inhibition techniques. HTM is distinguished from
other related models (such as HPC) by the integration of sequence prediction
as the primary function of the system. These properties are implemented in the
interaction of artificial cortical mini-columns. Research on HTMs has steadily
increased over the past five years, with a focus on image processing [13].

HTMs are constructed by hierarchically arranging regions of cortical columns,
where each column is a set of neurons with associated dendrites and synapses.
Within each region, two functional processes cooperate to learn temporal se-
quences from their input, and then pass their learned patterns to the region
above. A Spatial Pooler (SP) operates on the input first, with the objective of
learning sparse, distributed representations. The spatial codes are then used by
a Temporal Pooler (TP) to learn sequences within the data stream.

The spatial and temporal patterns learnt by HTM are represented by the
activation levels of columns, rather than the responses of neurons. The role
of neurons in HTM is to collectively determine the activity of the column. By
adding columns as a feature of the model, a closer match to cortical structure [17]
is achieved which permits more sophisticated processing.

Unlike other models, where synapses are associated with weights that modu-
late input signals, HTM dendrites are associated with potential synapses which
become connected and active when their permanence value passes a certain
threshold. Only dendrites with connected synapses relay their input to the col-
umn. All other synapses remain inactive, but potentially active if the column
has not sufficiently participated in the learning process. The participation level
of columns is controlled by inhibition, where strongly activated columns com-
pete with and inhibit less active neighbours. The activation level of a column is
determined by the sum of the inputs from its connected synapses.

Learning in SP is based on how well synapses of a column match the input to
which they are connected. It is implemented by increasing permanence values of
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potential synapses connected to active input, and decreasing the same parameter
for active synapses connected to inactive input. This method of altering synapse
permanence values models the well established principle of Hebbian learning.

In order to focus on the relationship between data preprocessing and the
initial operations of HTM, i.e. SP processing, we did not make use of the TP in
this study. We refer the interested reader to [12].

5 Experimental Study

Datasets: Three bioacoustic datasets were used in this study. ‘Frogs’ are a set
of 1,629 recordings of 73 different species of native Australian frog calls [18].
They are 250 milliseconds in duration, sampled at 22.05 kHz and 16 bits. The
‘Insects’ dataset consists of 381 insect species sounds, 5 seconds in duration,
sampled at 44.1 kHz and 16 bits. The insects are categorised into four families:
katydid, cricket, cicada, and others (i.e. bee, beetle, fruitfly, midges, mosquito,
wasp).1 The ‘Birds’ dataset was taken from the ICML 2013 Bird Challenge.2 We
used only the training files as the ground truths for the test set are not available.
The training set comprises song recordings of 35 species of birds, 150 seconds in
duration, sampled at 44.1 kHz and 16 bits.

Following the method of Gonzalez [7], we processed Insects using 1,024 sam-
ples per frame and no attempt was made to detect and remove ambient noise
from the recordings. In order to accurately capture the lower frequencies typ-
ical of Frog calls, we increased the frame size to 5,120 samples. Because noise
was not removed from the data, the Birds set produced a very large number of
noise-only frames which distorted results. To counterbalance the extreme ratio
of feature-to-noise frames, we increased the Bird frames to 32,768 samples.

Preprocessing: Wavelet features were obtained using Matlab R2012a and the
UviWave.300 wavelet toolbox3 running on a MacBook Pro with OS X Mavericks
version 10.9.7. We used the UviWave.300 Morlet WT to produce individual
scalograms for each sample frame. For gammatone/ERB wavelet features, we
extended the UviWave.300 toolbox by developing an ERB scaled gammatone
wavelet function to replace the Morlet function when producing scalograms.

To dimensionally reduce the scalograms we took the mean of each frequency
band. For each dataset we produced both Morlet and gammatone/ERB features
of two different sizes, either 36 or 100 coefficients. These feature set sizes were
chosen as being the closest possible match to the feature set sizes used in [7], and
which could be processed by the SP (which, for optimal performance, currently
relies on input being a square matrix).

1 Compiled by Gonzalez [7] from various internet resources.
2 Kaggle. https://www.kaggle.com/c/the-icml-2013-bird-challenge/
3 Universida de Vigo, Spain. http://www.tsc.uvigo.es/~wavelets/uvi_wave.html
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Spatial Pooling: Over the past few years the SP has been incrementally devel-
oped and used in a range of vision processing studies. The current version allows
input of multiple channels per instance as separate matrices, but in this study
we disabled this feature, and used only a single input matrix. The dimension of
SP columns was altered to match the dimension of input features, e.g. for 36
wavelet coefficients, 36 columns arranged in a six-by-six matrix were used.

