
A Local Search Approach to Modelling and

Solving Interval Algebra Problems∗

J. Thornton, M. Beaumont and A. Sattar

School of Information Technology,

Griffith University Gold Coast,

Southport, Qld, Australia 4215

{j.thornton, m.beaumont, a.sattar}@griffith.edu.au

Michael Maher

Department of Computer Science,

Loyola University,

Chicago, IL 60626, USA

mjm@cs.luc.edu

Abstract

Local search techniques have attracted considerable interest in the arti-

ficial intelligence community since the development of GSAT and the min-

conflicts heuristic for solving propositional satisfiability (SAT) problems and

binary constraint satisfaction problems (CSPs) respectively. Newer tech-

niques, such as the discrete Langrangian method (DLM), have significantly

∗The authors gratefully acknowledge the financial support of the Australian Research Council,
grant A00000118, in the conduct of this research

improved on GSAT and can also be applied to general constraint satisfaction

and optimisation. However, local search has yet to be successfully employed

in solving temporal constraint satisfaction problems (TCSPs).

In this paper we argue that current formalisms for representing TCSPs are in-

appropriate for a local search approach, and we propose an alternative CSP-

basedend-point orderingmodel for temporal reasoning. In particular we

look at modelling and solving problems formulated using Allen’s interval al-

gebra (IA) and propose a new constraint weighting algorithm derived from

DLM. Using a set of randomly generated IA problems, we show that our

local search outperforms existing consistency-enforcing algorithms on those

problems that the existing techniques find most difficult.

1 Introduction

Representing and reasoning with temporal information is a basic requirement for

many AI applications, such as scheduling, planning and natural language process-

ing [8]. In these domains, temporal information can bequalitativeas well as quan-

titative. For instance, an event may need to be before or during another event, but

we may not be concerned with actual durations, start times or end times. Such

information is not handled well using a simple linear time-stamping model, and re-

quires more expressive constructs to capture the notion of events and the constraints

between them. To answer this need, various approaches have been developed in the

constraint satisfaction community under the heading oftemporal constraint satis-

faction.

A temporal constraint satisfaction problem (TCSP) shares the basic features of

a standard CSP, i.e. variables with domains and constraints that define the possible

domain values that can be assigned to each variable [6]. However, in a TCSP, con-

straints are modelled asintensionaldisjunctions of temporal relations [10], rather

2

than as extensions of allowable domain value combinations. Finding a consistent

scenario is then a matter of searching for a consistent set of temporal relations

for each constraint. For harder problems this usually means using a combination

of backtracking and a constraint propagation technique such as path-consistency

[10].

In this paper we look at applying local search to solving TCSPs. Local search

techniques such as GSAT [11] and the min-conflicts heuristic [7] have already

proved effective both for propositional satisfiability (SAT) and in the general CSP

domain, particularly on problems beyond the reach of standard constructive search

methods. However, when applied to a TCSP, a local search is unable to exploit

the constraint-propagation approach used with backtracking, as it is an incom-

plete method thatnecessarilymoves through inconsistent scenarios. Further, local

search requiresexactcost feedback when deciding between candidate moves. In a

binary CSP, a move changes a variable instantiation and cost feedback is obtained

from a simple count of violated constraints. However, in a TCSP, a move consists

of instantiating a set of temporal relations for a particular constraint. As no vari-

ables are actually instantiated, finding an exact move cost becomes a significant

search problem in its own right [2].

Given these difficulties, our approach has been to reformulate temporal reason-

ing as a more standard CSP, i.e. searching by instantiating variables with domain

values rather than instantiating constraints with temporal relations. Once in this

form, a local search can be applied in a straightforward manner. The main task

has been to develop a representation that does not cause an excessive increase in

problem size. Our work has resulted in theend-point orderingmodel for temporal

reasoning, described in Section 3.3. To evaluate the model we have used Allen’s

interval algebra (IA) [1] and have developed an efficienttemporal tree constraint

representation to capture the full set of IA relations. Additionally, we propose a

3

new constraint weighting local search algorithm for temporal reasoning, derived

from a state-of-the-art SAT technique (the discrete Lagrangian method or DLM

[12]). In Section 5 we give an empirical comparison of this approach with Nebel’s

backtracking algorithm and finally discuss the future direction of our work.

