1

Building Structure into Local Search for SAT

Duc Nghia Phamt? and John Thornton'? and Abdul Sattar !+
! Safeguarding Australia Program, National ICT Australia Ltd.
2 Institute for Integrated and Intelligent Systems, Griffith University, Australia

{duc-nghia.pham, john.thornton, abdul.sattar

Abstract

Local search procedures for solving satisfiabil-
ity problems have attracted considerable attention
since the development of GSAT in 1992. How-
ever, recent work indicates that for many real-world
problems, complete search methods have the ad-
vantage, because modern heuristics are able to ef-
fectively exploit problem structure. Indeed, to de-
velop a local search technique that can effectively
deal with variable dependencies has been an open
challenge sinc&997.

In this paper we show that local search techniques
can effectively exploit information about prob-
lem structure producing significant improvements
in performance on structured problem instances.
Building on the earlier work of Ostrowski al. we
describe how information about variable dependen-
cies can be built into a local search, so that only
independent variables are considered for flipping.
The cost effect of a flip is then dynamically cal-
culated using a dependency lattice that models de-
pendent variables usirgates(specificallyand, or
andequivalenceyates). The experimental study on
hard structured benchmark problems demonstrates
that our new approach significantly outperforms the
previously reported best local search techniques.

Introduction

}@nicta.com.au

basic importance to the area that local search techniques learn
from the success of the newer complete methods.

The current research goes to the core of this problem by
modelling problem structureithin a local search procedure.
This involves a two-part process: firstly problem structure
must be recognized within the original problem represen-
tation (here we are considering satisfiability problems ex-
pressed in conjunctive normal form (CNF)). And secondly
this structure must be represented within a local search pro-
cedure in such a way that the local neighbourhood of possible
moves will only contain structure respecting flips.

The ideas behind this approach come from two sources.
Firstly, there is the recent work on modelling constraint sat-
isfaction problems (CSPs) as SAT problefiftamet al,
2004. Here the presence of CSP multivalued variables is
automatically detected in the clausal structure of a CNF prob-
lem. This information is then embedded within a local search
in such a way that for each group of binary valued SAT vari-
ables corresponding to a single multivalued CSP variable,
only one SAT variable will be true at any one time. This
enforces that the underlying CSP variable is always instanti-
ated with a single domain value. The SAT-based local search
achieves this by doing a two-flip look-ahead whenever it en-
counters a literal associated with a CSP domain value. In
effect this look-ahead turns off the current CSP domain value
with one flip and turns on a new value with a second flip. A
significant advantage of this approach (when encoding binary
CSPs) is that the cost of such a double-flip equals the sum
of the costs of the individual flips, because these flip pairs
will never appear in the same conflict clause. For this reason,

A fundamental challenge facing local search researchers iffSP structure exploiting algorithms can be easily embedded
the satisfiability (SAT) domain is the increasing scope andVithin an existing SAT local search architecture and add neg-
performance of complete search methods. While for most9iPle processing overhead to an individual flip. As we shall
of the 1990s it was taken for granted that local search waS€€> More general structure exploiting approaches do cause
the most practical method for solving large and complex reainteractions between literals within the same clauses, and so
world satisfiability problem§Selmaret al, 1992; Kautz and "équire more sophisticated flip cost calculation procedures.
Selman, 1996; Bjar and Mang, 2000, the latest generation The _second source for the current rese_arch comes from Os-
of complete SAT solvers have turned the tables, solving man{fowski et al’s [2003 work on the extraction ofatesfrom
structured problems that are beyond the reach of local seardiNF encoded SAT problems. These gates represent relation-
(e.g.[Zhanget al, 2001; En and Biere, 205! Soitis of Ships between SAT variables of the fogm= f(z1,...,7,)
wheref € {<,A,V} andy andx; are Boolean variables
IMore information on the performance of complete searchfrom the original problem. If such a gate is recognized, the
versus local search is available from the SAT competitionsvalue ofy is determined by, ..., z,, and can be removed.
(http://www.satcompetition.org) Ostrowskiet al. used this method to simplify a range of struc-

tured SAT benchmark problems, producing significant pernecessarily be false. This example of an “and” gate can be

formance gains for their systematic DPLL solver. However,represented as

to the best of our knowledge, such structure exploiting ap- a = NA(b,c,d)

proaches have not been applied in the local search domain. A thirq commonly occurring clausal structure is the “equiv-

