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Abstract

The concept of contexts is widely used in artificial intelligence. Several recent attempts have
been made to formalize multi-context systems (MCS) for ontology applications. However, these ap-
proaches are unable to handle probabilistic knowledge. This paper introduces a formal framework for
representing and reasoning about uncertainty in multi-context systems (called p-MCS). Some impor-
tant properties of p-MCS are presented and an algorithm for computing the semantics is developed.
Examples are also used to demonstrate the suitability of p-MCS.

1 Introduction

The formalization of context is a critical building block towards the achievement of the semantic web
vision [5]. In order to deliver accurate and unambiguous information, ontology-driven applications rely
significantly on context modeling [6]. An ontology is a formal representation of shared terms and their
relationships for an application domain. Ontologies have been widely applied in situations where the use
and management of shared information are core issues (e.g. in medical applications [12, 14]). According
to the vision of the semantic web, information on the internet will also be represented as ontologies [5]. In
this setting, explicit models of semantic information are needed in order to support information exchange.
Since shared ontologies define a common understanding of terms for an application of interest, the use
of ontologies makes it possible to communicate and exchange information between different users and
systems on a semantic level. However, ontologies can be used only when a consensus about their contents
is reached. Moreover, building and maintaining ontologies can become difficult in a dynamic, open
and distributed domain such as the internet. To enhance the use and management of highly distributed
ontologies, the framework of contextual ontologies has been established and an extension of OWL called
C-OWL has been introduced in [1]. C-OWL is based on the theory of multi-context systems (MCS) [4].
To the best of our knowledge, the problem of incorporating probabilistic information into multi-context
systems is still open

Multi-Context Systems (MCS), constitute one of the most recognized and mature formalizations
of context in AI [15]. MCS are a generalization of Natural Deduction systems, which allow the use
of different languages through a mechanism of tagged formulae [15]. This implies that in different
languages or contexts, a logical proposition can be interpreted in different ways. However, classical logic
cannot express the degree of certainty of premises, nor the degree of certainty in conclusions derived from
these premises (Williamson cited by [8]).

Figure 1 illustrates this situation using a typical Magic Box example [4] where Mr1 and Mr2 are
unable to distinguish the depth of a ball inside a magic box. It is assumed that Mr1 and Mr2 are both
almost blind but have knowledge about the compatibility relation between their different perspectives.
So, Mr1 cannot answer with certainty if there is a ball on the right, he can only assume according his
knowledge that “there is a ball on the right” with probability p. The same reasoning applies to Mr2,
except that the probabilities for Mr2 are calculated in relation to Mr2’s context. A probabilistic multi-
context system provides a language for representing what Mr1 and Mr2 know about their environment
that allows them infer new probabilistic knowledge based on what they already know. Existing semantics
of MCS are unable to handle probabilistic knowledge of contexts. For this reason the aim of this paper
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Figure 1: Magic Box

is to introduce a semantic framework for representing and reasoning about probabilistic knowledge in
logic-based MCS.

The probabilistic logic approach in this paper is based on the work of [3, 9, 10], which dealt with
formalization and semantics for uncertainty in logic programming. An important contribution of the
current research is the introduction of probability theory into MCS, which provides more expressive
languages in different contexts without losing the original logic of multi-context systems proposed by
Giunchiglia [4]. The paper also shows that probabilistic multi-context systems can be reduced to MCS
by simply assigning a probability of one to every proposition. This shows that MCS are a particular
case of more general probabilistic multi-context systems. In addition, the idea of minimal information in
context proposed by [13] is preserved in order to emphasize and contrast the relationship between MCS
and p-MCS, and at the same time provide a probabilistic notion of the information entailed logically.

2 Probabilistic Multi-Context Systems

This section introduces the p-MCS framework for representing and reasoning about probabilistic infor-
mation in multi-context systems. The first step in formalizing p-MCS is to specify the type of language
used in each context.

