
Building Structure into Local Search for SAT

Duc Nghia Pham1,2 and John Thornton1,2 and Abdul Sattar 1,2

1 Safeguarding Australia Program, National ICT Australia Ltd.
2 Institute for Integrated and Intelligent Systems, Griffith University, Australia

{duc-nghia.pham, john.thornton, abdul.sattar }@nicta.com.au

Abstract

Local search procedures for solving satisfiabil-
ity problems have attracted considerable attention
since the development of GSAT in 1992. How-
ever, recent work indicates that for many real-world
problems, complete search methods have the ad-
vantage, because modern heuristics are able to ef-
fectively exploit problem structure. Indeed, to de-
velop a local search technique that can effectively
deal with variable dependencies has been an open
challenge since1997.
In this paper we show that local search techniques
can effectively exploit information about prob-
lem structure producing significant improvements
in performance on structured problem instances.
Building on the earlier work of Ostrowskiet al. we
describe how information about variable dependen-
cies can be built into a local search, so that only
independent variables are considered for flipping.
The cost effect of a flip is then dynamically cal-
culated using a dependency lattice that models de-
pendent variables usinggates(specificallyand, or
andequivalencegates). The experimental study on
hard structured benchmark problems demonstrates
that our new approach significantly outperforms the
previously reported best local search techniques.

1 Introduction
A fundamental challenge facing local search researchers in
the satisfiability (SAT) domain is the increasing scope and
performance of complete search methods. While for most
of the 1990s it was taken for granted that local search was
the most practical method for solving large and complex real
world satisfiability problems[Selmanet al., 1992; Kautz and
Selman, 1996; B́ejar and Manỳa, 2000], the latest generation
of complete SAT solvers have turned the tables, solving many
structured problems that are beyond the reach of local search
(e.g. [Zhanget al., 2001; Éen and Biere, 2005]).1 So it is of

1More information on the performance of complete search
versus local search is available from the SAT competitions
(http://www.satcompetition.org)

basic importance to the area that local search techniques learn
from the success of the newer complete methods.

The current research goes to the core of this problem by
modelling problem structurewithin a local search procedure.
This involves a two-part process: firstly problem structure
must be recognized within the original problem represen-
tation (here we are considering satisfiability problems ex-
pressed in conjunctive normal form (CNF)). And secondly
this structure must be represented within a local search pro-
cedure in such a way that the local neighbourhood of possible
moves will only contain structure respecting flips.

The ideas behind this approach come from two sources.
Firstly, there is the recent work on modelling constraint sat-
isfaction problems (CSPs) as SAT problems[Phamet al.,
2005]. Here the presence of CSP multivalued variables is
automatically detected in the clausal structure of a CNF prob-
lem. This information is then embedded within a local search
in such a way that for each group of binary valued SAT vari-
ables corresponding to a single multivalued CSP variable,
only one SAT variable will be true at any one time. This
enforces that the underlying CSP variable is always instanti-
ated with a single domain value. The SAT-based local search
achieves this by doing a two-flip look-ahead whenever it en-
counters a literal associated with a CSP domain value. In
effect this look-ahead turns off the current CSP domain value
with one flip and turns on a new value with a second flip. A
significant advantage of this approach (when encoding binary
CSPs) is that the cost of such a double-flip equals the sum
of the costs of the individual flips, because these flip pairs
will never appear in the same conflict clause. For this reason,
CSP structure exploiting algorithms can be easily embedded
within an existing SAT local search architecture and add neg-
ligible processing overhead to an individual flip. As we shall
see, more general structure exploiting approaches do cause
interactions between literals within the same clauses, and so
require more sophisticated flip cost calculation procedures.

The second source for the current research comes from Os-
trowski et al.’s [2002] work on the extraction ofgatesfrom
CNF encoded SAT problems. These gates represent relation-
ships between SAT variables of the formy = f(x1, . . . , xn)
wheref ∈ {⇔,∧,∨} and y andxi are Boolean variables
from the original problem. If such a gate is recognized, the
value ofy is determined byx1, . . . , xn, and can be removed.
Ostrowskiet al. used this method to simplify a range of struc-

tured SAT benchmark problems, producing significant per-
formance gains for their systematic DPLL solver. However,
to the best of our knowledge, such structure exploiting ap-
proaches have not been applied in the local search domain.