_ The problem facing a local search approach to implementyionce” gate (or “xnor” gate), illustrated as follows:

ing gates is one of efficiency. Ostrowskial's approach can

detect independent variables whose values determine a set@fV bV c) A (maV =bVe) A (—aVbV —c)A(aV —bV —c)

dependent variables via clausal gate connections. Using this

information, we can implement a local search that only flips H€re, in order to satisfy the formula, will be true iff b

the values of independent variables and then dynamically cand¢ are both true or both false, i.e. if they are equivalent,

culates the effects of these flips on the overall solution cosPtherwise ifb andc differ thena will be false. This can be

However, a local search needs to know the flip cost of alféPresented as

candidate flips in advance of making a move. Generally this a =& (b,c)

is achieved by maintaining a make cost and a break cost for Finally, an “xor” gate is the negation of an “equivalence”

each literal in the problem (i.e. the number of clauses that wilgate, illustrated as follows:

become true if a literal is flipped and the humber of clauses

that will become false). These costs are then updated aftéi@V 0V =€) A (a VbV =¢) A(aV =bVe) A(ma VbV e)

each flip. A major advantage of a SAT local search is theyhereq will only be false ifb andc are equivalent. This can

speed with which these cost effects can be calculated (thige represented as

is achieved using clever data structures that exploit the SAT a=a(b,c)

CNF problem structureliTompkins and Hoos, 2004 How- - ., o

ever, taking an approach that only flips independent variables T @n “équivalence” or an “xor” gate depends on more than

renders the standard SAT local search architecture redundaff© variables, then equivalence or difference is calculated in

In this case, finding the potential cost of an independent vari@ Pairwise fashion, i.e. if =< (b, ¢, d) andb andc are false,

able flip requires us to solve a mini-SAT problem involving all thénb < cis true, and ifd is true, thend < (b < ¢) is

the affected dependent variables and their associated claus§4€ and therefore the gate is true. In general, we represent an
The rest of the paper is organized as follows: we first ex- X0 9ate asy = ©(z1, ..., 2,), an “equivalence” gate as

plain how the cost of flipping an independent variable in a¥ =< (£1,- .., 2,), an “or" gate ay = V(z1, ..., =) and

local search can be efficiently calculated using a dependen@? “and” gate ag = A(z1, ..., 2,). Herey is thedependent

lattice data structure. This structure models the various delariable because its value is determined byitiéependent

pendencies in the original problem and dynamically calcuYarablesz:, ... a,. Forthe sake of simplicity, we treat an

lates which independent variables, when flipped, will caus?)‘c’r gate (e.g.a = &(b,) as a special case of an “equiva-

a clause to change its truth value. Details of the construc€Nce” gate (e.gma =< (b, ¢)) in the rest of the paper.

tion and operation of this lattice are given in the next two)

sections. To evaluate the usefulness of this new approac®, The Dependency Lattice

we conduct an empirical study that examines several of the\s Ostrowskiet al. [2004 have already described, the pro-

structured SAT benchmarks that have proved to be the mogess of recognizing gates in a CNF problem can be reduced to
difficult for local search in the past. Finally, we discuss thesearching for the appropriate clausal structures during a pre-
significance of our results and indicate some future directiongrocessing phase. This information can then be used to clas-

of research. sify the dependent and independent variables. For a complete
. search method, this means the search space can immediately
2 Gates and Dependencies be reduced to only consider independent variable instantia-

In the following discussion we shall broadly follow the termi- tions, as all dependent variable values can be automatically
nology used ifOstrowskiet al., 2004. Firstly, consider the fixed by propagation.

following CNF formula: However, for a local search, there is no built-in propagation
mechanism. In fact, a local search strategy precludes propa-
(maVbVveVd)A(aV—b)AaVc)A(aV —d) gation because it deliberately allows inconsistent assignments