Suppose that we have a set of contexts called K and denote context k as an element of K. Each context
k is associated with a finite set Ak of labeled atoms of the form k : a (a denotes an atom). Informally, k
: a means that atom a belongs to context k. Note that Ak contains only the atomic propositions needed
to express the basic knowledge in context k. A propositional language Lk is constructed over Ak in a
standard sense. A formula in context k can be expressed as φ ∈ Lk. The next step is to introduce an
uncertainty degree to a formula in Lk.

Let k : φ be a labeled formula and µ be a point probability between [0, 1], then a formula function in
a particular context (k : φ )µ is called p-labeled formula. Intuitively, (k : φ)µ means that the probability
of formula φ in context k is µ .

Definition 1. A p-labeled rule r is of the form (k : F)µ ← (k1 : F1)µ1, . . . ,(kn : Fn)µn where n ≥ 0,
(k : F)µ and each (ki : Fi)µi are p-labeled formulas.

Informally, this rule reads that if the probability of each Fi in context ki is equal to µi for i = 1, . . . ,n,
then the probability of F in context k is equal to µ . The p-labeled formula (k : F)µ is called the head
of the p-labeled rule r, denoted head(r). The set {(k1 : F1)µ1, . . . ,(kn : Fn)µn} of p-labeled formulas is
called the body of r, denoted body(r). We remark that in the traditional probabilistic logic programming
approaches [10, 9], probabilities are assigned to atoms and the premises and head of the rule belong to
the same context.

A local p-rule r for context k is a p-labeled rule without premises or body. Local knowledge of
context k is a set of its local p-rules.
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A bridge rule r for context k is a p-labeled rule such that (1) head(r) has label k and (2) a p-labeled
formula in body(r) belongs to at least one context apart from context k. Such a rule provides a way for
inferring new knowledge in context k from other contexts.

Definition 2. A probabilistic multi-context system (or p-MCS) T is of the form [(R1,B1), . . . ,(Rm,Bm)]
where Rk is a set of local p-rules for context k and Bk is a set of bridge rules for context k for k = 1, . . . ,m.

In the same way as for ordinary MCS [13], a probabilistic multi-context system is defined as a
specification of contextual probabilistic information and inter-contextual probabilistic information flow.
Contextual information can be specified through local p-rules (facts) and inter-contextual information
flow through bridge rules.

Given a p-MCS T = [(R1,B1), . . . ,(Rm,Bm)], each context (Rk,Bk) represents two types of knowl-
edge: (1) the knowledge Bk directly derived from the local context k and other contexts through bridge
rules; and (2) the knowledge ηk inferred from Bk through probabilistic reasoning [10]. This type of
reasoning problem is called probabilistic entailment [10], and is formally expressed as follows:

ζk = Bk
⋃

ηk (1)

Example 1. The scenario illustrated in Figure 1 can be formalized as a p-MCS as follows:
l = “The ball is on the left” r = “The ball is on the right” c = “The ball is in the center”.

T = [(R1,B1),(R2,B2)]. The two contexts are defined as (R1 = {r1}, B1 = {r3}), (R2 = {r2}, B2 = {r4}).

r1 : (1 : ¬r)0.5 ←
r2 : (2 : c)0.5 ←
r3 : (1 : l∨ r)0.75 ← (2 : l∨ c∨ r)0.875
r4 : (2 : l∨ c∨ r)0.875 ← (1 : l∨ r)0.75

Then B1 = {(1 : ¬r)0.5,(1 : l∨ r)0.75}.
To explain how to determine η1, we need some basics of probabilistic reasoning.

One important concept in probability theory is the notion of worlds or atomic events [11]. Given a
propositional language, we define a world as a Herbrand interpretation.

Let Nk be the number of propositions in Ak. Then there are 2Nk possible worlds for context k. For
example, if A1 = {1 : l,1 : r}, then there are four possible worlds Wj ( j = 1,2,3,4) and each such world
Wj is associated with a probability w j. We use LMk to denote a finite set of possible worlds for context
k: LMk = {W1, . . . ,Wm}.