2 Interval Algebra

Allen’s interval algebra (IA) provides a rich formalism for expressing quantita-

tive andqualitative relations between interval events [1]. In IA, a time interval

X is an ordered pair of real-valued time points orend-points(X−, X+) such that

X− < X+. Allen defined a setB of 13 basic interval relations such that any pair of

time intervals satisfy exactly one basic relation. These relations capture thequal-

itative aspects of event pairs being before, meeting, overlapping, starting, during,

equal or finishing each other. As shown in Table 1, each relation can be defined

in terms of constraints on the end-points of the time intervalsX andY . Indefinite

information is expressed in IA as a disjunction of basic relations, represented as

an interval formulaof the form: X{B1..Bn}Y where{B1..Bn} ⊆ B. For exam-

ple, the interval formulaX{m, o}Y represents the disjunction (X meets Y) or (X

overlaps Y).

An IA problem has a solution if there is an assignment of an interval to each

interval variable such that all interval relations are satisfied. AnI-interpretation

[8] maps each interval variable to an interval. Itsatisfiesa basic relationX{B}Y
iff the real-valued end-points of the intervals assigned toX andY satisfy the cor-

responding end-point constraints (see Table 1). We say that an IA problemΘ is

I-satisfiable iff there exists anI-interpretation such that at least one basic relation

in each interval formula is satisfied. ISAT is the problem of deciding whetherΘ is

I-satisfiable and is one of the basic tasks of temporal reasoning [8]. This problem

4

is known to be NP-complete [16].

Basic Relation Symbol Diagram of Meaning End-point Relations

X beforeY b X¾ - Y¾ - (X− < Y −) ∧ (X− < Y +)∧
Y afterX bi (X+ < Y −) ∧ (X+ < Y +)

X meetsY m X¾ - Y¾ - (X− < Y −) ∧ (X− < Y +)∧
Ymet byX mi (X+ = Y −) ∧ (X+ < Y +)

X overlapsY o X¾ - (X− < Y −) ∧ (X− < Y +)∧
Y overlapped byX oi Y

¾ -
(X+ > Y −) ∧ (X+ < Y +)

X duringY d X¾ - (X− > Y −) ∧ (X− < Y +)∧
Y includesX di Y

¾ -
(X+ > Y −) ∧ (X+ < Y +)

X startsY s X¾ - (X− = Y −) ∧ (X− < Y +)∧
Y started byX si Y

¾ -
(X+ > Y −) ∧ (X+ < Y +)

X finishesY f X¾ - (X− > Y −) ∧ (X− < Y +)∧
Yfinished byX fi Y

¾ -
(X+ > Y −) ∧ (X+ = Y +)

X equalsY eq X¾ - (X− = Y −) ∧ (X− < Y +)∧
Y

¾ -
(X+ > Y −) ∧ (X+ = Y +)

Table 1: The setB of the 13 basic interval relations (note: the relations(X− <
X+) ∧ (Y − < Y +) are implicitly assumed in each end-point relation)

3 Representing ISAT for Local Search

3.1 Current TCSP Approaches to ISAT

Current techniques for solving the ISAT problem follow the TCSP approach out-

lined in the introduction [8, 15], using a combination of specialised path-consistency

and backtracking algorithms. Applying path-consistency to an IA network, in-

volves testing the consistency of each basic relationBi in each interval formula

X{B1..Bn}Y , such that for each path betweenX andY passing through a third

variableZ, an instantiationX{Bj}Z andZ{Bk}Y exists that is consistent with

5

X{Bi}Y . If no such instantiation exists thenX{Bi}Y is inconsistent and is

deleted fromX{B1..Bn}Y . For example, if we are testingX{b}Y and the path

(X{bi, eq}Z, Z{bi, eq}Y), thenX{b}Y is inconsistent asX cannot be simultane-

ously beforeY and equal to or afterZ, whenZ is also equal to or afterY .

