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Abstract-Recent theories have proposed that the unifying 
principle of brain function is the minimisation of variational free 
energy and that this is best achieved using a hierarchical predic­
tive coding (HPC) framework. Hierarchical Temporal Memory 
(HTM) is a model of neocortical function that fits within the 
free energy framework but does not implement predictive coding. 
Recent work has attempted to integrate predictive coding and 
hierarchical message passing into the existing suite of HTM Cor­
tical Learning Algorithms (CLA) producing a PC-CLA hybrid. 
In this paper we examine for the first time how such hierarchical 
message passing can be implemented in a pure HTM framework 
using distal dendrite structures that are already implemented in 
the CLA temporal pooler. We show this approach outperforms 
the more simplistic proximal dendrite structures used in the PC­
CLA hybrid and also that the new CLA hierarchy is ef1'ective for 
anomaly detection and image reconstruction problems that are 
beyond the reach of the existing single-level CLA framework. 

I. INTRODUCTION 

Recent developments in computational neuroscience sug­
gest that the primary function of the neocortex is the formation 
of predictions concerning future input. This is underpinned by 
Friston's free-energy principle [1] which asserts that the brain 
learns to predict sensory input by minimising the variational 
free energy of its internal states - thereby minimising 'surpris­
ing' interactions with the world. According to the Bayesian 
brain hypothesis [2], the brain achieves this by constructing a 
generative probabilistic model of the causes of sensory input 
which it optimises by testing the model against sensory input 
and updating beliefs following Bayesian principles. 

Friston (and others) currently propose hierarchical predic­
tive coding (HPC) as the most promising means for the brain to 
implement the free-energy principle [3]. Under HPC, higher­
level regions of the brain convey predictions or expectations of 
future activity to lower-level regions via top-down (feedback) 
connections. If predictions conflict with lower-level activity the 
difference is returned as prediction error [4]. Higher regions 
then resolve prediction error by altering their models of the 
causes that generated the error. 

Hierarchical Temporal Memory (HTM) is an alternative 
model of neocortical functioning that also fits within the free­
energy framework. In contrast to HPC, HTM is based on 
sequence learning rather than predictive coding. This is imple­
mented by means of hierarchically structured cortical regions 
learning their common spatial input patterns and (as in HPC) 
using this information to generate downward projecting pre­
dictions concerning the future activity of lower-level regions. 
However, in HTM this is not in response to prediction error 

978-1-4799-1959-8/15/$31.00 @2015 IEEE 

but is rather a 'confirmation' or 'reinforcement' of bottom-up 
activity. 

The broad outline of the HTM model was first proposed 
by Jeff Hawkins in 2004 [5]. Subsequently several HTM com­
ponents, known as Cortical Learning Algorithms (CLA), have 
been developed by Hawkins and his colleagues at Numenta 
Inc. [6]. The current generation CLA comprise two main 
components: the spatial pooler (SP), and the temporal pooler 
(TP). Further research has extended the Numenta SP to handle 
real-valued [7] and multi-channel input [8]. The TP has also 
been compared to hidden Markov models for noisy sequence 
learning [9] where it has shown promising results. 

Until recently, the CLA components have not been com­
bined into a hierarchy. The first such attempt [10] involved 
integrating the SP and TP into a hierarchical predictive coding 
framework producing a Predictive Coding-CLA hybrid (PC­
CLA). Here the sequence learning of HTM is retained, but 
top-down and bottom-up message passing now occurs between 
hierarchical levels, conveying predictions and prediction error 
respectively. Although the benefit of passing bottom-up predic­
tion error (as opposed to total activity) in HTM has yet to be 
established, the authors demonstrate that hierarchical message 
passing improves performance over a single-level CLA [10], 
[11]. 

In this paper, we investigate (for the first time) the construc­
tion of a pure HTM hierarchy that follows the original intent of 
the HTM model. To this end we experiment with two possible 
hierarchical message-passing strategies, one (following [10]) 
that uses bi-directional proximal dendrites (adapted from the 
CLA SP) and the other using distal dendrite structures (adapted 
from the CLA TP). Our results show the distal dendrite 
strategy is more effective than the PC-CLA approach. We 
also investigate the usefulness of the new CLA hierarchy by 
showing that it is effective for both anomaly detection and 
image reconstruction problems that lie beyond the reach of 
the existing single-level CLA framework. 