Definition 3. A contextual world probability density function for a context k is defined as a function
WPk : LMk→ [0,1] satisfying ΣW∈LMKWPk(W ) = 1. Denote WPk(Wj) = w j ; 0 ≤ w j ≤ 1, 1 ≤ j ≤ m (m
denotes possible worlds for context k).

Because the possible worlds for every context are different, a world probability density function has
to be defined for every context.

A p-local interpretation for context k is a pair W : µ of an interpretation W of Lk and an (associated)
probability value µ . Let Mk be the set of p-local interpretations for context k : Mk = {W1 : w1, . . . ,Wm :
wm}

Definition 4. A p-labeled chain is of the form: c = {c1, . . . ,cm} where ck ⊆Mk for k = 1, . . . ,m.

A p-labeled chain describes a world probability density function for every context k.
Every world is mutually exclusive and a proposition is equal to the disjunction of all the worlds where

it holds [11]. For example: l = {W1
⋃

W2}.

3



Probabilistic Multi-Context Systems Marco Sotomayor

The general laws of the probability theory can be deduced through Kolmogorov’s axioms [11]. One
of Kolmogorov’s axioms states that: p(W1 ∨W2) = p(W1)+ p(W2)− p(W1 ∧W2). Because W1 and W2
are mutually exclusive, then: p(l) = p(W1∨W2) = p(W1)+ p(W2)−0 = w1 +w2

Given this demonstration it can be stated that the probability of a proposition is equal to the sum of
the probabilities of the worlds where it holds (where a proposition is true).

Definition 5. A contextual probabilistic interpretation is a mapping from Lk to [0,1] defined as follows:
For each φ ∈ Lk: Iwpk (φ) = ΣW |=φ WPk(W )

Given a set of contextual probabilistic interpretations Iwpk (φ) in context k, a set of equations is
generated under the following constraints:

I. ΣW j|=φ Wj = µ , for all Iwpk (φ) = µ .

II. Σm
j=1 w j = 1.

III. 0 ≤ w j ≤ 1, 1 ≤ j ≤ m.

Now the notion of satisfiability for p-MCS can be introduced:

• A p-labeled chain c satisfies a p-labeled formula (k : φ)µ iff Iwpk (φ) = µ

• A p-labeled chain c satisfies a p-labeled rule, iff whenever c satisfies the body of the rule body(r)
then the head of the rule head(r) must be also satisfied.

• A p-labeled chain c satisfies a system T (i.e p-MCS) iff it satisfies every p-labeled rule of the
system.

3 Minimal Probabilistic Entailed Chain/Fixpoint

The following section describes the process of constructing the probabilistic solution chain and the min-
imal probabilistic entailed chain and shows how to test if the contextual probabilistic interpretations are
consistent in the set of equations that are generated. Finally, it is shown how to construct the contextual
world probability density.

Let C be the set of all p-labeled chains. It is possible to order the p-labeled chains according to the
amount of information that they contain. A p-labeled chain c is less informative than c′ (c � c′), if for
every context k, ck ⊇ ck’ [13].

Definition 6. A p-labeled solution chain cp of a p-MCS is a p-labeled chain such that satisfying the
p-MCS.

Based on [13], it can be argued that a minimal solution chain cs in a non-probabilistic MCS contains
all the logical entailments for every context k .

Definition 7. A minimal probabilistic entailed chain ce contains all the probabilistic entailments ηk per
every context k. ce : cs→ [0,1];ce = {η1, . . . ,ηm}

i.e. ce is the result of a mapping of all Herbrand interpretations of cs to a probability between [0,1].