As path-consistency does not guarantee global consistency, except when each

arc is labelled with a singleton [10], a further search is needed to find a consis-

tent scenario. Typically TCSPs are solved using a combination of backtracking

and forward-checking, which proceeds by instantiating an interval formula with

a single basic relation and then checking that the remaining formulae are path-

consistent. If so, the algorithm instantiates another interval formula with a single

relation, and so on, until an inconsistency is found, or all formulae are instantiated

with a single basic relation (thus arriving at a globally consistent scenario). In the

event of an inconsistency, the algorithm tries another instantiation in the current

formula, and, if no further instantiations remain, itbacktracksto an earlier formula

and tries another instantiation. As backtracking is a complete search, it will ei-

ther find a consistent scenario, or it will backtrack to the point where no further

instantiations are available, and report that no consistent scenario exists.

A significant group of tractable sub-classes of IA have been identified for which

finding a path-consistent scenario is sufficient to guarantee full consistency [9].

These sub-classes are subsets of the213 possible interval formulas allowed in the

full IA. Interval algebra algorithms exploit this information by searching for path-

consistent scenarios that only contain formulas from a given tractable subset. This

is more efficient than searching for a single basic relation from each formula. In

addition, specialised ordering heuristics have been developed that further improve

the performance of backtracking on full IA [15].

6

3.2 Local Search and TCSPs

Unfortunately, little of this work is of direct relevance in applying local search to

IA. A local search algorithm differs from a constructive technique (such as back-

tracking) as the search begins with a complete, but inconsistent, instantiation of

variables. It then proceeds to repair the solution by making a series of local moves

that minimise the overall cost [7]. Local search techniques have been particularly

successful in solving propositional satisfiability (SAT) problems, resulting in the

development of the discrete Lagrangian method (DLM) [12] on which our later

work is based. In a SAT problem, a greedy local search will attempt to minimise

the number of unsatisfied clauses, where each clause contains a set of disjunct and

optionally negated true/false variables. For example, a clause(x ∨ ¬y ∨ z) would

be satisfied byx ← true ory ← false orz ← true. In such a problem, the cost of a

move is measured by the number of false clauses that will result from changing the

instantiation (flipping) a particular variable. At any point in the search, the algo-

rithm will flip the variable that causes the least number of clauses to remain false,

continuing until no further improvements are possible. At this point, the algorithm

has either found a consistent solution, or it is “stuck” in a local minimum or trap.

Most work in local search has concentrated on trap avoiding or trap escaping strate-

gies, using combinations of random instantiations, avoiding previous instantiations

and changing costs by penalising frequently violated constraints [13].

In applying local search to IA, it is natural to take a variable instantiation to

be the selection of a basic relation from each interval formula. The task is then to

determine the overall solution cost. The standard CSP approach would be to treat

each interval formula as a constraint and to measure cost in terms of the number

of unsatisfied constraints. However, in a TCSP the time interval end-points are not

instantiated and so we cannot obtain a direct measure of the number of unsatisfied

7

constraints. In fact, unless we infer information about end-point values, we can

only measure theconsistencyof a solution and so can only distinguish between

instantiations on the basis of consistency. This means a local search will need to

test for the level of consistency of each competing instantiation to obtain the cost

guidance needed to select a move. As such consistency checking would, at best,

be equivalent to solving a problem using existing consistency-enforcing techniques

[10], we can conclude that a local search of this sort will not achieve any benefits

over existing approaches.