Here, for the clauses to be satisfied; #ndc andd areall to persist. To exploit the information inherent in dependent
false them: must necessarily be false, otherwisenust nec- variable relationships requires us to remove them from the
essarily be true. This is an example of an “or” gate, becausgomain of “free” variables while still including their effect in
the value ofu is determined by truth value ¢b v ¢ vV d) and the overall cost of a particular flip. To achieve this we have
can be represented as developed alependency latticelata structure. This lattice

is formed as a result of analyzing the original CNF problem
a=V(bec,d) into independent variablesand relationships betweeénter-
Similarly, if we reverse the signs of the literals we get: nal and externalgates. Firstly, an independent variable is
not simply a variable that determines the value of a depen-
(@V=bV=cV=d)A(maVb)A(maVe)A(maVd) dent variable in a gate relationship, because such determining

Now for the formula to be satisfied, ifandc andd are variables can in turn be determined in another gate. An inde-

all true thena must necessarily be true, otherwiganust pendent variable is a variable thatisverdetermined in any

gate relationship. Secondly, an internal gate is any gate tha&.1 Calculating Flip Costs
can be recognized within the structure of the original CNFrq j,qtrate the process of cost calculation, we have instanti-
formula, and thirdly, an external gate is a gate where the desio the independent variables in Figure 1 as followsi—
pendent variable represents a clause from the original CN alse vy — false v — trueandv, — false Moving down
formula that is not part of any internal gate. To clarify these 2 3 :

i ider the followina CNF f | le- the lattice fromwy andwvs to the “and” gate at nodg, it fol-
concepts, consiaer the tollowing ormula example: o5 that the values af, andvs make this gate variabfalse

Similarly, moving down fromus andw, to go we can see that
the corresponding “or” gate variabletime. Then following
(g2 V w3 V =vg) A (=g2 V vg) A (mg2 V vg)A down from the gates af; andg» to the “equivalence” gate

at g3 we can see that this gate variabldatse and so on. In

(95V 91V 92) A (295 V g1V g2) this way, the lattice reflects the necessary consequences of the

(g3 V g1V g2) A (g3 V g1 V =g2) A independent variable instantiations on the rest of the problem.
(v1 V g1) To calculate the cost of flipping a particular independent
variablev; we need to know how many external gate variables
will become false and how many will become true as a result

(ﬁgl V vy V Ug) AN (91 V ﬁ’l)g) A\ (91 V ﬁ’Ug)/\

which is equivalent to:

—A A gy = V A of the flip. This is achieved by storing at each gate node the
(91 (vz,03)) A (92 (va, v4)) set of independent variables that, if flipped, would cause the
(g5 =& (v1,v2)) A (c1 = V(v1,91)) gate variable to change its truth value. For example, nede

wherec; is an additional variable that depends on the clause€. .02
(v1 V g1) (i.e. if (v1 V g1) iS true,c, is true, otherwise; is ipped theng; would change fronfalse to true. Similarly,

false). In general, each original CNF clause that is not subd2 €an only becoméalse if vy is flipped. Moving down the

sumed within a gate dependency is represented by an addftice, we can see thgg would becomeruc if either g, or

tional variable, that then subsumes the clause in an externg Were to change values. As flippimg will change the truth
“or” gate dependency. value ofg; and flippingvs will change the truth value aofs,

Having translated our original problem into a set of gates €ither of these flips will also change the truth valug/gfso

We can now represent it as the dependency lattice in Figure ¢ Inheritsvz andws into its variable set. Node; similarly
P P y 9 Inheritsv; andwvs, as a change in either variable will make

true.

Vi Va Vs Vs Once we have the correct variable sets for each of the ex-
ternal gates we can read off the make cost and break cost for
each independent variable simply by counting the number of
times a variable appears in a false external gate (= make cost)
and the number of times it appears in a true external gate (=
break cost). So, in our example, bathandvy, have a make
cost of one, with all other make and break costs equal to zero.

‘?tores the independent variahlg signifying that ifvo was
|

3.2 The General Case

In realistic problems it can easily happen that the same in-
Figure 1: An example dependency lattice. dependent variable appears in multiple branches leading to

the same gate. To handle such cases we require more gen-
tm_aral definitions of how the variable sets for each gate type are
composed.

