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Abstract It is a widely held view in contemporary
computational neuroscience that the brain responds to
sensory input by producing sparse distributed represen-
tations. In this paper we investigate a brain-inspired
spatial pooling algorithm that produces sparse distrib-
uted representations of spatial images by modelling the
formation of proximal dendrites associated with neo-
cortical minicolumns. In this approach, distributed rep-
resentations are formed out of a competitive process of
inter-column inhibition and subsequent learning. Specif-
ically, we evaluate the performance of a recently pro-
posed binary spatial pooling algorithm on a well-known
benchmark of greyscale natural images. In the process,
we augment the algorithm to handle greyscale images,
and to produce better quality encodings of binary im-
ages. We also show that the augmented algorithm pro-
duces superior population and lifetime kurtosis mea-
sures in comparison to a number of well-known coding
schemes and explain how the augmented coding scheme
can be used to produce high-fidelity reconstructions of
greyscale input.

This paper extends work previously published as con-
ference proceedings [22].
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1 Introduction

Advances in computational neuroscience over the last
twenty years have produced increasingly realistic and
viable models of the functioning of the mammalian neo-
cortex. These advances connect directly with the orig-
inal inspiration of artificial intelligence: to build ma-
chines that capture and exhibit the principles on which
natural intelligence operates. Neurological evidence con-
cerning the hierarchical structure of bottom-up and top-
down processing in sensory cortex has already produced
a number of promising machine learning applications,
including Hinton’s work on multilayer generative mod-
els [10], and Serre and Poggio’s neuromorphic approach
to computer vision [20].

In the current paper, we investigate a more gen-
eral model of neocortical function known as hierarchical
temporal memory (HTM) [8]. HTMs were first proposed
by Jeff Hawkins in 2004, but a practical computational
description of their low-level functioning has only re-
cently been developed [7]. Our task is to evaluate the
spatial pooling component of this algorithm in terms of
its ability to robustly and efficiently encode Willmore
and Tolhurst’s well-known benchmark of greyscale nat-
ural scene images [23].

The HTM model is grounded in the view that the
broadly uniform structure of the neocortex implies a
correspondingly uniform function that the neocortex
implements. This structure is organised into six his-
tologically distinct horizontal layers of cells which in
turn are locally organised into vertical minicolumns,
each consisting of between 80-100 neurons (with some
exceptions) [14]. The vertically aligned cells in a given
minicolumn form a functional unit that shares the same
input and tends to become uniformly active or inactive
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according to the feedforward input it receives from sen-
sory receptors or from other regions of the neocortex.

Experimental observations have shown that differ-
ent regions of the neocortex are connected together to
form hierarchical structures [5]. Current theory suggests
that cortical columns play an analogous role to that
of random variables in a Bayesian network [17], and
that the neocortex’s basic function is to enact a form
of hierarchically-structured probabilistic inference [13,
4,2]. The powerful aspect of the Bayesian model is that
it allows for feedback within the neocortical hierarchy
while containing the potential combinatorial explosion
of possible interpretations. This feedback provides con-
textual information that in turn can resolve the am-
biguities that typically appear in feedforward models
when given noisy, realistic input [19].

Research also suggests that the neocortex uses a
sparse coding strategy to represent information within
the hierarchy [15,16]. A sparse code is one where a rel-
atively small proportion of the code elements are active
at any one time. If we take the cortical column to be
the basic unit of neocortical activation, this means that
only a small proportion of columns connected to a given
input will be active when the input is present. In addi-
tion, for a code to be representationally useful, differ-
ing inputs must activate different subsets of columns.
This can be achieved by maximising the statistical in-
dependence of the generated codes [1]. The advantage
of sparse coding over local coding (where a single input
is encoded by a single column) is that sparse codes have
greater representational capacity while still being able
to encode simultaneous inputs without interference.

The HTM model extends existing work by explic-
itly handling temporal sequences of input within a hi-
erarchical Bayesian framework [6,9]. This is achieved
by localised collections of cortical minicolumns learn-
ing to predict sequences of feed-forward input arriving
either from sensory receptors or from other regions of
the neocortex, and having the entire hierarchy learn
and exchange inferences about temporal sequences (i.e.
events) rather than spatial patterns. It is this temporal
predictive function of groups of minicolumns that sets
the HTM model apart from other hierarchical Bayesian
approaches (e.g. [13,18,3,2]).