3.3 End-Point Ordering

An IA problemΘ can easily be translated to propositional logic (using a variation

of the method used by Nebel and Bürckert [9], Section 3). Hence, an obvious al-

ternative for representing the ISAT problem is to translateΘ into a propositional

satisfiability (SAT) formula. This would enable the application of existing SAT lo-

cal search techniques without modification. However, as Nebel has already pointed

out [8], expressing the implicit dependencies between time interval end-points in

that translation produces a cubic increase in problem size, making it unlikely that a

SAT approach will yield significant benefits. Consequently, our work has focussed

on finding a more compact representation of the ISAT problem that still captures

end-point dependencies. This has resulted in theend-point orderingmodel.

End-point ordering translates the ISAT problem into a standard CSP, taking

the end-point relations of interval formulas to be constraints and the time interval

end-points to be variables. The main innovation of our approach is that we define

the domain value of each time interval end-point to be the integer valued position

or rank of that end-point within thetotal ordering of all end-points. For example,

8

consider the following solutionS to a hypothetical IA problem:

S = X{b}Y ∧ Y {m}Z ∧ Z{bi}X

Given the solution is consistent, a set of possibleI-interpretations must exist that

satisfyS. One member of this set is given byIa = (X− = 12, X+ = 15, Y − = 27,

Y + = 30, Z− = 30, Z+ = 45). For eachI-interpretation,In, there must also

exist auniqueordering of the time-interval end-points that corresponds toIn. For

example, the ordering ofIa is given by (X− < X+ < Y − < Y + = Z− < Z+)

and is shown in the following diagram:

X

¾ -

Y

¾ -

Z

¾ -

As anyI-interpretation can be translated into a unique end-point ordering, it fol-

lows that the search space of all possible end-point orderings will necessarily con-

tain all possible solutions for a particular problem. In addition, since it is the end-

point ordering that is key – and not the values assigned to each end-point, we can

choose convenient values for the end-points. For example, we can assign an inte-

ger to each of the end-points in a way that respects the ordering (e.g.X− = 1,

X+ = 2, Y − = 3, Y + = 4, Z− = 4, Z+ = 5 for the above ordering).

The advantage of using values to represent an end-point ordering is that we can

now directly determine the truth or falsity of any interval formula whose end-points

have been instantiated. For example, consider the interval formulaX{m, o}Y and

the instantiation(X− = 2, X+ = 4, Y − = 3, Y + = 7). From Table 1 it follows

thatX{m, o}Y can be expanded to:

((X− < Y −) ∧ (X− < Y +) ∧ (X+ = Y −) ∧ (X+ < Y +))∨

((X− < Y −) ∧ (X− < Y +) ∧ (X+ > Y −) ∧ (X+ < Y +))

9

and substituting in the end-point order values gives:

((2 < 3) ∧ (2 < 7) ∧ (4 = 3) ∧ (4 < 7))∨
((2 < 3) ∧ (2 < 7) ∧ (4 > 3) ∧ (4 < 7))

resulting inX{m, o}Y evaluating totrue. (Note, this representation causes several

redundant comparisons which are eliminated using thetemporal tree constraint

representation described in Section 4.2).

Ideally, we would use the smallest range of integers necessary to represent the

end-point orderings, but this is not practical as it would first involve finding all

feasible solutions. However, the total number of end-points is an upper bound

on the number of integers necessary. Thus we use the integers1, 2, . . . , 2m to

represent the end-point orderings, wherem is the number of interval variables in

the IA problem.

Given an IA problemΘ involving m interval variables, anordering or O-

interpretation maps each interval variable to an interval with integer end-points in

the range1..2m. We sayΘ is O-satisfiable if there is anO-interpretation that sat-

isfiesΘ. OSATis the problem of deciding whether an IA problemΘ is satisfiable

by anO-interpretation.

Proposition 3.1 Let Θ be an IA problem. ThenΘ is I-satisfiable iffΘ is O-

satisfiable.

Proof: (⇐) This direction is trivial, since everyO-interpretation is

also anI-interpretation.