11. HIERARCHICAL TEMPORAL MEMORY 

The HTM model has three primary structural components: 
regions, columns, and cells. Regions are self-contained blocks 
that constitute the main components of the hierarchy, with 
regions that are higher up the hierarchy receiving input from 
several regions in the level below (Fig. 1). Each region 
comprises a number of columns arranged in a two-dimensional 
grid with each column containing a number of cells (Fig. 2). 
The column is the main functional unit of the HTM with the 
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Fig. 1. A three-level HTM hierarchy. 
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Fig. 2. The internal structure of a region. Each column in this region contains 
four cells. 

spatial pooler (SP) operating on the column as a whole unit 
and the temporal pooler (TP) operating on its constituent cells. 

The connection between a column or cell and its input is 
called a synapse, each of which has a real-valued permanence. 
The permanence differs from a weight in a traditional neural 
network in that it does not multiplicatively alter the input. 
Instead it is compared to a connection threshold which, if 
exceeded, causes the synapse to become a connected synapse 
that passes its input on unaltered; otherwise the synapse is a 
potential synapse and the input is ignored. In this sense HTM 
synapses may be considered to have binary weights. 

The CLAs combine to form an online system that receives 
a continuous stream of input. Each level completes running the 
SP and TP for all regions before the algorithm moves to the 
next higher level. Training of the HTM can also be conducted 
offline using a fixed-size data set, as shown in Fig. 3. Here, 
online operation would correspond to a continuous repetition 
of Lines 13-15 for all levels from 1 to L. 

We now provide more detail on the functioning of the 
SP and TP with an emphasis on the TP, as our feedback 
mechanism draws heavily from the concepts embodied in it. 
Note also that although the CLAs are designed to handle any 
modality of data, our description will focus on processing 
images. A summary of HTM structures is provided in Table I. 

A. Spatial Pooler 

The SP is a sparse feature detector that learns the common 
spatial patterns in a region's input and, at every time step, 
produces a sparse distributed representation (SDR) [12] of 
the current input. It has been extended from the original 
algorithm [6] into the Augmented Spatial Pool er (ASP) [7] 

1: procedure OFFLINETRAINING(htm, data[1 . .T] , C) 
2: levels [1..L] +--- htm.levels 
3: for £ +--- 1 to L do 
4: regions +--- levels[£].regions 
5: for all r in regions do 
6: repeat 
7: for t +--- 1 to T do 
8: spatiaIPooler(r, data[t]) 
9: end for 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

until SP has converged for r 
for c +--- 1 to C do 

for t +--- 1 to T do 
spatiaIPooler(r, data[t]) 
S D R +--- activity of all columns 
temporaIPooler(r, SDR) 

end for 
end for 

18: end for 
19: end for 
20: end procedure 

Fig. 3. Offline training of the CLAs. C is the number of iterations of the 
data to run through the TP. Training can be sped-up by caching the output of 
the SP (when training the TP). or the level below (when e > 1), for all data 
instances so that they do not need to be re-computed. 

Fig. 4. Columns' synapses with their input. Solid lines indicate connected 
synopses, while dashed lines represent potential synopses. 

that is capable of handling non-binary input, multiple channels, 
and is designed to converge onto a stable set of codes without 
learning being artificially terminated. 

During initialisation, each column possesses a proximal 
dendrite which forms proximal synapses with a random subset 
of the region's input. These synapses represent the subset of the 
input space to which the column has access (Fig. 4). Proximal 
synapse permanence values are randomly initialised, but are 
related to the topographic distance of the input pixel from 
the column and can be determined by several methods (e.g. 
linearly or via a Gaussian [13]). 

HTM columns are deterministic binary units whose feed­
forward (bottom-up) state variable is called stateF F. The 
SP begins with all columns summing the inputs from 
their connected synapses. This sum is then used in a lat­
eral inhibitory competition where the more active columns 
(higher sUlmned input) within a predefined radius inhibit 
the less active ones. User defined parameters determine 



TABLE l. SUMMARY OF HTM STRUCTURES 

Existing HTM structures 

Regions Main component of the hierarchical structure. Composed of a 2-D grid of columns. Regions at the same level in the 
hierarchy do not interact. 