However, it is only recently that the computational
details of the HTM model have explicitly incorporated
a sparse coding strategy into the spatial pooler com-
ponent of the architecture [7]. This was needed to ex-
tend the representational capacity of the system to the
point where realistic sequences of input patterns could
be stored and recalled. To the best of our knowledge
(with the exception of the conference proceedings [22]
which this paper extends), there has been no published

evidence evaluating the performance of the new spatial
pooler, or of the new cortical column architecture. We
therefore decided to implement the HTM spatial pooler
and evaluate it on a set of static image benchmarks.

In the remainder of the paper we provide a descrip-
tion of the HTM spatial pooler and explain the princi-
ples upon which it works. We then introduce a number
of modifications that were necessary to make the pooler
operate efficiently on our benchmark problems. To eval-
uate this work, we provide an empirical study compar-
ing the HTM spatial pooler with our modified pooler
and with the various techniques presented in Willmore
and Tolhurst’s paper on characterising the sparseness of
neural codes [23]. As part of this empirical study we in-
vestigate a range of measures to capture the important
dimensions of the spatial pooler’s behaviour.

2 Spatial Pooling

2.1 Basic Principles

The latest HTM architecture [7] introduces a more so-
phisticated and biologically plausible neural model than
is typically employed in artificial neural network re-
search. This model is structured as a hierarchy of re-
gions, where each region consists of a set of columns and
each column consists of a set of neurons and their as-
sociated dendrites and synapses. An HTM column cur-
rently only implements the functionality of the layer
three and four neurons found in the neocortex. Ac-
cording to HTM theory, these neurons control which
columns in a region are currently active, and which are
currently predicting they will be active. The first func-
tion is determined by a procedure known as spatial pool-
ing and the second by a procedure known as temporal
pooling.

The basic task of the spatial pooler is to form a
sparse distributed representation of the input. This is
required by the temporal pooler in order to learn and
predict the sequential order of particular input streams.
However, to be biologically plausible as well as prac-
tically useful, the spatial pooler must also be able to
efficiently form a relatively stable representation of a
continuous stream of input. These requirements rule
out existing solutions, such as independent components
analysis [11], as these lack the flexibility and efficiency
to adjust to online data streams.

As the internal structure of an HTM column and
its associated neurons is only relevant to the implemen-
tation of temporal pooling, we shall not discuss these
details further. To understand spatial pooling, we need
only consider a column as a unified entity with an as-
sociated set of proximal dendrites that synapse directly
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with the input (see [7]). These synapses are not asso-
ciated with weights that multiplicatively determine the
strength of the signal. Instead, each dendrite is associ-
ated with a potential synapse and each synapse is as-
sociated with a permanence value. If the permanence
value of a synapse passes a certain threshold then the
synapse is connected and the dendrite will directly relay
the input to which it is connected, otherwise the syn-
apse remains potential and inactive. The column then
sums the inputs from all its connected synapses to de-
termine its level of activity.

To justify the use of potential synapses, Hawkins
argues that the traditional artificial neural network ap-
proach of learning by adjusting the strength or weight
of individual synapses is not biologically realistic [7].
He acknowledges that synapses have differing strengths,
but argues that the synaptic release of neurotransmit-
ters is too unreliable or stochastic to explain the fine
distinctions that are made between differing inputs. In-
stead, he points to more recent research that shows
how synapses can rapidly form and unform [21] and ar-
gues that this provides a better mechanism for synaptic
learning.

A second important aspect of the operation of the
spatial pooler, is the use of inhibition between columns
to produce sparse distributed representations. It is this
feature that produces the self-organising capacity of the
system to adjust itself to the structure of the input data.
As with Kohonen’s self-organising maps [12], the spa-
tial pooler performs learning on the basis of how well
the synapses from a particular column match (or over-
lap) the input to which the synapses are connected.
However, instead of altering the relative weights of the
synapses of neighbouring columns, a strongly activated
column will compete with and inhibit its less active
neighbours, implementing the function of short-range
inter-columnar inhibition neurons [21]. At the end of
this process, only the potential synapses belonging to
the winning columns that best represent the current
input will be able to learn. Here learning entails in-
creasing the permanence values of potential synapses
that are connected to active input and decreasing the
permanence values of those connected to inactive input.
This implements the forming and unforming of synaptic
connections discussed above.