(⇒) Let ψ be anI-interpretation that satisfiesΘ. ψ maps every

interval variableX to an interval(a, b). Consider the set of values

used byψ as end-points. Since these values are real numbers, they

can be ordered and ranked; letr be the ranking function. Notice that

10

x < y iff r(x) < r(y), andx = y iff r(x) = r(y). Thus,r preserves

the truth value of end-point constraints.

Let ψ′ be theI-interpretation that maps each interval variable

X to the interval(r(a), r(b)). Obviouslyψ′ is an O-interpretation,

since there are2m end-points and thus the range ofr is 1..2m. Fur-

thermore,ψ′ satisfies a basic interval formulaX{B}Y iff ψ satisfies

X{B}Y , because satisfaction is determined entirely by satisfaction of

the end-point constraints ofB, andr preserves the truth value of these

constraints. Thus,ψ′ satisfiesΘ iff ψ satisfiesΘ.

Thus, OSAT is equivalent to ISAT.

Furthermore, we can formulate OSAT as a CSP: Let(Ψ,Θ) be an IA prob-

lem. The set of variables is{X−, X+ | X ∈ Ψ}; each variable has domain

{1, 2, . . . , 2|Ψ|}. For each interval formulaX{B1, B2, . . . , Bn}Y , there is a con-

straint onX−, X+, Y −, Y + equivalent to
∨n

i=1 φBi(X
−, X+, Y −, Y +), where

φBi is the end-point relation forBi.

This reformulation allows us to apply conventional CSP techniques to solve ISAT.

In particular, we can now apply local search methods.

4 Solving OSAT using Local Search

4.1 Constraint Weighting Local Search

In order to apply a local search to IA, we need to decide how a local move is

taken and how the solution cost is calculated. For OSAT, the solution cost has

already been defined, i.e. it is a count of the number of false interval formulas for a

given variable instantiation. However, the question of defining a local move is still

open. In a standard binary CSP or SAT problem, a move involves changing values

11

for a single variable. When applied to end-point ordering this approach would

search by changing single end-points. Alternatively we can define a move in terms

of intervals and search by simultaneously changing the interval start and finish-

points. Thisinterval domainapproach tries every possible position for a given

interval, ensuring that the best domain value pairs are found, but also performing

a greater number of comparisons. In preliminary tests, the improved guidance of

the interval domain outweighed the comparison cost and so we continued with this

approach in our final algorithm.

To deal with situations where no improving move exists we have adopted the

general DLM SAT trap escaping strategy proposed in [12]. We chose DLM as it

represents the current state-of-the-art for SAT problems and can be simply adapted

to the general CSP domain. DLM escapes traps by adding weight to all currently

violated constraints. Cost is measured as the sum of weights on violated con-

straints, hence adding weight changes thecost surfaceof the problem, producing

alternative cost reducing moves. In addition, DLM periodically reduces constraint

weights to avoid losing sensitivity to local search conditions. ThetemporalSAT

or TSAT algorithm (see Figure 1) applies the basic DLM heuristics to the temporal

reasoning domain, and is controlled by two parameters: MAXFLATS (set to 4)

which specifies how many consecutive non-improving (flat) moves can be taken

before constraint weights are increased and MAXWEIGHTS (set to 10) which

specifies how many constraint weight increases can occur before the weights are

reduced. The TIMELIMIT parameter is further used stop the algorithm running

indefinitely on problems for which it can find no answer. In the case of running

TSAT on known over-constrained problems, we would also add code to record the

best solution foundso far in the search.