Columns Primary functional unit in a region, contains a number of cells and a proximal dendrite. The SP acts on columns forming 
SDRs of active columns. Has binary state variables for bottom-up (stateF F) and top-down (stateF E) activation. 

Proximal Synapses Attached to a column's proximal dendrite and form its feedforward connection to input. Each has a real-valued permanence 
between I and O. May be connected with binary weight I, if permanence exceeds a connection threshold, otherwise wiU 
be potential with binary weight O. 

Cells The TP acts on a column's cells in order to encode the column's activity in different temporal contexts. Has binary 
state variable activeState, ternary state variable predictiveState (with values off, next, future), and also contains a 
number of distal dendrite segments. 

Distal Dendrite Segments Attached to cells and used by the TP for determining a cell's predictiveState. Each ceU will have many distal dendrite 
segments. If the number of connected synapses on the segment (to other active cells) exceeds an activation threshold, 
then the segment becomes an active segment, causing its ceU to enter a predictive State. 

Distal Synapses Attached to distal dendrite segments and form lateral connections to other cells in the same region. 

Proposed additional structures for top-down feedback 

Feedback Dendrite Segments Attached to columns and used to determine top-down feedback. As with distal dendrite segments, if the number of active 
synapses exceeds the activation threshold then the segment becomes active. 

Feedback Synapses Attached to feedback dendrite segments, form connections to columns in the region at the next higher level in the hierarchy. 

what percentage of columns within the radius remain active. 
Columns that win have stateF F +- on and all others have 
stateF F +- off. The pattern of active and inactive columns 
forms the SDR that is passed to the TP (i.e. SDR = 

[stateF FI, stateF F2, ... ,stateF FND. 

Learning in the SP is a Hebbian-like process where 
columns increment the permanence of their proximal synapses 
to non-zero inputs, and decrement the permanences of all other 
synapses. At any time step only the active columns perform 
this learning, inactive columns do not alter their synapses (for 
further details of the SP and ASP including the parameters 
controlling activation and learning, see [6]-[8], [13]). 

B. Temporal Pooler 

The TP aims to discover common sequences of region 
activity by having each column learn to predict when it will 
become active, based on the region's activity in preceding time 
steps. The SDR from the SP represents the sparse features that 
are currently present in the region's input and this is placed 
in a temporal context by the TP selecting a combination of 
cells within active columns to also become active. This allows 
the TP to distinguish the same pattern of active columns in 
different contexts, i.e. a set of n active columns each containing 
m cells can represent the same pattern in nm different contexts. 
Active cells then remember the pattern of activity in the 
previous time step, thus allowing them to predict their own 
activity and enabling the TP to learn sequences. 

Each cell has one binary state variable, activeState, and 
one ternary state variable, predictiveState, with values off, 
next, and future. Cells also have a number of distal dendrite 
segments, and each such segment has a number of distal 
synapses. As with SP proximal synapses each distal synapse 
has a permanence value that is compared to a connection 
threshold to determine whether or not it is connected. 

Cells use their distal segments as a means of remembering 
active-cell patterns. Whenever a cell enters an active state at 
time t it chooses one of its segments and new synapses are 
added to the segment; these synapses connect to cells in other 

columns that were in an active state at time t - 1. In future 
time steps a cell will compare the current pattern of active 
cells to all of the patterns remembered by its segments. If 
any segment closely matches the current active-cell pattern, as 
determined by an activation threshold, then this indicates that 
the cell expects to become active in the near future. 

The TP has a three phase learning algorithm: calculating a 
cell's active state, predictive state, and learning. 