The SP was run either to convergence, or for a maximum of 500 iterations at
which time the ‘best state’ was used to obtain SP column codes. The best state
was determined as the iteration during which the least number of synapses had
their permanence values altered. SP column codes were output as the level of
column activation, i.e. the sum of the input for all active synapses of the column.

Classification: Using a k -Nearest Neighbour (k-NN) classifier (k = 1), we
performed ten-fold cross validation to evaluate all feature sets, which included
features obtained after preprocessing by WTs, and those output by the SP.
In [7], ten-fold cross validation using a k -NN classifier was also employed, so we
are able to compare our Frog and Insect results against those achieved using
spectral features.

6 Results and Discussion

The results of using WTs and the SP in this study are reported as the percentage
of correcly classified instances. Table 1 summarises the results obtained using
the Morlet and gammatone/ERB wavelets. Results previously obtained in [7]
are provided for comparison. Due to our not being able to validate the test set
of the ICML 2013 Bird Challenge, we cannot directly compare our results with
those achieved in the competition. Nevertheless, we provide results on the Birds
dataset as an extension to the range of bioacoustics investigated in this study.

Table 1. Percentage of correctly classified instances using the Morlet and gamma-
tone/ERB WTs. Results from [7] are listed for comparison in the right hand columns.

36 Features 100 Features

Morlet +SP Morlet +SP

Frogs 90.7% 53.3% 90.0% 59.6%

Insects 78.4% 69.5% 78.1% 71.5%

Birds 71.3% 43.5% 70.1% 53.9%

36 Features 100 Features 32 96

G/ERB +SP G/ERB +SP Features Features

Frogs 96.2% 60.5% 96.3% 69.9% 90.5% 87.0%

Insects 99.3% 91.1% 99.5% 94.6% 99.2% 98.6%

Birds 92.8% 47.3% 93.5% 53.6% — —
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Both the gammatone/ERB and Morlet wavelets performed well on the Frogs
dataset. The 100 coefficients of the gammatone/ERB feature set produced a cor-
rect classification rate of 96.3%, closely followed by 36 features which produced
96.2%. These results are a significant improvement on the 90.5% from [7].

The gammatone/ERB features performed best for both the Insects and Birds
sets, achieving 99.5% with 100 features for Insects, and 94.2% with 36 features
for Birds. The gammatone/ERB result for Insects is an improvement on the
previously reported classification rate of 99.2%, and worth noting as any increase
at these high levels of classification is difficult to achieve.

The use of the biologically-inspired gammatone/ERB wavelet consistently
outperforms the linearly scaled Morlet wavelet on these datasets. We attribute
this to the finer acuity achieved by the scaled wavelets, particularly in the higher
frequency ranges typical of Insect and Bird sounds. The improvement on Frogs
is less pronounced, as the ERB formula is less applicable at the lower frequency
range for our limited sample frame size.

The inclusion of the SP reduced all classification accuracies (although not
to the same degree for the Insects set4) suggesting that the SP encoding is
degrading the salience of the gammatone/ERB wavelet features, at least the
features relevant for a k -NN classifier. There are several possible explanations for
this poor performance: (i) that the gammatone/ERB wavelet is not a sufficiently
accurate model of the cochlea signal; and/or (ii) that HTM is not a sufficiently
accurate model of the neocortex; and/or (iii) that additional processing of the
cochlea signal in the brainstem5 changes the characteristics of the auditory signal
so that it becomes suitable for neocortical processing.

7 Conclusion

We have presented details of preliminary work aimed at developing the HTM
model for auditory recognition and classification of bioacoustics. A biologically-
inspired processing pipeline using WTs and the HTM SP was applied to three
bioacoustic datasets and evaluated based on classification accuracy. These results
showed that using gammatone/ERB WTs alone produced superior performance
over previously published results for both frog call and insect sound classification.
However, the inclusion of the SP caused classification rates to decline across all
datasets. This suggests that the combination of gammatone/ERB WTs with an
HTM spatial pooler does not accurately model the biological interaction between

4 Unlike Frogs and Birds, the Insects samples are continuous and do not contain am-
bient noise. This suggests that the different context of the noise frames is impacting
on the performance of the SP for Frogs and Birds.

5 The cochlear nucleus of the brainstem provides considerable input to auditory pro-
cessing due to a wide variety of neurons having distinct temporal and spectral re-
sponse properties, e.g. cells of the posteroventral cochlear nucleus respond strongly
to temporal features of complex tones. Higher within the brainstem, the superior
olivary complex engages in binaural processing, while other regions of the brainstem
handle reflexive and emotional responses to sound.
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the cochlea and the neocortex. Further work is therefore required, particularly in
studying and modelling the effects of brainstem activity on the auditory signals
reaching the first region of the neocortex. We conjecture that such additional
effects may be necessary for the neocortex (and an HTM system) to effectively
classify bioacoustic data streams.
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