As TSAT is a special purpose algorithm that exclusively processes temporal

constraints in the form of end-point relations (see Table 1), we were also able to

12

procedureTSAT(Events, Constraints)
Randomly instantiate every event(e−i , e+

i) ∈ Events
Cost ← number of unsatisfied constraints∈ Constraints
F latMoves ← WeightIncreases ← 0
while Cost > 0 and execution time< TIME LIMIT do

StartCost ← Cost

for each(e−i , e+
i) ∈ Events do

(Moves, Cost) ← FindBestMoves(Constraints, Cost, e−i , e+
i)

Instantiate(e−i , e+
i) with randomly selected(d−j , d+

j) ∈ Moves

end for
if Cost < StartCost then FlatMoves ← 0
else if(++FlatMoves) > MAX FLATS then

increment weight on all unsatisfied constraints
increaseCost by the number of unsatisfied constraints
FlatMoves ← 0
if (++WeightIncreases) > MAX WEIGHTSthen

decrement weight on all constraints with weight> 1
decreaseCost by number of decremented constraints
WeightIncreases ← 0

end if
end if

end while
end

Figure 1: The TSAT local search procedure for interval algebra

develop various optimisations that exploit the special structure of these constraints.

These optimisations are implemented in the TSAT functionsFindBestMoves

(Figure 4) andFindCost (Figure 5), and are explained in the following Sections

on temporal tree constraints, domain skipping and constraint skipping.

4.2 Temporal Tree Constraints

Although there are213 possible disjunctions of the 13 basic IA relations, evaluat-

ing these disjunctions as interval end-point constraints is relatively easy. This is

because all constraints involve four basic evaluations:

((X−{r}Y −), (X−{r}Y +), (X+{r}Y −), (X+{r}Y +))

13

wherer = {<,=, >} and any fully instantiated pair of intervalsmustsatisfy a

single basic relation [8]. This is illustrated in the comparison tree of Figure 2: here

all constraints that evaluatetrue follow a single path from root to leaf, skipping the

bracketed comparisons (as these are implied byX− < X+ or Y − < Y +). For

example, the shortest path1 to b (assuming the best ordering) is given by:

(X− < Y −) ∧ (X+ < Y −)

as(X− < Y −) → (X− < Y +) and(X+ < Y −) → (X+ < Y +). Similarly, the

longest path tooi (assuming the worst ordering) is given by:

¬(X− < Y −) ∧ ¬(X− = Y −) ∧ ¬(X− = Y +)∧
¬(X− > Y +) ∧ ¬(X+ < Y +) ∧ ¬(X+ = Y +)

Using interval formulas, we can construct comparison trees foreachmember of the

subset of the213 possible disjunctions that appear in a particular problem. We term

this type of constraint representation atemporal tree constraint. Processing these

trees we can then detectfailure with fewer comparisons, leaving the best and worst

cases for success unchanged. The tree in Figure 2 represents the temporal tree

constraint for all 13 possible disjunctions betweenX andY and so is redundant

(i.e. X andY are unconstrained). Figure 3 shows the more useful temporal tree

constraint forX{b, bi, o, oi}Y . Here we can see that an instantiation ofX− = Y −

will fail at the first level and no further processing of the tree will occur.

An alternative method of constraint representation would be to express the

problem as a true binary CSP, developing binary constraint extensions represent-

ing all possible combinations of end-points for a given pair of intervals. In such a

1Where the length of a path is defined as the number of comparisons needed to evaluate the
constraint.

14

»»»»»»»»»»»9 ?

XXXXXXXXXXXz
X− < = > Y −

? ?
©©©¼ ?@@R

X− (<) (<) < = > Y +

¡¡ª ?
HHHj ? ? ? ?

X+ < = > (>) (>) (>) (>) Y −

? ? ¡¡ª ?@@R ¡¡ª ?@@R ¡¡ª ?@@R ? ?
X+ (<) (<) < = > < = > < = > (>) (>) Y +

b m o fi di s eq si d f oi mi bi

Figure 2: The end-point comparison tree for the 13 basic relations

»»»»»»»»»»»9

XXXXXXXXXXXz
X− < > Y −

?
©©©¼ @@R

X− (<) < > Y +

¡¡ª
HHHj ? ?