1) Phase I - Calculating Active State: The TP receives 
an SDR from the SP, specifying stateF F for all columns. 
For every active column, if any cell i in the column had 
predictiveStatei(t - 1) = next then that cell now enters 
an active state (activeStatei(t) +- 1). If no cells in an active 
column were in a predictive state at the end of the previous 
time step then all cells now enter an active state, i.e.: 

Vi E column.cells, activeStatei(t) +- 1 
2) Phase 11 - Calculating Predictive State: At the end of 

Phase I some columns will have one or more active cells and 
a few may have all their cells active. Now the TP determines 
its belief about which cells will become active in future time 
steps: For every distal dendrite segment on every cell in 
every column (active or inactive), determine the number of 
active synapses. An active synapse is a connected synapse that 
connects to a cell with activeState(t) = 1. If the number of 
active synapses on a segment exceeds an activation threshold 
then it is considered an active segment and the cell enters 
a predictive state (predictiveState(t) +- {next, future}). 
Whether predictiveState gets next or future depends upon 
the particular active segment, which will be discussed in Phase 
Ill. At the end of Phase 11 all cells in the region will have a 
value for activeState and predictiveState, the majority of 
which will be inactive due to the sparse nature of the algorithm. 

3) Phase lll- Learning: In this phase all cells may poten­
tially update their distal dendrite segments and synapses based 
upon the accuracy of their predictions. When a cell predicts 
that it will become active (predictiveState i- off) but remains 
inactive for a certain number of time steps then all distal 



Dendrite Segments 

Fig. 5. A ceU growing a new dendrite segment. The blue cells are active at 
time t, and the green cells were active at time t - l. The active cell in the 
lower right corner grows new synapses to ceUs that were active at t - l. 

synapses contributing to that prediction (i.e. active synapses 
on an active segment) have their permanences decremented by 
a fixed amount. Where a prediction turns out to be correct 
the synapse permanences are incremented by a fixed amount 
(possibly different from the decrement). 

Where a column became active unexpectedly (i.e. all of its 
cells became active in phase I) then one cell in the column is 
chosen randomly to grow a new distal dendrite segment. This 
segment forms new synapses to cells that were active in the 
previous time step (Fig. 5). This type of segment is known as 
a sequence segment and when it becomes active it causes the 
cell to enter predictiveState(t) +--- next. 

Cells learn to predict their activity further and further into 
the future by queueing possible new segments and synapses 
that are then added if and when a cell's predictions are proved 
correct. When a cell enters a predictive state (either next or 
future) it queues a possible new non-sequence segment that 
(when active) will cause its cell to enter predictiveState(t) +--­
future. If a cell enters an active state at some future 
time step, all of its queued segments are added. If the cell 
ever drops out of a predictive state without becoming active 
(predictiveState(t) = off AND activeState(t) = 0) then its 
queued segments are deleted. 

As with the SP, the TP has various parameters that control, 
for example, the magnitude of the permanence increments and 
decrements, the number of synapses to add to a new distal 
dendrite segment, the connection threshold, the activation 
threshold, etc. For full details see [6]. 

Ill. FEEDBACK 

This section presents the main contribution of the paper: the 
Distal Feedback method for implementing feedback in HTM. 
The purpose of top-down message passing in hierarchical 
predictive coding (HPC) is to convey higher level predictions 
about activity at lower levels [4]. In temporal contexts this 
would be a prediction of activity in the next time step [14]. 
However, this is of limited benefit in HTM as sequence 
learning and prediction are already occurring within a region 
without the need for feedback from above (through the activity 
of the TP). Thus our feedback is primarily designed to convey 
higher level synthesised information about the activity of 
neighbouring regions at a lower level, thereby allowing a lower 
level region to resolve ambiguities in its predictions given 
contextual information concerning other regions. 

Fig. 6. Columns at level e grow feedback synapses, in the current time step, 
to active columns in the region above (level e + 1). 

A. Feedback Implementation 

The feedback technique we are proposing is based on the 
TP distal dendrite structure. Using this structure, we create 
an additional set of distal (feedback) dendrites that receive 
descending prediction signals from a higher region (rather than 
laterally from within the same region). The key implementation 
changes are that feedback segments are attached to columns 
(instead of cells), and that synapses are formed to active 
columns in the region above in the current time step (see 
Fig. 6). The pseudocode for this DISTALFEEDBACK method 
is shown in Fig. 8, its role in the overall functioning of the 
hierarchy is shown in Fig. 7 and is explained further below: 

The calculation of feedback occurs after a higher level 
region has completed running the TP. First every column 
determines a new feedforward state stateF F by taking the 
boolean OR of its cells' activeState and predictiveState: 

stateF F = 

{ on 

off 

if ::3 i E cells s.t. (activeStatei = 1 
OR predictiveStatei i= off) 

otherwise 

overriding the stateF F calculated at the end of the SP. 
Once all columns have redetermined their stateF F, feedback 
determines the value of a new binary state variable stateF B. 