The problem facing a local search approach to implement-
ing gates is one of efficiency. Ostrowskiet al.’s approach can
detect independent variables whose values determine a set of
dependent variables via clausal gate connections. Using this
information, we can implement a local search that only flips
the values of independent variables and then dynamically cal-
culates the effects of these flips on the overall solution cost.
However, a local search needs to know the flip cost of all
candidate flips in advance of making a move. Generally this
is achieved by maintaining a make cost and a break cost for
each literal in the problem (i.e. the number of clauses that will
become true if a literal is flipped and the number of clauses
that will become false). These costs are then updated after
each flip. A major advantage of a SAT local search is the
speed with which these cost effects can be calculated (this
is achieved using clever data structures that exploit the SAT
CNF problem structure)[Tompkins and Hoos, 2004]. How-
ever, taking an approach that only flips independent variables
renders the standard SAT local search architecture redundant.
In this case, finding the potential cost of an independent vari-
able flip requires us to solve a mini-SAT problem involving all
the affected dependent variables and their associated clauses.

The rest of the paper is organized as follows: we first ex-
plain how the cost of flipping an independent variable in a
local search can be efficiently calculated using a dependency
lattice data structure. This structure models the various de-
pendencies in the original problem and dynamically calcu-
lates which independent variables, when flipped, will cause
a clause to change its truth value. Details of the construc-
tion and operation of this lattice are given in the next two
sections. To evaluate the usefulness of this new approach,
we conduct an empirical study that examines several of the
structured SAT benchmarks that have proved to be the most
difficult for local search in the past. Finally, we discuss the
significance of our results and indicate some future directions
of research.

2 Gates and Dependencies
In the following discussion we shall broadly follow the termi-
nology used in[Ostrowskiet al., 2002]. Firstly, consider the
following CNF formula:

(¬a ∨ b ∨ c ∨ d) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (a ∨ ¬d)

Here, for the clauses to be satisfied, ifb andc andd areall
false thena must necessarily be false, otherwisea must nec-
essarily be true. This is an example of an “or” gate, because
the value ofa is determined by truth value of(b ∨ c ∨ d) and
can be represented as

a = ∨(b, c, d)

Similarly, if we reverse the signs of the literals we get:

(a ∨ ¬b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬a ∨ d)

Now for the formula to be satisfied, ifb andc andd are
all true thena must necessarily be true, otherwisea must

necessarily be false. This example of an “and” gate can be
represented as

a = ∧(b, c, d)
A third commonly occurring clausal structure is the “equiv-

alence” gate (or “xnor” gate), illustrated as follows:

(a∨ b∨ c)∧ (¬a∨¬b∨ c)∧ (¬a∨ b∨¬c)∧ (a∨¬b∨¬c)

Here, in order to satisfy the formula,a will be true iff b
andc are both true or both false, i.e. if they are equivalent,
otherwise ifb andc differ thena will be false. This can be
represented as

a =⇔ (b, c)
Finally, an “xor” gate is the negation of an “equivalence”

gate, illustrated as follows:

(¬a∨¬b∨¬c)∧ (a∨ b∨¬c)∧ (a∨¬b∨ c)∧ (¬a∨ b∨ c)

wherea will only be false ifb andc are equivalent. This can
be represented as

a = ⊕(b, c)
If an “equivalence” or an “xor” gate depends on more than

two variables, then equivalence or difference is calculated in
a pairwise fashion, i.e. ifa =⇔ (b, c, d) andb andc are false,
then b ⇔ c is true, and ifd is true, thend ⇔ (b ⇔ c) is
true and therefore the gate is true. In general, we represent an
“xor” gate asy = ⊕(x1, . . . , xn), an “equivalence” gate as
y =⇔ (x1, . . . , xn), an “or” gate asy = ∨(x1, . . . , xn) and
an “and” gate asy = ∧(x1, . . . , xn). Herey is thedependent
variable because its value is determined by theindependent
variablesx1, . . . , xn. For the sake of simplicity, we treat an
“xor” gate (e.g.a = ⊕(b, c)) as a special case of an “equiva-
lence” gate (e.g.¬a =⇔ (b, c)) in the rest of the paper.