Proposition 1. Let cp and ce be a probabilistic solution chain and a minimal probabilistic entailed chain
of a p-MCS, respectively. Then cp ⊇ ce
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A non-probabilistic multi-context system is a particular case of a probabilistic multi-context system
where every formula in the system is associated with a probability of one. The minimal solution chain cs

[13] in a non-probabilistic multi-context system discards Herbrand interpretations because these worlds
have a probability of zero. However probabilistic multi-context systems have to keep these Herbrand
interpretations in the solution chain because these worlds can have probabilities associated to them. For
this reason a probabilistic solution chain has to provide information about the minimal solution chain in
non-probabilistic multi-context systems and the description of the contextual world probability density
function. In cases where the probabilistic interpretations of the system do not comply with the probability
theory, a probabilistic solution chain cannot be determined.

Roelofsen and Serafini [13] prove that every non-probabilistic multi-context system S has a unique
minimal solution chain cs. Then, according to proposition 1, cp contains a unique minimal probabilistic
entailed chain ce.

In order to find the probabilistic solution chain cp and at the same time the minimal probabilistic
entailed chain ce, the following analysis is conducted.

According to formula 4, Bk denotes a finite set of sentences or formulas in a context k.

Bk = {(k : ϕ1)µ1, . . . ,(k : ϕm)µm}

Given this set of sentences, it can be inferred that: ηk = {(k : ϕ1)µ1∧, . . . ,∧(k : ϕm)µm}= {(k : ψ)µ}.
For a finite set of contexts K for k = 1, . . . ,m, then: ce = {η1, . . . ,ηm}= {(k1 : ψ1)µ1, . . . ,(k1 : ψm)µm}.

Because this chain is unique in a system and constitutes the probabilistic entailment for system T, it
is necessary to introduce an operator that computes this chain.

We can say that Bk, the set of formulas that constitute the knowledge base in context k, is composed
of facts and information obtained through bridge rules. For a chain c, if c |= body(r) then head(r) ∈Bk.

Assuming that B1 (for context 1) contains two formulas ϕ and ψ: B1 = {(k1 : ϕ)µ1,(k1 : ψ)µ2}
It can be inferred: N1 = {(k1 : ϕ)µ1 ∧ (k1 : ψ)µ2}= {(k1 : υ)µ}
In order to address the probabilistic consistency, the following Kolmogorov’s axiom can be applied:

P(A∧B) = P(A)+P(B)−P(A∨B)

This axiom can be expressed as:

Iwp1(ϕ ∧ψ) = Iwp1(ϕ)+Iwp1(ψ)−Iwp1(ϕ ∨ψ) = µ1 +µ2−Iwp1(ϕ ∨ψ)

Then: N1 = (k1 : υ)µ = (k1 : υ)Iwp1(ϕ ∧ψ);IWP1(ϕ ∧ψ) = ∑W |= ϕ∧ψ WP1(W ) = µ; µ ∈ [0,1]
As can be seen, being given the probabilities of two formulas is not sufficient to find the probability

of their conjunction. Also, the probabilistic interpretation Iwp1 (ϕ ∧ψ) provides information of the
Herbrand interpretations or worlds where ϕ ∧ψ holds, which is its logical entailment υ . For example,
if ϕ holds in worlds W2, W4 and ψ holds in worlds W1, W2, W3 then ϕ ∧ψ holds in W2. This means that
the logical entailment υ is equal to W2.

Every probabilistic interpretation generates an equation. For example, if m = 4 (four worlds):
Iwp1(l) = w1 +w2 = 0.5

The first row in Table 1 represents the default constraint and the second row represents the equation
w1 +w2 = 0.5. Table 2 depicts a system of equations, where the goal is to obtain the probabilistic entail-
ment N1 , given ϕ and ψ . These equations are processed in such way that the probabilistic consistency
in the right column of the table can be verified and N1 = (k1 : υ)µ is obtained in the last row. The
logical entailment υ is implicit in the equation (w1 +w2 = 0.5, Table 2), because Herbrand interpreta-
tions that hold correspond to a value of one in the equation and Herbrand interpretations that do not hold
correspond to a value of zero in the equation. Let this process be the K E function.
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Table 1:
w1 w2 w3 w4 0≤ µ ≤ 1