Given a region and the activity at the higher level DIS­
TALFEEDBACK loops through every column and determines 
its expectation about top-down activity. First FINDBESTSEG­
MENT (Line 3) returns the feedback dendrite segmentl with 
the greatest number of active synapses, provided it exceeds 
the activation threshold. It may return NULL indicating that 
feedback does not predict that the column should be active 
(Line 4). From here there are four scenarios that may occur 
(Lines 6-12): 

1) In the simple case where FINDBESTSEGMENT returns 
NULL and stateF F = off no action is taken. 

2) FINDBESTSEGMENT returns a non-NULL segment and 
the column's stateF F = on. This indicates that the 
top-down expectation is in agreement with bottom-up 
activation and therefore the segment is reinforced, i.e. 
has its synapse permanences incremented (Line 7). Only 

ITo distinguish distal dendrite feedback segments from TP segments we 
call them feedback dendrite segments and their synapses feedback synapses. 



1: procedure OFFLINETR A INING(htm, data [1. .T], C, F) 
2: levels[1. .L] +- htm.levels 
3: for f +- 1 to L do 
4: regions +- levels[f].regions 
5: for all r in regions do 
6: repeat 
7: for t +- 1 to T do 
8: spatiaIPooler(r, data[t]) 
9: end for 

10: until SP has converged for r 
11: for c +- 1 to C do 
12: for t +- 1 to T do 
13: spatiaIPooler(r, data[t]) 
14: SDR +- activity of all columns 
15: temporaIPooler(r, SDR) 
16: end for 
17: end for 
18: end for 
19: if f > 1 then 
20: for all r in levels[f - l].regions do 
21: for f +- 1 to F do 
22: for t +- 1 to T do 
23: distaIFeedback(r, levels[f]) 
24: end for 
25: end for 
26: end for 
27: end if 
28: end for 
29: end procedure 

Fig. 7. Modified offline training of the CLAs. Where F determines the 
number of feedback learning iterations taken through the data. Lines 1-18 are 
identical to those in Fig. 3 while lines 19-27 implement feedback training. 

1: procedure DISTALFEEDBACK(region, level) 
2: for all column in region.columns do 
3: best +- findBestSegment(column, level) 
4: if best i= NULL then 
5: column.stateF B +- on 
6: if column.stateF F = on then 
7: adaptSegment(best, positive) 
8: else 
9: adaptSegment(best, negative) 

10: end if 
11: else if column.stateF F = on then 
12: addNewFeedbackSegment(column) 
13: end if 
14: end for 
15: end procedure 

Fig. 8. Pseudocode for feedback calculation. 

active synapses have their permanences' increased. The 
segment may also add a new synapse: if it has not reached 
the maximum allowable number of synapses, and if there 
are active higher level columns to which the segment does 
not already connect. 

3) FINDBESTSEGMENT returns a non-NULL segment but 
the column's stateF F = off. Instances where bottom­
up and top-down activity do not match may be due 
to incorrect predictions, noisy bottom-up activation, or 
incomplete learning. In this case the feedback segment has 

its active synapse permanences decremented (Line 9). The 
rationale is that if the feedback segment encodes useful 
information then it will match feedforward activity more 
often than not, and therefore decrementing the synapses 
will not be detrimental in the long run. 

4) FINDBESTSEGMENT returns NULL but the column's 
stateF F = on. We assume that this scenario is due to 
incomplete learning, and so the column adds a new feed­
back dendrite segment (Line 12). This will be the majority 
case in the first training cycle, as columns begin with 
no feedback segments and must learn them all initially. 
There are parameters defining the number of feedback 
synapses that new segments begin with, the maximum 
number of synapses a segment may have, and their initial 
permanence values. The accuracy and generalisability of 
feedback may be adjusted through these parameters. 