3 The Dependency Lattice
As Ostrowskiet al. [2002] have already described, the pro-
cess of recognizing gates in a CNF problem can be reduced to
searching for the appropriate clausal structures during a pre-
processing phase. This information can then be used to clas-
sify the dependent and independent variables. For a complete
search method, this means the search space can immediately
be reduced to only consider independent variable instantia-
tions, as all dependent variable values can be automatically
fixed by propagation.

However, for a local search, there is no built-in propagation
mechanism. In fact, a local search strategy precludes propa-
gation because it deliberately allows inconsistent assignments
to persist. To exploit the information inherent in dependent
variable relationships requires us to remove them from the
domain of “free” variables while still including their effect in
the overall cost of a particular flip. To achieve this we have
developed adependency latticedata structure. This lattice
is formed as a result of analyzing the original CNF problem
into independent variables, and relationships betweeninter-
nal and externalgates. Firstly, an independent variable is
not simply a variable that determines the value of a depen-
dent variable in a gate relationship, because such determining
variables can in turn be determined in another gate. An inde-
pendent variable is a variable that isneverdetermined in any

gate relationship. Secondly, an internal gate is any gate that
can be recognized within the structure of the original CNF
formula, and thirdly, an external gate is a gate where the de-
pendent variable represents a clause from the original CNF
formula that is not part of any internal gate. To clarify these
concepts, consider the following CNF formula example:

(¬g1 ∨ v2 ∨ v3) ∧ (g1 ∨ ¬v2) ∧ (g1 ∨ ¬v3)∧
(g2 ∨ ¬v3 ∨ ¬v4) ∧ (¬g2 ∨ v3) ∧ (¬g2 ∨ v4)∧

(g3 ∨ g1 ∨ g2) ∧ (¬g3 ∨ ¬g1 ∨ g2)∧
(¬g3 ∨ g1 ∨ ¬g2) ∧ (g3 ∨ ¬g1 ∨ ¬g2)∧

(v1 ∨ g1)
which is equivalent to:

(g1 = ∧(v2, v3)) ∧ (g2 = ∨(v3, v4))∧
(g3 =⇔ (v1, v2)) ∧ (c1 = ∨(v1, g1))

wherec1 is an additional variable that depends on the clause
(v1 ∨ g1) (i.e. if (v1 ∨ g1) is true,c1 is true, otherwisec1 is
false). In general, each original CNF clause that is not sub-
sumed within a gate dependency is represented by an addi-
tional variable, that then subsumes the clause in an external
“or” gate dependency.

Having translated our original problem into a set of gates,
we can now represent it as the dependency lattice in Figure 1:

{v
2
v

3}

3
g

{ }}{ 32v v

c

gg

vvvv

1

21

4321

ORAND

OR

{F} {T} {F}

{F} {T}

{F}

{F}

{F}

{v
2

v }1

Figure 1: An example dependency lattice.

Here the original variables have become nodes in the lat-
tice, such that nodesv1 . . . v4 correspond to the independent
variables, nodesg1 . . . g3 to the internal gates and nodec1 to
an external gate. In this form, a satisfying assignment to the
original CNF formula is equivalent to an assignment of the
independent variables such that all theci external nodes eval-
uate totrue. This result follows trivially from the structure
of the lattice, which implements the structure of the internal
gates and therefore ensures that all internal gate relationships
are necessarily satisfied. When all the external nodes eval-
uate to true, this means all the remaining CNF clauses that
were not subsumed as internal gates are true, and hence that
a satisfying assignment has been found.

The purpose of the lattice is to embody the structure of gate
dependencies in such a way that the cost of flipping an inde-
pendent variable can be efficiently calculated. This is analo-
gous to existing local search SAT solvers, except that existing
solvers are only equipped to handle “or” gate dependencies.

3.1 Calculating Flip Costs
To illustrate the process of cost calculation, we have instanti-
ated the independent variables in Figure 1 as follows:v1 ←
false, v2 ← false, v3 ← true andv4 ← false. Moving down
the lattice fromv2 andv3 to the “and” gate at nodeg1 it fol-
lows that the values ofv2 andv3 make this gate variablefalse.
Similarly, moving down fromv3 andv4 to g2 we can see that
the corresponding “or” gate variable istrue. Then following
down from the gates atg1 andg2 to the “equivalence” gate
at g3 we can see that this gate variable isfalse, and so on. In
this way, the lattice reflects the necessary consequences of the
independent variable instantiations on the rest of the problem.