2.2 Implementation Details

The top level structure of an HTM spatial pooler is pre-
sented in Algorithm 1. Here the pooler takes as input
a set of binary input vectors and set of columns (rep-
resented as images and columns). For the purposes of
explanation, we shall assume the vectors represent two

Algorithm 1 spatialPooler(images, columns)
initialiseSynapses(columns, inhibitionArea)
while not converged do

for each image = readInput(images) do
calculateOverlap(image, columns)
inhibitColumns(columns, inhibitionArea)
learnSynapseConnections(columns, inhibitionArea)

end for
converged = testForConvergence(columns)

end while

dimensional bitmap images, where each image I is spec-
ified by a set of pixel values I(x, y). The current HTM
specifications assume that all inputs are binary-valued,
hence we term this algorithm as binary spatial pooling
or BSP (we present modifications that handle greyscale
images in section 3.1).

In procedure initialiseSynapses, the potential syn-
apses of each column are randomly connected with prob-
ability P (connect) to each (x, y) input coordinate, such
that no coordinate is shared by synapses belonging to
the same column. A mapping is then generated from
each column to an (x, y) input coordinate, such that
no two columns share the same coordinate. This en-
sures each column is uniquely centred over an input
coordinate, and specifies a Euclidean distance dij be-
tween a column i and the coordinates of each of its
synapses j. Using this distance, every potential synapse
is allocated a randomly generated permanence value
bounded within a small range of the threshold value,
such that the probability of connection varies inversely
and linearly with dij . In the current implementation,
the permanence value has a potential range from 0 to 1
and is bounded on initialisation to be within 0.1 of the
0.2 connectThreshold. Those potential synapses with a
permanence value > 0.2 are now defined as connected
synapses.

The readInput procedure randomly selects an image
without replacement from images and calculateOver-
lap works out the initial activity level of each column’s
response to the given image. For binary images, this
activity level (or overlap) is a simple count of the num-
ber of its connected synapses that are receiving active
input. However, a column must also pass a minOver-
lap threshold and have its overlap boosted before being
considered for inhibition, as follows:

for each column c do

if overlap(c) < minOverlap then overlap(c) = 0

else overlap(c) = overlap(c) × boost(c)

end for

where boost(c) is determined by the learning procedure.
inhibitColumns is then implemented as follows:



4 J. Thornton and A. Srbic

Algorithm 2 learnSynapseConnections(columns,
inhibitionArea)

for each potential synapse s in each active column c do
if s has active input then

perm(s) = min(perm(s) + pInc, 1)
else

perm(s) = max(perm(s)− pDec, 0)
end if

end for
for each c in columns do

if activity(c) < minActivity(c) then
boost(c) = boost(c) + bInc

else
boost(c) = 1

end if
if overlapSum(c) < minActivity(c) then

for each potential synapse s in c do
perm(s) = min(perm(s) × pMult, 1)

end for
end if

end for
inhibitionArea = updateInhibitionArea(columns)

for each column c do

active(c) = false and activitySum = 0

for each neighbour n of c within inhibitionArea do

if overlap(n) > overlap(c) then

activitySum = activitySum + 1

end if

end for

if activitySum < desiredActivity then active(c) = true

end for

Here, desiredActivity defines the number of columns
that should be active within the inhibitionArea, and
inhibitionArea is the mean size of the receptive fields
of all columns. In the current implementation, we cal-
culate the size of a column’s receptive field as πd2/16,
such that:

d = max(c, x)−min(c, x)+max(c, y)−min(c, y)+2
where max and min return the the maximum and min-
imum x and y values of all synapses belonging to col-
umn c. This calculation determines the rectangle that
bounds a column’s synapses, and returns the area of the
circle that is enclosed by the square whose sides equal
the average of the two dimensions of the bounding rect-
angle. We developed this procedure to compensate for
the distorting edge effects of projecting synapses into
rectangular images (the published HTM specifications
leave the calculation of the inhibition area undefined).

The basic learning strategy is then implemented in
learnSynapseConnections (see Algorithm 2). This is
the most complex procedure and forms the focus of the
modifications of the next section. Firstly, the perma-
nence values of all synapses belonging to active columns
are adjusted: those connected to currently active in-

put are incremented and those connected to inactive
input are decremented. Then, in the second for loop,
two strategies are used to increase the activity of in-
sufficiently active columns. This first involves counting
how often a column c has been active over the last i it-
erations (activity(c)) and how often it has exceeded the
minOverlap threshold (overlapSum(c)). These values
are compared with minActivity(c), which is defined as
follows:

for each active column c do

maxActivity = 0

for each column n within inhibitionArea of c do

if activity(n) > maxActivity then

maxActivity = activity(n)

end for

minActivity(c) = maxActivity×minActivityThreshold

end for

If column c’s activity(c) falls belowminActivity(c) then
boost(c) is incremented by bInc and if overlapSum(c)
falls below minActivity(c) then the permanence values
of all c’s potential synapses are increased by a factor of
pMult. The first strategy ensures all columns maintain
a minimum level of activity and the second ensures they
maintain a minimum level of synapse connectivity.