Currently feedback has no effect on learning or inference. 
This will be a focus for future work. 

B. Feedback in PC-CLA 

In contrast to our method, PC-CLA uses the same prox­
imal synaptic connections for top-down feedback as it does 
for bottom-up SP activation, effectively treating them as bi­
directional. For this reason we term PC-CLA approach as 
Proximal Feedback. Proximal Feedback is calculated by de­
termining the columns in the higher level region that are 
predicted to be active in the next time step and then looping 
through these columns' proximal synapses, ensuring that every 
connected synapse sends a signal down to the connected 
column in the lower level indicating that it is expected to 
become active in the next time step [15]. This can lead to 
many false positives, such as when a column in a higher region 
becomes active and does not 'use' all of its proximal synapses; 
in this case sending a signal back down all synapses will 
lead to over-prediction. It is also known from neuroanatomy 
that the cortical connections carrying bottom-up and top-down 
information are separate and originate in different layers of 
the neocortex [16], [17]. It therefore seems unlikely that the 
basic principles of cortical feedback would be captured in a 
bi-directional model. 

IV. EXPERIMENTS 

A. Dataset and Pre-processing 

In order to evaluate Distal Feedback we performed three 
experiments using the Hong Kong PolyU NIR Face Database 
[18] following a similar methodology to that used by Li 
et al. for anomaly detection [19]. The NIR Face Database 
comprises approximately 100 near-infrared 768 x 576 pixel 
images from each of 350 subjects. These images were pre­
processed by histogram equalisation, detecting the person's 
face, straightening, centring and cropping, and then rescaling 
the cropped face to 32 x 32 pixels. Following preprocessing 
we randomly selected 100 images from each of 55 randomly 
selected subjects. This dataset was then used as input to a 
two-level HTM with four regions at level 1, and one region 
at level 2, with each region comprising 1, 024 columns. All 
images were split into four separate sets of 16 x 16 pixel 
images, each of which was associated with one of the regions 
at level 1 (Fig. 9). The data set was further split into training 
and testing sets with the training set comprising 80 images 
per person (4,400 total). The testing set was constructed as 
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Fig. 9. 32 x 32 pixel images are split into 4 separate 16 x 16 images: one 
for each of the regions at level 1. 

Fig. 10. Example anomalous face constructions: the original face is on the 
top row, the face from which the anomalous quadrant is taken is on the middle 
row and the final face with anomalous quadrant is on the bottom row. 

follows: for each person anomalous instances were created 
by selecting 40 images from that person's training set, and 
replacing one of the four quadrants in the image (i.e. top-left, 
top-right, bottom-left, bottom-right)2 with the corresponding 
quadrant randomly selected from a training image of one of the 
other 54 persons (some examples are shown in Fig. 10). The 
remaining 20 images per person represent the non-anomalous 
instances, giving a total test set of 3, 300 images. 

B. Comparison to Proximal Feedback 

First we compared Distal Feedback and Proximal Feed­
back's ability to accurately predict lower level activity. Here we 
implemented PC-CLA's proximal feedback mechanism within 
an HTM framework as our intention was to evaluate the 
feedback mechanisms on equal terms (leaving the question 
of the efficacy of predictive coding versus a pure HTM 
implementation for future work). We performed the prediction 
accuracy test using the training set and HTM setup described 
above, where each column contains four cells, each of which 
may have a maximum of 256 distal dendrite segments. In 
addition, each distal segment was given 20 synapses initially, 
with a maximum set at 25, and an activation threshold of 12. 
The system was trained offline using the procedure from Fig. 7 
with C = 9 and F = 63. 

Testing was performed by disabling learning and re­
presenting the training set. For each instance we used both 
Distal and Proximal Feedback to predict which columns would 
become active in the next time step. At the next time step 

2We positioned the anomalies to exactly match one region's input in order 
to determine Distal Feedback's maximum effectiveness. 

3 All final parameter settings were chosen because they produced promising 
results during preliminary testing. 

this prediction is compared to actual active columns. We used 
the FI score4 to compare methods: columns that are bottom­
up active but have no top-down prediction are considered 
false negatives, and columns with top-down prediction but no 
bottom-up activation are false positives. 