To calculate the cost of flipping a particular independent
variablevi we need to know how many external gate variables
will become false and how many will become true as a result
of the flip. This is achieved by storing at each gate node the
set of independent variables that, if flipped, would cause the
gate variable to change its truth value. For example, nodeg1

stores the independent variablev2, signifying that ifv2 was
flipped theng1 would change fromfalse to true. Similarly,
g2 can only becomefalse if v3 is flipped. Moving down the
lattice, we can see thatg3 would becometrue if either g1 or
g2 were to change values. As flippingv2 will change the truth
value ofg1 and flippingv3 will change the truth value ofg2,
either of these flips will also change the truth value ofg3, so
g3 inheritsv2 andv3 into its variable set. Nodec1 similarly
inheritsv1 andv2, as a change in either variable will makec1

true.
Once we have the correct variable sets for each of the ex-

ternal gates we can read off the make cost and break cost for
each independent variable simply by counting the number of
times a variable appears in a false external gate (= make cost)
and the number of times it appears in a true external gate (=
break cost). So, in our example, bothv1 andv2 have a make
cost of one, with all other make and break costs equal to zero.

3.2 The General Case
In realistic problems it can easily happen that the same in-
dependent variable appears in multiple branches leading to
the same gate. To handle such cases we require more gen-
eral definitions of how the variable sets for each gate type are
composed.

Firstly, if an “and” gate istrue then all its parent nodes
must betrue, therefore any change in a parent node’s truth
value will also change the truth value of the gate. This means
the gate’s variable set (V) should inherit the union of all the
parent variable sets (Psets), as follows:

if true(AND) then V ← ∪(true(Psets))

Alternatively, if an “and” gate isfalse then only if all its
parent nodes becometrue will the gate becometrue. This
requires that all false parent nodes becometrue and no true
parent node becomesfalse, as follows:

if false(AND) then V ← ∩(false(Psets)) \ ∪(true(Psets))

The rules for an “or” gate can be similarly defined in re-
verse:

if false(OR) then V ← ∪(false(Psets))
if true(OR) then V ← ∩(true(Psets)) \ ∪(false(Psets))

For all “equivalence” gates with no more than two parents,
only if the truth value of a single parent changes will the value
of the gate change, as follows:

V ← ∪(Psets) \ ∩(Psets)

In general, an “equivalence” gate istrue iff the count of its
true parents has the same parity as the count of all its parents.
As we did not discover any “equivalence” gates with more
than two parents in our problem set, we did not implement
the more-than-two-parent case.

In addition, we did find rare problem instances where a sin-
gle variable was dependent on more than one gate. In these
circumstances, we added an additional dependent variable for
each extra gate and connected these variables to the first vari-
able via additional “equivalence” gates.

3.3 Implementation
The motivation behind the dependency lattice is to develop an
efficient method to update the make and break costs for the
independent variables. Clearly there is a potential for the ad-
ditional work of calculating flip costs using the lattice to out-
weigh the benefits of reducing the size of the search space (i.e.
by eliminating dependent variables and internal gate clauses
from the problem). Therefore it is of significance exactly how
the lattice is updated. In our current implementation we do
this by representing the total set of independent variables at
each node using annind bit pattern, such that if theith in-
dependent variable is in the variable set of a particular node,
then theith position of the bit pattern for that node will be
set. Using this representation we can efficiently implement
the set operations necessary to propagate the effects of flip-
ping an independent variable through the lattice. This propa-
gation starts when an independent variable has been selected
for flipping. Beginning at the lattice node corresponding to
this variable, the update works down the lattice to all the con-
nected internal nodes. For example, ifv3 is flipped in Figure
1, then nodesg1 andg2 will be selected for update. The up-
date process then performs the appropriate set operations on
the parent variable sets to produce an updated variable set and
truth value for the selected gate. If the truth value of a node
and the contents of its variable set remain unchanged after an
update then no further propagation is required from that node.
Otherwise the process continues until it reaches the external
nodes. Then, if an external node’s variable set is changed, this
updates the make and break costs of any affected independent
variables and the process terminated.