Finally, testForConvergence (see Algorithm 1) cal-
culates whether any changes have been made to the
permanence value of any synapse since the last itera-
tion through the entire set of images. If no changes
have occurred the spatial pooler terminates.

The end result is a sparse, distributed encoding of
each image presented to the pooler, comprising of the
set of columns that are active when an image is present.
The sparse distributed nature of the encoding is pro-
duced by the self-organising interaction of inhibition,
which focuses activity on a small subset of columns
(sparsifying), and learning, which ensures all columns
become at least minimally active (distributing).

3 Modifications

3.1 Handling Greyscale Images

The HTM specifications only handle binary input. Our
first extension was to redefine the notion of overlap
so that synapse inputs can take on integer values. To
achieve this, a column’s overlap becomes the sum of the
integer input values at each connected synapse rather
than a simple count of active bits. The main alteration
occurs in the updating of the permanence values of po-
tential synapses of active columns (see lines 1–7 of Al-
gorithm 2). Previously a permanence value was incre-
mented whenever a potential synapse is associated with
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an active input. Now we redefine the notion of an active
input to be an input that is greater than the mean acti-
vation level of the current image. So, for example, given
a greyscale 16 × 16 pixel image, the mean activation
would be the sum of the individual pixel values divided
by 256. In this case, only potential synapses connected
to pixel values greater than the mean have their per-
manence values incremented. In addition, minOverlap
is adjusted by being multiplied by the mean value of
all non-zero pixels in the current image. This preserves
the original value of minOverlap for binary images (as
the mean value of non-zero binary pixels is one) while
ensuring that (on average) for each column at least
minOverlap synapses are connected to active (above
mean) non-binary inputs.

3.2 Improving Efficiency

Preliminary empirical testing showed it was unneces-
sary to evaluate the activity of every column in ev-
ery iteration (lines 8–19 in Algorithm 2). The signifi-
cant factor is whether the permanence value of a syn-
apse is incremented past the connectThreshold so that
it becomes connected, or decremented so that it be-
comes disconnected. Only then can a change in per-
manence have any influence on the behaviour of a col-
umn, as only then does it alter the overlap calculation.
Consequently, we introduced a decay mechanism such
that whenever a synapse crosses the connectThreshold
and becomes connected then the column to which the
synapse belongs is not evaluated for boosting (in lines
8–19 in Algorithm 2) for the next d iterations. This
gives the column a chance to respond to the next d im-
ages, during which time it may become active without
further boosting. In addition, if a column is already
strongly active then boosting is unnecessary and we
should avoid testing it. This can be achieved by cal-
culating the difference f between a column’s activity
and the threshold at which boosting is triggered, where
f = activity(c) − minActivity(c), and enforcing that
the column is not evaluated for boosting in the next
f×d iterations. These two modifications approximately
halved the execution time of our spatial pooler, without
significantly altering its convergence behaviour.

A second time consuming calculation is the updat-
ing of the inhibition area of each column after each it-
eration (in updateInhibitionArea). This procedure can
again be simplified by keeping track of the synapses
that become connected or disconnected during a sin-
gle iteration. If there is no change for a column during
an iteration then its inhibition area necessarily remains
the same and need not be updated.

Finally, the convergence behaviour of the pooler can
be accelerated by switching off the basic learning func-
tion in lines 1–7 of Algorithm 2 at the point where
the two boosting strategies become inactive. This is
achieved by keeping count of the number of columns
that are either boosted or have their potential synapses
incremented during a single iteration through the entire
set of images (or over a sufficiently long period of time).
If this count is zero then all columns will have attained
a sufficient level of activation over the entire data set
and there is no further need to adjust the synapse con-
nections. We can therefore turn off the basic learning
function (lines 1–7 of Algorithm 2). This does not mean
the pooler has attained a stable representation: it can
still happen in the next iteration through the same im-
ages that the (now fixed) pattern of connected synapses
is unable to maintain sufficient activity in all columns,
in which case a column will still be boosted or its po-
tential synapses incremented. If this occurs then basic
learning is immediately resumed. The advantage of this
approach is that the pooler can have its main learning
function suspended and yet still remain responsive to
new input, i.e. if new input cannot be represented by the
existing pattern of synapses, some form of boosting will
occur and learning will be resumed. The system is not
considered to have finally converged until a complete
iteration through all images has occurred such that the
permanence values of all synapses remain the same at
the end of the iteration as they were at the start.