Distal Feedback achieved an FI score of 0.729 ± 0.004 
compared to Proximal Feedback's score of 0.548 ± 0.005. 
From these results we can see that Distal Feedback is consid­
erably more accurate than Proximal Feedback and we therefore 
did not include Proximal Feedback in any further testing. 

C. Anomaly Detection 

The anomaly detection task we present here is based 
on that presented in [19] but modified to accommodate the 
partition of the data into four subsets. As anomalies are only 
being detected in static images (rather than image sequences) 
temporal predictions are not relevant and the TP was disabled 
for the entire test. We again used offline training, this time 
testing varying settings for the number of feedback training 
cycles. The anomaly score for each region was calculated as 
1 - FI scores. As described above, the anomalous instances 
were composed of a person's face, where one of the quadrants 
is replaced with part of another person's face. The goal of 
top-down feedback is to provide each region with contextual 
information as to what is happening in other regions at the 
same level. Each region will learn the approximate patterns 
of higher level activity that correspond with different bottom­
up activation. When these do not match it is an indication 
that something is wrong, hence we use the percentage of 
unpredicted columns as the anomaly score. 

The experiment was set up such that each column in the 
HTM had a maximum of 1, 536 feedback dendrite segments. 
New feedback segments were initialised with 18 synapses, 
with each synapse having an initial permanence of 0.25, and 
segments having a maximum of 22 synapses. The synapse 
permanence increment was 0.01, and the decrement was 0.02. 
We then tested different settings for the activation threshold. 

D. Face Reconstruction 

As a further demonstration of the effectiveness of Distal 
Feedback we reconstructed one of the faces from the dataset 
using top-down activation. We used a 320 x 320 pixel image 
with no pre-processing (Fig. 12) from which we randomly 
sampled 10,000 patches and implemented the same two-level 
HTM structure used in the anomaly detection experiment (four 
regions at level 1) with each image patch divided into four 
regions (as in Fig. 9). Reconstruction was performed as in 
[7], by taking the linear superposition of connected proximal 
synapses from active columns. The only difference here is 
that active columns are determined by feedback state instead 
of feedforward state (i.e. columns for which stateF B = on 
instead of columns where stateF F = on). We also present 
reconstructions for corrupted images (one with a black square 
in the middle, the other with black lines through it, Fig. 13). In 
this case the HTM was first trained on the original image and 

4The Fl score is the harmonic mean of the precision and recall. Precision is 
the percentage of instances identified as positive that were actually positive and 
recall is the percentage of positive instances that were identified as positive. 

sWe compute results using the perfcurve function from the MATLAB 
Statistics Toolbox, which requires a higher score for instances that are more 
likely to be anomalous. 



TABLE n. AUC ANOMALOUS QUADRANT RESULTS 

Feedback Training Cycles 

Activation 1 3 5 7 9 11 
Threshold 

5 0.8340 0.8813 0.8946 0.9006 0.9031 0.9050 

6 0.8684 0.9009 0.9088 0.9118 0.9135 0.9144 

7 0.8907 0.9072 0.9123 0.9135 0.9143 0.9148 

8 0.8886 0.9021 0.9059 0.9050 0.9045 0.9045 

9 0.8587 0.8832 0.8896 0.8871 0.8858 0.8853 

TABLE Ill. AUC ANOMALOUS FACE RESULTS (FROM LI et al. [19]) 

One-class SVM Manifold Clustering 

0.6893 0.7066 

reconstruction was performed using patches from the corrupted 
image, with both feedforward and feedback activation tested. 
Using feedback activation on the corrupted images allows us to 
visualise what the system 'believes' it should be seeing based 
on what it has been presented in the past (i.e. the uncorrupted 
image) and the activity of other regions at the same level. 