1 1 1 1 1
1 1 0 0 0.5

Table 2:
w1 w2 . . . wm 0≤ µ ≤ 1
IWP1 (ϕ) µ1

IWP1 (ψ) µ2

IWP1 (ϕ ∨ψ) µ1 +µ2−IWP1 (ϕ ∧ψ)

IWP1 (ϕ ∧ψ) µ

Definition 8. T he K E function for k = 1, . . . ,m is of the form :
K E (IWPk(ψ)) = IWPk(Bk∧ψ) = Nk; if a p-chain c |= body(r) then head(r) ∈Bk

Bk represents the knowledge base in a context k. The K E function can be applied iteratively for
many p-formulas. Also, if the same process is applied for all contexts then ce can be obtained.

Theorem 1. K E is monotonic.

Proof. Given a default constraint in L E k and an interpretation ϕ in K E :

(i) K E (Iwpk(ϕ)) = Iwpk(ϕ ∧1) = Iwpk(ϕ)

Then adding another interpretation ψ in K E : (ii)K E (Iwpk(ψ)) = Iwpk (ϕ ∧ψ).
If K E is monotonic: whenever I WPk (ψ) = IWPk (ϕ) , (iii)K E (Iwpk(ψ)) ≤K E (Iwpk(ϕ))

Replacing (i) and (ii) in (iii): Iwpk (ϕ ∧ψ)≤ Iwpk (ϕ).
A Kolmogorov’s axiom states that:
If φ logically implies λ then P(φ)≤ P(λ ) because (ϕ ∧ψ)⊆ ϕ then (ϕ ∧ψ)→ ϕ

Then if (ϕ ∧ψ) implies ϕ : IWPk (ϕ ∧ψ) ≤ IWPk (ϕ)

Because K E is monotonic and sets of all p-labeled chains (C ,� ) form a complete lattice, according
to the Knaster-Tarsky theorem (cited by [7]), it can be stated that:

Theorem 2. K E has a least fixpoint

This least fixpoint contains ce or the set of all the probabilistic entailments Nk.

Example 2. Continuing Example 1 to find cp and ce:
Step 1:
r1 : (1 :∼ r)0.5 ←

c⊥ denotes the initial p-labeled chain (containing all p-local models with unknown probabilities).
Because body(r1) is empty then c⊥ |= body(r1) . That means that head(r1)∈B1
Iwp1 (∼ r) = w2 +w4 = 0.5

c1=


[{l,r} : w1,{l,∼ r} :w2,{∼ l,r} : w3, {∼ l,∼ r} :w4]1,

[{l,c, r} : w1,{l,c,∼ r} : w2,{l,∼ c,r} : w3,{l,∼ c,∼ r} : w4,{∼ l,c,r} : w5,
{∼ l,c,∼ r} : w6,{∼ l,∼ c,r} : w7,{∼ l,∼ c,∼ r} : w8]2


Step 2:
r2 : (2 : c)0.5 ←

Because body(r2) is empty then c1 |= body(r2) . That means that head(r2)∈B2

Iwp2 (c) = w1 +w2 +w5 +w6 = 0.5
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c2=


[{l,r} :w1,{l,∼ r} :w2,{∼ l,r} : w3, {∼ l,∼ r} : w4]1,

[{l,c,r} :w1,{l,c,∼ r} :w2,{l,∼ c,r} : w3,{l,∼ c,∼ r} : w4,{∼ l,c,r} :w5,{∼ l,c,∼ r} :w6,
{∼ l,∼ c,r} : w7,{∼ l,∼ c,∼ r} : w8]2