3.3 Augmented Spatial Pooling

The main contribution of the paper, aside from evalu-
ating the current HTM pooler, is the development of a
more robust learning strategy. This strategy was sug-
gested by observing that the existing HTM boosting
strategy often fails to sufficiently alter the pattern of
connected synapses: although boosting succeeds in el-
evating an inactive column into activity, because the
boost value is then immediately reset to one, the col-
umn does not remain active long enough for any of its
currently inactive synapses to become connected. If no
new connections are made in the first iteration of ac-
tivity, the column can immediately fall into inactivity
and again have to wait for its boost value to increment
to a point where it becomes active. If a large number of
columns are in this position, then an escalating boosting
competition can occur where, although each column is
slowly gaining new connections, so are its competitors,
meaning none remain active long enough to form stable
representations. The end result is that the pooler can
fail to converge, especially on complex (high entropy)
images.
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Algorithm 3 learnSynapseConnections(image,
columns, inhibitionArea)

for each potential synapse s in each active column c do
if input(s) > meanInput(image) and perm(s) >=
connectThreshold then

perm(s) = min(perm(s) + pInc, 1)
else if input(s) > meanInput(image) and perm(s) <
connectThreshold then

perm(s) = min(perm(s) + pInc, connectThreshold−
pInc)

else
perm(s) = max(perm(s)− pDec, 0)

end if
end for
for each c in columns do

if activity(c) < minActivity(c) and (boost(c) =
boost(c) + bInc) > bMax then

boost(c) = 1
for each disconnected synapse s in c in ascending dis-
tance order from c do

if perm(s) > maxPerm then
maxPerm = perm(s) and maxS = s

end if
end for
perm(maxS) = connectThreshold + pInc

end if
end for
inhibitionArea = updateInhibitionArea(columns)

Algorithm 3 details the augmented learning proce-
dure. Here the updating of synapses of active columns
is altered so that disconnected synapses can only have
their permanence values incremented to a point just be-
low the connectThreshold (in lines 5–8). Now, the only
place where synapses can become connected is in the
boosting procedure (line 23). As before, if a column’s
activity is below the minActivity(c) threshold its boost
value is increased (lines 14–15). However, if boost(c) ex-
ceeds a bMax threshold then the closest synapse to c

(maxS) is selected from the set of disconnected syn-
apses with the greatest permanence value (maxPerm)
and this synapse has its permanence value set so that
it is connected (line 23). In this way the connection of
synapses is controlled entirely within the boosting pro-
cedure and the earlier ineffective escalating boosting
behaviour is remedied.

4 Experimental Evaluation and Discussion

In order to evaluate the HTM spatial pooler and our
various modifications we chose the 64 greyscale images
used in Willmore and Tolhurst’s influential study on
measures of sparsity [23]. Following [23], we generated
ten sets of 10, 000 16 × 16 image patches selected ran-
domly from the original 64 greyscale images.

The two primary dimensions on which we evalu-
ate the spatial pooling algorithms are firstly the speed

and reliability of convergence, and secondly, the quality
of the representations produced. Measuring representa-
tional quality again has two dimensions: 1) the degree
of sparseness; and 2) the degree of fidelity to the origi-
nal images. In Willmore and Tolhurst’s original paper,
sparseness was further broken down in two statistics: 1)
population sparseness; and 2) lifetime sparseness, both
of which measure the kurtosis of distributions of activ-
ity units. Population sparseness is calculated by aver-
aging the kurtosis of the distribution of the activities
of the complete set of columns for each image in the
set of input images. The population kurtosis of a single
image i is given by:

populationKurtosisi =

{
1
N

N∑
c=1

[
ac − ā
σa

]4}
− 3 (1)

where a1 . . . aN are the post-inhibition overlap activi-
ties of columns 1 . . . N for image i, and ā and σa are the
mean and standard deviation of these activities. To al-
low for comparison between methods, and again follow-
ing [23], we standardised the activities to have a mean of
zero and a standard deviation of one, giving an averaged
population kurtosis of 1