Firstly, if an “and” gate istrue then all its parent nodes
gust betrue, therefore any change in a parent node’s truth
original CNF formula is equivalent to an assignment of theV&!ue will also change the truth value of the gate. This means
independent variables such that all thexternal nodes eval- (1€ 9ate’s variable set/) should inherit the union of all the
uate totrue. This result follows trivially from the structure Parentvariable set#.;,), as follows:
of the lattice, which implements the structure of the internal .
gates and therefore engures that all internal gate relationships if true(AND) then V' «— U(true(Psets))
are necessarily satisfied. When all the external nodes eval- Alternatively, if an “and” gate isfalse then only if all its

uate to true, this means all the remaining CNF clauses thg{;rent nodes beconteue will the gate becomerue. This

were not subsumed as internal gates are true, and hence t é&uires that all false parent nodes became: and no true
a satisfying assignment has been found. arent node becomgilse, as follows:

The purpose of the lattice is to embody the structure of gatg
dependencies in such a way that the cost of flipping an inde-f falsgAND) then V « N(falSg Puers)) \ U(true(Pscrs))
pendent variable can be efficiently calculated. This is analo-
gous to existing local search SAT solvers, except that existing The rules for an “or” gate can be similarly defined in re-
solvers are only equipped to handle “or” gate dependenciesverse:

Here the original variables have become nodes in the la
tice, such that nodes ... v4 correspond to the independent
variables, nodes; ... g3 to the internal gates and nodgto
an external gate. In this form, a satisfying assignment to th

if falsgOR)then V' «— U(falsg Pscts)) and changes its variable set frofm, v2} to {ve, v3}. This
if true(OR) then V «— N(true(Py,)) \ U(false Pyeys) change then causes the make costs @ndv, to be reduced
by one and the break costs @f andwvs to be increased by
For all “equivalence” gates with no more than two parentsone. The process terminates with all external nodes set to
only if the truth value of a single parent changes will the valuetrue, meaning that a satisfying solution has been found. This
of the gate change, as follows: situation is illustrated in Figure 2:

V — U(Psets) \ m(]Dsets)

In general, an “equivalence” gatetisue iff the count of its
true parents has the same parity as the count of all its parents.
As we did not discover any “equivalence” gates with more
than two parents in our problem set, we did not implement
the more-than-two-parent case.

In addition, we did find rare problem instances where a sin-
gle variable was dependent on more than one gate. In these
circumstances, we added an additional dependent variable for
each extra gate and connected these variables to the first vari- C 9;
able via additional “equivalence” gates.

. Figure 2: A dependency lattice solution.
3.3 Implementation
The motivation behind the dependency lattice is to develop an
efficient method to update the make and break costs for thd Experimental Validation
independent variables. Clearly there is a potential for the adg, orqer to validate our approach to handling gate dependen-
ditional work of calculating flip costs using the lattice to out- jag \we implemented mon-CNFversion of AdaptNovelty
‘BHoos, 2002 that operates on the new dependency lattice

o P Slatform. We then evaluated the performance of this algo-
from the problem). Therefore it is of significance exactly hOW ithm on a selection of SATLIB $§a52, parity 16- and32-bit

the fattice is updated. In our current implementation we dg,qhlems? Table 1 firstly shows the effect of gate detection
this by representing the tptal set of mdependgnt Yah”fibles %n the number of variables and clauses in the problem set,
each node using an;,q bit pattern, such that if thé" in- geiailing the number of independent and dependent gates in
dependent variable is in the variable set of a particular nodgy,q corresponding non-CNF dependency lattices and the total
then thei'” position of the bit pattern for that node will be time taken for each conversion

set. Using this representation we can efficiently implement \y/s then compared the perfc;rmance of our new non-CNFE

the set operations necessary to propagate the effects of fliganiNovelty algorithm against the original CNF based
ping an independent variable through the lattice. This propay, iant by running the two algorithms0 times each on the
gation starts when an independent variable has been selectgdy=r9 41g pat6 instances and0 times each on the pae

for flipping. Beginning at the lattice node corresponding t0jntances. Table 2 shows the success rate, the average num-
this variable, the update works down the [attice to all the congg o fins and time in seconds taken to solve these instances.