Step 3:

r3 : (1 : (l∨ r))0.75 ← (2 : (l∨ c∨ r))0.875
Iwp2 (l∨ c∨ r) = w1 +w2 +w3 +w4 +w5 +w6 +w7 = 0.875
w8 = 1−0.875 = 0.125
c2 |= (2 : (l ∨ c∨ r))0.875 then head(r3)∈B1
Iwp1 (l∨ r) = w1 +w2 +w3 = 0.75

Step 4:
r4 : (2 : (l∨ c∨ r))0.875 ← (1 : (l∨ r))0.75
Iwp1 (l∨ r) = w1 +w2 +w3 = 0.75

w1 w2 w3 w4

1 1 1 1 1
0 1 0 1 0.5
1 1 1 1 1.5-w2-w4

0 1 0 1 0.5
1 1 1 0 0.75
1 1 1 1 1.25-w2

0 1 0 0 0.25
1 1 1 0 0.75
1 1 1 0 1-w2

0 1 0 0 0.25

w1 w2 w3 w4 w5 w6 w7 w8

1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 1 1.5-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 0 0.87
1 1 1 1 1 1 1 0 1.37-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 0 0.87
1 1 1 1 1 1 1 0 0.87-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5

c3 |= (1 : (l∨ r))0.75 then head(r4) ∈B2(2 : (l∨ c∨ r))0.875
Iwp2 (l∨ c∨ r) = w1 +w2 +w3 +w4 +w5 +w6 +w7 = 0.875

c4 =


[{l,r} : w1,{l,∼ r} :0.25,{∼ l,r} : w3, {∼ l,∼ r} : 0.25]1,
[{l,c,r} :w1,{l,c,∼ r} :w2,{l,∼ c,r} : w3,{l,∼ c,∼ r} : w4,

{∼ l,c,r} :w5,{∼ l,c,∼ r} :w6,{∼ l,∼ c,r} : w7,{∼ l,∼ c,∼ r} : 0.125]2


c3 = c4 ;cp = c4

ce =

{
[{l,∼ r} :0.25]1,

[ ({l,c,r} ,{l,c,∼ r} ,{∼ l,c,r} ,{∼ l,c,∼ r}) :0.5]2

}
Then, ce can be interpreted as: “The probability that there is a ball on the left and not on the right

(relative to Mr1) is 0.25” and “The probability that there is a ball in the center (relative to Mr2) is 0.5”.
Although the precise connection between contextual ontologies (e.g C-OWL) and p-MCS is not be-

ing developed in this paper, we can extend Example 2, creating a mapping between the probabilistic
entailment obtained in context 1 and an ontology, using the following bridge rule:

(onto : Ball(ball, le f t))0.25 ← (1 : l∧¬r)0.25
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4 Conclusion

This paper has proposed a theoretical approach to the introduction of uncertainty in multi-context sys-
tems. A more expressive semantics has been presented in order to extend the notion of probability in
multi-context systems. This additional expressiveness brings new constraints that have to be harmonious
and consistent with probability and logic theory. In order to address this situation, a probabilistic logic se-
mantic approach based on the works of [3, 9, 10] has been extended to MCS. Also, a technique that deals
with probabilistic inconsistency and the deduction of a minimal entailed chain has been incorporated to
the framework.

There are some additional observations worth making about the characteristics of the framework.
Firstly, MCS can be embedded in p-MCS assigning to the propositions a probability of one. This charac-
teristic and the deduction of a minimal entailed chain mean MCS can be incorporated into a more general
framework. However, there are practical limitations that need to be addressed in future work. For ex-
ample, the joint probability function or contextual world probability density function has to be specified
explicitly in tabular form, which requires exponentially many parameters. This circumstance could be a
limitation in practical applications [2]. Nevertheless, this strategy can be used as a theoretical foundation
for different approaches [11]. Finally, Bayesian Networks have been successful the last two decades
in reducing the complexity of computation of joint probability functions [2]. This suggests that future
work should look at incorporating the notion of conditional probabilities into p-MCS through Bayesian
Networks.
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