If we follow the process of flippingv2 in Figure 1, this will
alter the variable set atg1 from {v2} to {v2, v3} and change
g1 to true. As the variable set atg1 has changed these effects
are now propagated to the internal nodeg3 which becomes
true. Now we have a situation where both parents ofg3 share
the same variable, i.e.g1 now has{v2, v3} andg2 has{v3}.
In this case ifv3 were flipped then both parents ofg3 would
change their truth value and still remain equivalent, leaving
g3 unchanged. Henceg3 only inheritsv2 into its variable set.
Finally, the external nodec1 changes its truth value totrue

and changes its variable set from{v1, v2} to {v2, v3}. This
change then causes the make costs ofv1 andv2 to be reduced
by one and the break costs ofv2 andv3 to be increased by
one. The process terminates with all external nodes set to
true,meaning that a satisfying solution has been found. This
situation is illustrated in Figure 2:

}3
v

2
v{

3v

}2v{

{v
2
v

3}

{T} {T}

{T}

{T}

{F}

{T}

{F}{T}

OR

AND OR

1 2 3 4

1 2

1

v v v v

g g

c

}{

g
3

Figure 2: A dependency lattice solution.

4 Experimental Validation
In order to validate our approach to handling gate dependen-
cies, we implemented anon-CNFversion of AdaptNovelty+
[Hoos, 2002] that operates on the new dependency lattice
platform. We then evaluated the performance of this algo-
rithm on a selection of SATLIB ssa7552, parity16- and32-bit
problems.2 Table 1 firstly shows the effect of gate detection
on the number of variables and clauses in the problem set,
detailing the number of independent and dependent gates in
the corresponding non-CNF dependency lattices and the total
time taken for each conversion.

We then compared the performance of our new non-CNF
AdaptNovelty+ algorithm against the original CNF based
variant by running the two algorithms100 times each on the
ssa7552 and par16 instances and10 times each on the par32
instances. Table 2 shows the success rate, the average num-
ber of flips and time in seconds taken to solve these instances.
Each run was timed out after1 hour for the ssa7552 and par16
instances and after24 hours for the par32 instances.

As shown in Table 2, the non-CNF version of
AdaptNovelty+ significantly outperforms its original CNF
counterpart both in terms of flips and time. Indeed, the new
non-CNF approach is at least100 times better than the orig-
inal CNF approach on these instances. In addition, this is
the first time that a local search solver has managed to find
solutions for all the parity32-bit problems within24 hours.
The only other SLS method that can solve these problems is
DLM2005 [Wah and Wu, 2005]. However, DLM could only
solve the compacted par32-*-c instances, producing only1
successful run out of20 attempts and taking nearly33 hours
to find a solution.

As all else has been left unchanged between the two ver-
sions of AdaptNovelty+, we must conclude that the extraor-
dinary performance gains are due to the successful recogni-
tion and exploitation of variable dependencies in the new non-
CNF approach. As shown in Figure 3, the dependency lattice

2Available from http://www.satlib.org

CNF Extracted non-CNF

Problem #vars #clauses #fixed #eq #and/or #input #output #seconds

ssa-038 1, 501 3, 575 40 1, 031 23 407 1, 137 0.016

ssa-158 1, 363 3, 034 186 894 7 276 642 0.011

ssa-159 1, 363 3, 032 132 932 11 288 683 0.015

ssa-160 1, 391 3, 126 25 1, 016 19 331 855 0.015

par16-1 1, 015 3, 310 408 560 31 16 91 0.011

par16-2 1, 015 3, 374 383 585 31 16 91 0.013

par16-3 1, 015 3, 344 395 573 31 16 91 0.011

par16-4 1, 015 3, 324 396 572 31 16 91 0.012

par16-5 1, 015 3, 358 388 580 31 16 91 0.016

par32-1 3, 176 10, 277 758 2, 261 125 32 247 0.031

par32-2 3, 176 10, 253 784 2, 235 125 32 247 0.034

par32-3 3, 176 10, 297 781 2, 238 125 32 247 0.032

par32-4 3, 176 10, 313 791 2, 228 125 32 247 0.032

par32-5 3, 176 10, 325 791 2, 228 125 32 247 0.034

Table 1: The effects of the gate extracting algorithm on the
ssa7552-∗ and parity problems. This table shows the number
of “fixed”, “equivalence” (#eq) and “and/or” gates extracted
from each instance. The number of “independent” and “exter-
nal dependent” gates of each processed non-CNF instance are
described in the table as#input and#output, respectively.