nected internal nodes. For exampleyfis flipped in Figure gach ryn was timed out aftétour for the ssa52 and pat6
1, then nodeg; andg, will be selected fo_r update. The UP- instances and aft@x hours for the pa¥?2 instances.
date process then performs the appropriate set operations ONag shown in Table 2. the non-CNF version of

the parent variable sets to produce an updated variable set aj aptNoveltyt significantly outperforms its original CNF

truth value for the selected gate. If the truth value of a nOdecounterpart both in terms of flips and time. Indeed, the new

and the contents of its variable set remain unchanged after a{,_cnE approach is at leas0 times better than the orig-
update then no further propagation is required from that nodg

. : o al CNF approach on these instances. In addition, this is
Otherwise the process continues until it reaches the externfﬂe first time that a local search solver has managed to find
nodes. Then, if an external node’s variable set is changed, th

. Solutions for all the parity2-bit problems within24 hours.
updates the make and break costs of any affected independefi{g only other SLS method that can solve these problems is
variables and the process terminated.

DLM2 Wah Wu, 2 H DLM I I
If we follow the process of flipping- in Figure 1, this will 005 [Wah and Wu, 2005 However, could only

| h iabl f 4ch solve the compacted @-*-c instances, producing only
alter the variable set g from {v,} to {vz, v3} and change gccessful run out afo attempts and taking near hours
g1 totrue. As the variable set af; has changed these effects 1 ti\q a solution
are now propagated to the internal nagewhich becomes i

h o here both h As all else has been left unchanged between the two ver-
true. Now we have a situation where both parentg:pshare gjong of AdaptNovelty, we must conclude that the extraor-
the same variable, i.@y now has{vs, vs} andg, has{vs}.

n th i flioped then both I dinary performance gains are due to the successful recogni-
n this case ifu; were flipped then both parents @f would ion and exploitation of variable dependencies in the new non-
change their truth value and still remain equivalent, leaving-n g approach. As shown in Figure 3, the dependency lattice
g3 unchanged. Hencg; only inheritsv, into its variable set. '

Finally, the external node; changes its truth value tioue 2Available from http:/iwww.satlib.org

CNF Extracted non-CNF
Problem| #vars #clause>#fixed| #eq |#and/or #input| #output | #seconds

ssa038 || 1,501 | 3,575 40(1,031 23| 407| 1,137 0.016
ssai58 || 1,363 3,034 186| 894 7| 276 642 0.011
ssai59 || 1,363| 3,032 132 932 11 288 683 0.015
ssai60 || 1,391 3,126 251,016 19]| 331 855 0.015
parl6-1((1,015| 3,310|| 408| 560 31 16 91 0.011
parl6-2 |[1,015| 3,374| 383| 585 31 16 91 0.013
parl6-3 |[1,015| 3,344| 395| 573 31 16 91 0.011
parl6-4 |[1,015| 3,324| 396| 572 31 16 91 0.012
parl6-5 |[1,015| 3,358| 388| 580 31 16 91 0.016
par32-1 (3,176 |10,277|| 758]|2,261 125 32 247 0.031
pa32-2 {3,176 |10,253| 784|2,235 125 32 247 0.034
pa32-3 (3,176 |10,297| 781]|2,238 125 32 247 0.032
pam32-4 (3,176 |10,313|| 791]2,228 125 32 247 0.032
par32-5 (3,176 |10,325| 791]|2,228 125 32 247 0.034

Table 1: The effects of the gate extracting algorithm on the

ss&bH52-x and parity problems. This table shows the number

of “fixed”, “equivalence” #teq) and “and/or” gates extracted

from each instance. The number of “independent” and “exter

nal dependent” gates of each processed non-CNF instance are

described in the table ginput and#output, respectively. Figure 3: The dependency lattice of the §arinstance. In
this graph, théendependengates are depicted as shadect-

Y -

CNF based on-CNF based angular boxes and thelependentequivalence”, ”and" and

Problem %solvec{ #flips |#second %solve(# #flips| #seconds ‘or’ gates are represented d_mexagon, housand inverse
houseshaped boxes, respectively. External dependent gates