M

∑M
i=1 populationKurtosisi for

an entire set of M images. Here the averaged popula-
tion kurtosis measures the infrequency or sparseness of
column activity in response to individual images. This
is only a partial measure of sparseness, as it does not
consider how the responses are distributed. For exam-
ple, if the same column is strongly responsive to every
image while every other column is inactive, the aver-
age population kurtosis will be the same as when each
image causes a different column to become active. To
balance this, we also need to consider the average life-
time kurtosis of the columns. This is the averaged kur-
tosis of each column’s responses to an entire set of input
images and measures how infrequently a particular col-
umn is active. The lifetime kurtosis of a single column
c is given by:

lifetimeKurtosisc =

{
1
M

M∑
i=1

[
ai − ā
σa

]4}
− 3 (2)

where a1 . . . aM are the activities of column c to the
entire set ofM images. As before, the mean activity ā is
standardised to zero, σa is standardised to one, and the
averaged lifetime kurtosis is calculated over the entire
set of N columns as 1

N

∑N
c=1 lifetimeKurtosisc.

4.1 Comparisons with Greyscale Images

Given these measures we can now directly compare the
sparseness and distribution of the spatial pooler rep-
resentations with the results reported in [23] for the
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same 64 greyscale images and against a range of other
coding schemes (see Table 1). Here, to correspond with
[23], we generated a spatial pooler column for each im-
age pixel (256 in all), and set the pooler parameters
as follows: P (connect) = 0.15, connectThreshold =
0.2, pInc = pDec = 0.02, bInc = 0.005, bMax = 4,
minActivityThrehold = 0.01, desiredActivity = 0.05×
inhibitionArea, and decay d = 100. minOverlap was
dynamically set to be the product of the mean pixel
intensity of the current image and the mean number
of connected synapses for an individual column. These
values proved fairly robust for the augmented spatial
pooler (ASP) and were subsequently used as ASP de-
faults.

In contrast, despite extensive parameter tuning, the
original binary spatial pooler (BSP) was unable to con-
verge to a stable representation on any of the 10 ×
10, 000 greyscale image sets (after allowing 500 cycles
through each of the 10 image sets). This reflects the
fact that BSP was not developed to process greyscale
images. If we binarise the input by setting each pixel
with an intensity greater than the mean intensity for a
given image to one and all others to zero, then BSP can
successfully converge. However, as the Willmore study
was concerned with greyscale coding schemes, we can-
not fairly compare BSP with the other coding schemes,
and so we only report statistics for ASP in Table 1.

Table 1 Comparison of augmented spatial pooling (ASP)
averaged lifetime and population kurtosis measures with re-
sults published in [23] where ‘Gabor’ = Gabor filters, ‘ICA’
= independent components filters, ‘O&F’ = Olshausen-Field
bases, ‘PCA’ = principal components filters, ‘Walsh’ = Walsh
functions, ‘Gaussian’ = Gaussian filters, ‘DoG’ = difference
of Gaussians, ‘Pixel’ = single pixel, ‘Raw’ = unprocessed im-
ages, and ‘White’ = whitened images.

Lifetime Kurtosis Population Kurtosis
Raw White Raw White

ASP 87.10 71.23 50.54 44.64
Gabor 18.50 18.47 21.66 5.37
ICA 18.74 6.42
O&F 17.21 2.17
PCA 8.24 8.13 32.64 3.07
Sinusoid 10.33 12.05 27.12 4.62
Walsh 10.69 10.91 27.75 4.01
Gaussian 7.37 8.93 0.21 0.52
DoG 9.67 11.20 1.70 1.74
Pixel 6.76 11.13 1.66 2.68

Overall, the results show that ASP significantly out-
performs all the coding schemes considered in [23], hav-
ing a lifetime kurtosis on the raw images 4.6 times
greater than the best alternative (ICA) and 3.9 times
greater than Gabor on the whitened images. The pop-

ulation kurtosis improvements were less pronounced on
the raw images (but still 1.5 times greater than PCA)
but even more pronounced on the whitened images (8.31
times greater than Gabor).

ASP was also able to efficiently converge on sta-
ble representations, requiring, on average, 13.62 cycles
through each of the ten raw data sets (where each cycle
processes all 10, 000 images in a set) and 10.67 cycles
through the whitened data. This took an average 8.01
seconds per convergence on the raw data and 6.98 sec-
onds on the whitened data (all ASP and BSP experi-
ments were run on an Apple MacBook Pro 2.93 GHz
Intel Core 2 Duo processor with 4 GB of 1067 MHz
DDR3 RAM and running Mac OS X version 10.6.7).