CNF based non-CNF based

Problem % solved #flips #seconds % solved #flips #seconds

ssa-038 86% 180, 937, 822 838.790 100% 2, 169 15.131

ssa-158 100% 303, 377, 289 419.054 100% 439 1.203

ssa-159 95% 118, 865, 143 499.300 100% 460 1.396

ssa-160 100% 154, 646, 089 377.383 100% 1, 284 5.562

par16-1 100% 148, 475, 195 684.972 100% 2, 455 0.489

par16-2 98% 331, 148, 102 788.312 100% 2, 724 0.570

par16-3 100% 381, 887, 299 801.501 100% 1, 640 0.320

par16-4 100% 79, 196, 974 779.877 100% 3, 217 0.626

par16-5 100% 390, 162, 552 604.379 100% 7, 938 1.630

par32-1 0% n/a > 24h 80% n/a 48, 194.033

par32-2 0% n/a > 24h 100% n/a 13, 204.536

par32-3 0% n/a > 24h 100% n/a 17, 766.822

par32-4 0% n/a > 24h 100% n/a 9, 487.728

par32-5 0% n/a > 24h 100% n/a 23, 212.755

Table 2: The results of solving the ssa7552-* and parity
problems using the CNF and non-CNF based versions of
AdaptNovelty+. The #flips and #seconds are the aver-
age number of flips and seconds taken to solve each instance.
For the original AdaptNovelty+ the#flips values have been
approximated as the flip counter maximum was exceeded.

of the par8-1 instance is highly connected. Access to this
extra knowledge enables the new solver to maintain the con-
sistency of the dependent variables and hence to efficiently
navigate the search space and find a solution. The structure
of the variable dependencies is otherwise flattened out and
hidden in the original CNF representation. This means that
CNF based SLS solvers must expend considerable extra ef-

Figure 3: The dependency lattice of the par8-1 instance. In
this graph, theindependentgates are depicted as shadedrect-
angular boxes and thedependent“equivalence”, “and” and
“or” gates are represented ashexagon, houseand inverse
houseshaped boxes, respectively. External dependent gates
are also lightly shaded. A solid arrow outputs the gate value,
while a dashed arrow outputs the negation of the gate value.

CNF based non-CNF based

Problem % solved #flips #seconds % solved #flips #seconds

bart26 100% 216 0.001 100% 215 3.585

bart27 100% 233 0.001 100% 228 4.537

bart28 100% 222 0.001 100% 222 4.191

bart29 100% 244 0.001 100% 249 5.602

bart30 100% 266 0.001 100% 251 6.677

Table 3: The results of solving the Aloul’s bart FPGA
problems using the CNF and non-CNF based versions of
AdaptNovelty+. The#flips and#seconds are the average
number of flips and seconds taken to solve each instance.

fort to discover solutions that respect these dependencies.
However, the cost of maintaining consistency between the

newly discovered gates in our non-CNF approach is also sig-
nificant. To measure this, we conducted an additional exper-
iment using a set of bart FPGA problems that exhibit no de-
pendency structure[Aloul et al., 2002]. Table 3 shows our
non-CNF AdaptNovelty+ solver to be more than1, 000 times
slower on these problems. However, this performance deficit
can be partly explained by the initial cost of searching for
gate dependencies in the original CNF representation, and
hence will become less significant for problems where the
solution time significantly exceeds the preprocessing time.
We also used the built-in C++ set class to update the lattice

which could be replaced by more efficient, special purpose
data structures and operators. Finally, it would be trivial to
implement a switch that automatically reverts to using a CNF
based solver when the proportion of gate dependencies falls
below a given threshold.

5 Conclusion
In conclusion, we have introduced a new dependency lattice
platform that effectively maintains the consistency between
independent and dependent variables (or gates) during the ex-
ecution of a local search. Based on this platform, our new
non-CNF version of AdaptNovelty+ can solve many hard
structured benchmark problems significantly faster than its
original CNF based counterpart. In addition, this non-CNF
AdaptNovelty+ variant is the first local search solver able to
reliably solve all five par32 instances within24 hours. By
exploiting variable dependencies within a local search and
by solving the par32 problems we have also successfully ad-
dressed two of the ten challenges in propositional reasoning
and search (#2 and#6) presented in[Selmanet al., 1997].