$sa038 || 86% 180,937, 822|838.790)| 100%)2,169 15.131 are also lightly shaded. A solid arrow outputs the gate value,
ssal58 || 100%]| 303,377,289 1419.054|| 100%| 439 1.203 while a dashed arrow outputs the negation of the gate value.
ssaib9 95%(118, 865, 143(499.300 100% 460 1.396
ssai60 || 100% |154,646,089|377.383| 100% |1,284 5.562 CNE based non-CNF based
parl6-1 (| 100% |148,475,195|684.972|| 100% 2,455 0.489 Problem %solve4#f|ips|#second;%solve4ﬁlips|#second5
parl6-2 98%(331,148,102|788.312 100% |2, 724 0.570 bart6 100%| 216 0.001 100%| 215 3.585
parl6-3 100% | 381, 887,299|801.501 100% |1, 640 0.320 barb? 100%| 233 0.001 100%| 228 4.537
parl6-4 100%| 79,196,974 |779.877 100% | 3,217 0.626 barbs 100%| 222 0.001 100% | 222 4191
parl6-5 100% | 390, 162, 552 [604.379 100% | 7,938 1.630 bar£9 100%| 244 0.001 100% | 249 5.602
pas2-1 0% nfal >24h| 80%)| n/a|48,194.033 baro 100%| 266| 0.001| 100%| 251| 6.677
par32-2 0% n/a| > 24h 100%| n/a|13,204.536
pai32-3 0% n/a| >24h|| 100%| n/a|17,766.822 Table 3: The results of solving the Aloul's bart FPGA
pa32-4 0% n/a| >24h|| 100%| n/a| 9,487.728 problems using the CNF and non-CNF based versions of
pas2-5 0% nja| >24h|| 100%| n/a|23,212.755 AdaptNovelty". The# flips and# seconds are the average

number of flips and seconds taken to solve each instance.
Table 2: The results of solving the §§42-* and parity

problems using the CNF and non-CNF based versions of _) i
AdaptNoveltyt. The # flips and #seconds are the aver- fort to discover solutions thgt rgs_pect the;e dependencies.
age number of flips and seconds taken to solve each instance.However, the cost of maintaining consistency between the
For the original AdaptNovelty the # flips values have been Newly discovered gates in our non-CNF approach is also sig-

approximated as the flip counter maximum was exceeded. nificant. To measure this, we conducted an additional exper-
iment using a set of bart FPGA problems that exhibit no de-

pendency structurBAloul et al, 2004. Table 3 shows our

of the paB-1 instance is highly connected. Access to thisnon-CNF AdaptNovelty solver to be more thah 000 times
extra knowledge enables the new solver to maintain the corslower on these problems. However, this performance deficit
sistency of the dependent variables and hence to efficientlgan be partly explained by the initial cost of searching for
navigate the search space and find a solution. The structugate dependencies in the original CNF representation, and
of the variable dependencies is otherwise flattened out anldence will become less significant for problems where the
hidden in the original CNF representation. This means thasolution time significantly exceeds the preprocessing time.
CNF based SLS solvers must expend considerable extra efYe also used the built-in C++ set class to update the lattice

which could be replaced by more efficient, special purpos¢Hoos, 2002 Holger H. Hoos. An adaptive noise mech-
data structures and operators. Finally, it would be trivial to anism for WalkSAT. InProceedings of the Eighteenth
implement a switch that automatically reverts to using a CNF National Conference on Artificial Intelligence (AAAI-02)
based solver when the proportion of gate dependencies falls pages 635-660, 2002.

below a given threshold. [Hutteret al, 2004 Frank Hutter, Dave A. D. Tompkins,
) and Holger H. Hoos. Scaling and probabilistic smooth-
5 Conclusion ing: Efficient dynamic local search for SAT. Proceed-

In conclusion, we have introduced a new dependency lattice I"9S Of the Eighth International Conference on Principles
platform that effectively maintains the consistency between 2and Practice of Constraint Programming (CP-0Pjages
independent and dependent variables (or gates) during the ex- 233-248, 2002.

ecution of a local search. Based on this platform, our newWKautz and Selman, 1996Henry Kautz and Bart Selman.
non-CNF version of AdaptNovelty can solve many hard Pushing the envelope: Planning, propositional logic, and
structured benchmark problems significantly faster than its stochastic search. IRroceedings of the Thirteenth Na-
original CNF based counterpart. In addition, this non-CNF tional Conference on Artificial Intelligence (AAAI-96)
AdaptNovelty" variant is the first local search solver able to pages 1194-1201, 1996.

reliably solve all five pa82 instances withir24 hours. By (]jOstrowskiet al, 2004 Richard Ostrowski,Eric Grégoire,

exploiting variable dependencies within a local search an Bertrand Mazure, and Lakhdar8a Recovering and ex-
by solving the p&B2 problems we have aiso successfully ad- ploiting strutural knowledge from CNF formulas. Rro-

dressed two of the ten challenges in propositional reasoning ceedings of the Eighth International Conference on Prin-

and search#2 and+#6) presented inSelmanret al, 1997. . . : . X
In future work, we expect that non-CNF implementations ciples and Practice of Consiraint Programming (CP-02)

of the latest clause weighting local search solvers (such as pages 185-199, 2002.)