Whenever such a large improvement is found in a
particular metric it is typically purchased at the ex-
pense of worse performance in another area. In this
case, and in comparison with other biologically plausi-
ble algorithms (such as independent components anal-
ysis (ICA) [11] and Olshausen-Field filters (O&F) [15]),
the price is paid in terms of the reconstruction error.
For example, both ICA and O&F explicitly search for
a set of basis functions φ such that the ν error term in
I(x, y) =

∑
i aiφi(x, y) + ν(x, y) is minimised. In con-

trast, spatial pooling concentrates on generating codes
that have high population and lifetime sparseness, and
achieves this by limiting the number of columns that
can be active at any one time while ensuring that all
columns are active at least some of the time. Rather
than minimising reconstruction error, spatial pooling is
concerned with finding stable codes, while also remain-
ing realistically responsive to new input patterns.

On this basis, a strict spatial pooler reconstruction
of an input would be the linear superposition of the
connected synapses of the columns that become active
when the input is present. We show such a reconstruc-
tion in the bottom left image of Figure 1. Here we took
14, 641 16 × 16 pixel patches from an individual Will-
more and Tolhurst image and used a linear superposi-
tion of ASP column responses to represent each pixel.
The root mean squared error (RMSE) between the orig-
inal image and this raw reconstruction (using an 8-bit
greyscale mapping) is 48.0%, although this can be triv-
ially reduced to 21.6% by selecting a narrower mapping
that lightens the image.

To obtain further improvements we rescaled the syn-
apse responses according to the mean intensity of the
inputs. Firstly, for each input patch, if no active synapse
is connected to an input pixel then the response to that
pixel is set to the mean value of all the below mean pix-
els in the input patch. Next, if one or more synapses are
connected to an input pixel then the existing response
to that pixel is multiplied by the mean value of all the
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Fig. 1 ASP response to a 256× 256 pixel greyscale natural image (taken from [23]). Top left: original image. Right: Diagram
showing the synapse connections learnt after exposure to 14, 641 16 × 16 pixel patches taken from the original image (each
square represents a column and each dot represents a connected synapse of that column, where a lighter shaded synapse
represents a stronger boost value). Bottom left: Superposition of the connected synapses after convergence on the complete
set of patches.

Fig. 2 ASP reconstruction of the original image. Left: Final reconstruction after scaling column responses according to the
mean pixel intensity of each patch (see text). Right: Diagram showing the active column responses to four 16 × 16 pixel
patches (indicated by the white bordered box on the reconstructed image). The upper row of the diagram reproduces the
original patches and the bottom row shows the rescaled responses of the active synapses to the corresponding upper row patch.
As in Figure 1, synapse activity is represented by lighter shaded dots, only here synapse activity is a superposition of all
columns that are activated by the patch.

above mean input pixels divided by the mean value of
the unscaled responses to the input patch. This rescales

the synapse responses to take into account the average
intensity of the input. The left hand image in Figure 2
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shows a reconstruction of the original image from Fig-
ure 1 using this procedure. Here the RMSE is reduced
to 6.7%. The high fidelity of this reconstruction demon-
strates that the synapse connections learnt by the spa-
tial pooling algorithm have successfully captured the
underlying structure of the input independently of the
particular conditions of illumination, i.e. as adding the
mean illumination conditions back into the superposed
synaptic representation accurately reproduces the orig-
inal image.

4.2 Comparisons with Binary Images

As the original spatial pooling algorithm (BSP) was
unable to converge on the greyscale images, we ran a
separate experiment using the same set of natural image
patches but after performing a binary conversion. This
conversion sets all pixels in a given image patch to zero
whose greyscale values are less than the mean greyscale
value for that patch, otherwise a pixel is scaled to one.

BSP still found these binary images challenging in
comparison to simpler binary encodings and was unable
to converge using ASP’s default parameter settings. Af-
ter testing, we found BSP would only converge if the
effect of decrementing the permanence value of a syn-
apse is made much stronger than the effect of an incre-
ment, making it easier for a synapse to become discon-
nected than for it to become connected. ASP already
achieves this by not incrementing a permanence value
past connectThreshold unless the associated column is
sufficiently inactive (see Algorithm 3). To similarly in-
fluence BSP we set pInc (= 0.0005) to be five times
weaker than pDec (= 0.0025). In addition, to enable
BSP to reliably converge within 500 cycles we reduced
pConnect to 0.1 and limited minOverlap to range be-
tween 3.0 to 4.0.