V. RESULTS AND DISCUSSION 

Table IT presents the anomalous quadrant detection results 
as the area under the ROC curve (AUC) for different settings 
of the activation threshold and number of feedback training 
cycles.6 Here the best result of 0.9148 was achieved using 
an activation threshold of 7 and 11 feedback training cycles. 
This result demonstrates that Distal Feedback works and also 
that it works relatively well. To provide context for this claim, 
Table III shows state-of-the-art results from Li et al. [19] on 
a related anomaly detection experiment using the same image 
database and sampling method. In this case the task was to 
discriminate, for each of the 55 subjects, between full-face 
images of a chosen subject and anomalous images of other 
subjects. Here the best AUC probability was 0.7898 for Li 
et al.'s specialised SVM algorithm. While we cannot compare 
directly with this result, the related nature of the experiments 
suggests that reaching over 90% accuracy in discriminating 
anomalous quadrants is at least a non-trivial achievement. 

Fig. 11 further graphs a selection of the results from Table 
11 and illustrates a general trend of increasing performance for 
lower valued activation thresholds (from 5 to 7) as the number 
of training cycles is increased. This is to be expected as more 
training cycles allow feedback segments to refine the patterns 
they learn by growing and pruning synapses. However, we 
can also see the beginnings of the effects of over-fitting for 
the higher-valued activation thresholds, with those set at 8 and 
9 both peaking after five training cycles and then starting to 
decline. Given this effect and the flattening out of performance 
of lower valued activation thresholds we do not expect that 
further training cycles would significantly improve our results. 

Overall, the anomaly detection results show that an HTM 
region equipped with Distal Feedback is able to effectively 
generate models of the activity of its connected lower-level 
regions. Specifically, we have shown how such generative 

6 AUC represents the probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative instance [20]. 
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Fig. 11. Performance for activation thresholds of 5, 7, and 9 over different 
numbers of feedback training cycles. AUC improves with more training cycles 
but begins to asymptote. 

Fig. 12. Original image (left) and reconstruction from feedback (right). 

feedback can effectively and accurately detect the presence of 
an anomalous lower-level region purely on the basis of the non­
anomalous activity of surrounding lower-level regions. Here 
the mismatch between the Distal Feedback and the anomalous 
lower-level activity represents the system's surprise at the 
anomalous activity. Such a feedback-enabled HTM embod­
ies just the kind of generative model required for Friston's 
free-energy formulation [1] and achieves this using relatively 
simple, biologically plausible Hebbian learning principles. 

However, implementing Distal Feedback is only a first 
step in developing a hierarchical CLA framework. The next 
question is how feedback and feedforward information can be 
combined to probabilistically alter the states of both higher and 
lower level columns. The face reconstruction experiments be­
gin to answer this question by showing how top-down feedback 
can be used to override cases of obvious image corruption: 
Fig. 13 shows that without feedback (middle) the original 
corruptions are reproduced, whereas with feedback (bottom) 
the corruptions are 'repaired' (to a certain extent). This further 
illustrates how Distal Feedback extends the capability of a 
single-level HTM, and also how feedback could be used to 
override 'noise' in lower-level column activity. However, this 
does not answer the more challenging question as to when such 
feedback should be trusted. 



Fig. 13. The corrupted images (top) and reconstructions produced using 
feedforward activation (middle) and feedback activation (bottom). 

V I. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a new Distal Feedback 
method that implements message passing within an HTM 
hierarchy and have shown that this method is considerably 
better than PC-CLA Proximal Feedback at predicting lower­
level column activity on a database of facial images. We have 
further demonstrated the effectiveness of Distal Feedback in 
providing global contextual information to lower level regions 
concerning the behaviour of their neighbouring regions. Lastly, 
we have shown how Distal Feedback can be used to reconstruct 
corrupted images. 

The significance of the paper lies in our having, for the first 
time, successfully implemented hierarchical message passing 
within a pure HTM framework and also having demonstrated 
that such message passing provides useful information that 
otherwise would be unavailable to a single level system. More 
broadly, we have proposed a feasible and biologically plausible 
way in which feedback can occur within the neocortex, and we 
have developed an HTM hierarchy that can now be evaluated 
against the more mainstream HPC framework. 

Future work will focus on integrating feedback into CLA 
learning, i.e. by using feedback and feedforward information 
to determine whether or not a column becomes active. In 
addition we will investigate the effectiveness of only passing 
prediction errors in feedforward messages (as opposed to the 

CLA method of passing total activation), and of halting SP 
learning before convergence. 
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