In future work, we expect that non-CNF implementations
of the latest clause weighting local search solvers (such as
PAWS[Thorntonet al., 2004] and SAPS[Hutteret al., 2002])
will further extend the state-of-the-art in local search tech-
niques. In fact, the extension of these solvers using our de-
pendency lattice is very straightforward. Instead of counting
the number of external dependent gates that will be made or
broken if an independent gate is flipped, we simply sum the
corresponding weights of the dependent gates.

Another future research direction is to develop new
heuristics that further exploit the gate dependencies when
selecting the next variable to flip. With these improvements,
we expect that local search techniques will be able to match
the performance of the state-of-the-art DPLL solvers on the
more structured industrial benchmark problems.

Acknowledgments The authors would like to acknowl-
edge the financial support of National ICT Australia (NICTA)
and the Queensland government. NICTA is funded through
the Australian Government’sBacking Australia’s Abilityini-
tiative and also through the Australian Research Council.

References
[Aloul et al., 2002] Fadi A. Aloul, Arathi Ramani, Igor L.

Markov, and Karem A. Sakallah. Solving difficult SAT
instances in the presence of symmetry. InProceedings of
the 39th Design Automation Conference (DAC-02), pages
731–736, 2002.

[Béjar and Manỳa, 2000] Ramóon Béjar and Felip Manỳa.
Solving the round robin problem using propositional logic.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-00), pages 262–266, 2000.

[Eén and Biere, 2005] Niklas Éen and Armin Biere. Effec-
tive preprocessing in SAT through variable and clause
elimination. InProceedings of the Eighth International
Conference on Theory and Applications of Satisfiability
Testing (SAT-05), pages 61–75, 2005.

[Hoos, 2002] Holger H. Hoos. An adaptive noise mech-
anism for WalkSAT. InProceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI-02),
pages 635–660, 2002.

[Hutteret al., 2002] Frank Hutter, Dave A. D. Tompkins,
and Holger H. Hoos. Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT. InProceed-
ings of the Eighth International Conference on Principles
and Practice of Constraint Programming (CP-02), pages
233–248, 2002.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman.
Pushing the envelope: Planning, propositional logic, and
stochastic search. InProceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-96),
pages 1194–1201, 1996.

[Ostrowskiet al., 2002] Richard Ostrowski,Éric Gŕegoire,
Bertrand Mazure, and Lakhdar Saı̈s. Recovering and ex-
ploiting strutural knowledge from CNF formulas. InPro-
ceedings of the Eighth International Conference on Prin-
ciples and Practice of Constraint Programming (CP-02),
pages 185–199, 2002.

[Phamet al., 2005] Duc Nghia Pham, John Thornton, Abdul
Sattar, and Adelraouf Ishtaiwi. SAT-based versus CSP-
based constraint weighting for satisfiability. InProceed-
ings of the Twentieth National Conference on Artificial In-
telligence (AAAI-05), pages 455–460, 2005.

[Selmanet al., 1992] Bart Selman, Hector Levesque, and
David Mitchell. A new method for solving hard satisfiabil-
ity problems. InProceedings of the Tenth National Confer-
ence on Artificial Intelligence (AAAI-92), pages 440–446,
1992.

[Selmanet al., 1997] Bart Selman, Henry Kautz, and David
McAllester. Ten challenges in propositional reasoning and
search. InProceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97), pages
50–54, 1997.

[Thorntonet al., 2004] John Thornton, Duc Nghia Pham,
Stuart Bain, and Valnir Ferreira Jr. Additive versus multi-
plicative clause weighting for SAT. InProceedings of the
Twentieth National Conference on Artificial Intelligence
(AAAI-04), pages 191–196, 2004.

[Tompkins and Hoos, 2004] Dave A. D. Tompkins and Hol-
ger H. Hoos. UBCSAT: An implementation and experi-
mentation environment for SLS algorithms for SAT and
MAX-SAT. In SAT (Selected Papers), pages 306–320,
2004.

[Wah and Wu, 2005] Benjamin W. Wah and Zhe Wu.
Penalty formulations and trap-avoidance strategies for
solving hard satisfiability problems.J. Comput. Sci. Tech-
nol., 20(1):3–17, 2005.

[Zhanget al., 2001] Lintao Zhang, Conor Madigan,
Matthew Moskewicz, and Sharad Malik. Efficient con-
flict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on
Computer-Aided Design, pages 279–285, 2001.