Table 2 compares BSP at these adjusted settings
with ASP using the previously described defaults. The
results first show the significant effect of altering min-
Overlap on the convergence behaviour of BSP, i.e. a
reduction of from 4.0 to 3.0 causes a tenfold speedup in
convergence, making BSP 3.0 the fastest of the three al-
gorithms. However, this superior convergence is bought
at the cost of producing longer codes, as shown by the
mean code length and the distribution of code lengths in
the graph. Here a code is the set of columns Ci that be-
come active when presented with an image patch i, and
a distribution of code lengths is the set of code lengths
|Ci| for each image patch i = 1 . . .M . All else being
equal, shorter codes are to be preferred over longer
codes because they are more efficient. On this measure,
and on the measures of lifetime and population kurto-
sis, ASP is clearly better than either BSP 3.0 or 4.0.

Table 2 Comparison of augmented spatial pooling (ASP)
with binary spatial pooling (BSP) on the complete set of
binary scaled natural images taken from [23].

Algorithm
ASP BSP BSP

minOverlap setting auto 4.00 3.00
Converge Time (secs) 8.48 27.88 2.73
Converge Cycles 15.70 56.40 4.70
% Duplicates 10.96 14.94 8.19
% Zero Length 0.00 9.22 4.40
Lifetime Kurtosis 61.94 47.35 26.98
Population Kurtosis 36.95 27.98 20.37
Mean Code Length 15.59 19.02 22.64
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This means ASP reliably produces shorter codes that
involve fewer columns and that are more evenly distrib-
uted across all columns (as shown by the sharp peak for
ASP on the graph in Table 2).

However, an additional dimension is the degree to
which a code can distinguish between different inputs.
Again, all else being equal, a code that produces finer
distinctions is to be preferred. To measure this, we loo-
ked at the proportion of image patches that were en-
coded using common sets of columns (% duplicates and
% zero length in Table 2). We used two measures be-
cause the duplicate percentage cannot represent the dif-
ference between an encoding that captures 1000 images
using one set of columns and one that captures 1000
images using 500 sets of columns, where each column
set encodes a pair images. In practice, the majority of
duplicates only involved column sets encoding image
pairs, except for zero length encodings. Such encodings
occur when an image fails to make any column active,
i.e. the image is ignored or remains unencoded. Clearly,
duplicates involving a high proportion of zero length
codes (BSP 3.0 and 4.0) make poorer distinctions than
encodings where all duplicates are made up of column
sets encoding pairs of images (ASP). We can therefore
conclude that ASP produces better encodings, both in
terms of efficiency, and in terms of making finer distinc-
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tions. The price is that ASP converges more slowly than
BSP 3.00. However, if speed of convergence is an issue,
the ASP parameter defaults can be altered to produce
results equivalent to BSP 3.0, whereas we could find
no BSP settings that could improve upon the BSP 4.0
encodings.

5 Conclusions

Firstly, we have shown that augmented spatial pooling
significantly outperforms the coding schemes presented
in Willmore and Tolhurst’s original study, both in terms
of population and lifetime kurtosis. Secondly, we have
demonstrated that while a raw ASP image reconstruc-
tion has a relatively high error, this can be largely elim-
inated by taking the mean illumination conditions into
account. Thirdly, we can conclude that augmented spa-
tial pooling is better than binary spatial pooling for
encoding the natural images in the Willmore and Tol-
hurst data set. The results hold most strongly for the
greyscale encodings of the images, where BSP is unable
to converge on any of the data sets. It also holds on the
binary encodings, where ASP produces better quality
sparse representations, both in terms of efficiency (code
lengths) and discrimination (duplicates and zero length
codes).

More generally, we conjecture that the reason BSP
performs poorly on natural images is because it forms
synapses too easily. This behaviour comes out in rela-
tion to natural images because such images have rela-
tively poorly defined structure (i.e. they have high en-
tropy), meaning synapses will tend to form uniformly
across the entire image. ASP controls this behaviour
by more tightly constraining the situations where new
synapses will form.

In future work, we intend to compare ASP and BSP
on a wider range of natural and artificial images to con-
firm our conjecture concerning the complexity of the
encodings. We also intend to investigate greyscale spa-
tial pooling using two forms of synapse, one responsive
to darker shades and the other responsive to light.
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