PAWS[Thorntonet al, 2004 and SAPSHutteretal, 200J) ~ [Phamet al, 2009 Duc Nghia Pham, John Thomton, Abdul
will further extend the state-of-the-art in local search tech- Sattar, and Adelraouf Ishtaiwi. SAT-based versus CSP-
niques. In fact, the extension of these solvers using our de- based constraint weighting for satisfiability. Rioceed-
pendency lattice is very straightforward. Instead of counting ings of the Twentieth National Conference on Artificial In-
the number of external dependent gates that will be made or telligence (AAAI-05)pages 455-460, 2005.

broken if an independent gate is flipped, we simply sum thg§Selmaret al, 1994 Bart Selman, Hector Levesque, and
corresponding weights of the dependent gates. David Mitchell. A new method for solving hard satisfiabil-
Another future research direction is to develop new ity problems. InProceedings of the Tenth National Confer-
heuristics that further exploit the gate dependencies when ence on Atrtificial Intelligence (AAAI-92pages 440-446,
selecting the next variable to flip. With these improvements, 1992,
we expect that local search techniques will be able to matc
the performance of the state-of-the-art DPLL solvers on th
more structured industrial benchmark problems.

elmaret al, 1997 Bart Selman, Henry Kautz, and David
McAllester. Ten challenges in propositional reasoning and
search. IrProceedings of the Fifteenth International Joint

Acknowledgments The authors would like to acknowl- ggfgirelngc&m Artificial Inteliigence (JCAI-97pages
edge the financial support of National ICT Australia (NICTA) ' ‘)

and the Queensland government. NICTA is funded throughThorntonet al, 2004 John Thornton, Duc Nghia Pham,
the Australian GovernmentBacking Australia’s Abilityini- Stuart Bain, and Valnir Ferreira Jr. Additive versus multi-

tiative and also through the Australian Research Councill. plicative clause weighting for SAT. IRroceedings of the
Twentieth National Conference on Atrtificial Intelligence

(AAAI-04) pages 191-196, 2004.

[Tompkins and Hoos, 2004Dave A. D. Tompkins and Hol-
ger H. Hoos. UBCSAT: An implementation and experi-
mentation environment for SLS algorithms for SAT and
MAX-SAT. In SAT (Selected Paperspages 306—-320,
2004.

. . L : . [Wah and Wu, 2005 Benjamin W. Wah and Zhe Wu.

[Béjar and Mang, 2000 Raman Bgéjar and Felip Marg. Penalty formulations and trap-avoidance strategies for

Solving the round robin problem using propositional logic. : T :)
In Proceedings of the Seventeenth National Conference on ﬁg=V|g%(q?.rg_iz¥|s;gtgél ity problems.. Comput. Sci. Tech

Artificial Intelligence (AAAI-00)pages 262—266, 2000.
[Eén and Biere, 2005Niklas Een and Armin Biere. Effec-

References

[Aloul et al, 2004 Fadi A. Aloul, Arathi Ramani, Igor L.
Markov, and Karem A. Sakallah. Solving difficult SAT
instances in the presence of symmetry.Phoceedings of
the 39" Design Automation Conference (DAC-Opages
731-736, 2002.

[Zhanget al., 2001 Lintao Zhang, Conor Madigan,

) 0 h h iabl d o Matthew Moskewicz, and Sharad Malik. Efficient con-
tive preprocessing in SAT through variable and clause ey griven learning in a Boolean satisfiability solver.

elimination. InProceedings of the Eighth International In Proceedings of the International Conference on

Conference on Theory and Applications of Satisfiability A ; -
Testing (SAT-05pages 6175, 2005. Computer-Aided Desigmpages 279-285, 2001.