X+ < > (>) (>) Y −

? ¡¡ª @@R ?
X+ (<) < > (>) Y +

b m o fi di s eq si d f oi mi bi

Figure 3: The temporal tree constraint forX{b, bi, o, oi}Y

model a constraint could be evaluated in a single look-up. However, we rejected

this approach due to the large space overhead required.

4.3 Domain Skipping

As discussed in Section 4.1, the TSAT algorithm considers all possible combi-

nations of event start and finish-point pairs(e−i , e+
i) before selecting a particular

instantiation. To speed up this process, we developed a domain skipping technique

that avoids redundant domain value evaluations.

From Section 3.3, we found the upper bound on the number of integers needed

for a complete end-point ordering of an IA problem is2m, wherem = the total

15

function FindBestMoves(Constraints, Cost, e−i , e+
i)

Moves ← ∅, OuterCost ← 0

OuterConstraints ← all ci,j ∈ Constraints involving (e−i , e+
i)

d−min ←min domain value ofe−i
while d−min ≤max domain value ofe−i do

(TestCost, OuterCost, d−max) ← FindCost(e−i , d−min, OuterConstraints, OuterCost)

if OuterCost > Cost then d−max ← max domain value ofe−i
else ifTestCost <= Cost then

InnerCost ← OuterCost, InnerConstraints ← OuterConstraints

d+
min ← d−min + 1

while d+
min ≤ max domain value ofe+

i do
(TestCost, InnerCost, d+

max) ← FindCost(e+
i , d+

min, InnerConstraints, InnerCost)
if TestCost < Cost then

Cost ← TestCost
Moves ← ∅

end if
if TestCost = Cost then add domain values((d−min . . . d−max), (d+

min . . . d+
max)) to Moves

else ifInnerCost > Cost then d+
max ←max domain value ofe+

i
d+

min ← d+
max + 1

end for
end if
d−min ← d−max + 1

end while
return (Moves, Cost)

end

Figure 4: TheFindBestMoves TSAT move selection function

number of events. However, as we knowe−i < e+
i , it follows that the upper bound

for the domain size of a particular end-point is2m − 1, (i.e. domain(e−i) =

{1 . . . 2m − 1} and domain(e+
i) = {2 . . . 2m}) and the corresponding upper

bound for the domain size of an event(e−i , e+
i) is 2m2 − 3m + 1. In practice,

the overhead in evaluating this domain can be considerably reduced by recognis-

ing rangesof domain values for which the same constraint evaluations apply. For

example, consider the three eventse1, e2 ande3 shown in the following diagram:

e2
¾ -

e1
¾ -

e3
¾ -

1 2 3 4 5 6 7 8

16

function FindCost(ei, dmin, ConstraintList, F ixedCost)
TestCost ← 0, dmax ← domain size ofei + 1
for eachci,j ∈ ConstraintList do

let ej be the second event inci,j

if ci,j is consistent with domain valuedmin for ei then
markci,j as consistent
if dmin > e+

j then removeci,j from ConstraintList

else
markci,j as inconsistent
if dmin > e+

j then
removeci,j from ConstraintList
F ixedCost ← FixedCost + weighted cost ofci,j

elseTestCost ← TestCost + weighted cost ofci,j

end if
end if
dskip ← largest domain value skip allowed forej from dmin by ci,j

if dskip < dmax then dmax ← dskip

end for
return (TestCost + FixedCost, F ixedCost, dmax)

end

Figure 5: TheFindCost TSAT cost evaluation function

Here we are considering the move for evente1 given the end-point instantiations

(e−2 , e+
2) ← (1, 5) and(e−3 , e+

3) ← (5, 8). From an examination of the problem, it

trivially follows that no difference in cost can be caused by moving frome−1 ← 2

to e−1 ← 3 or e−1 ← 4, whereas moving toe−1 ← 5 can effect a change as it

alters the end-point relationship frome−1 < e+
2 to e−1 = e+

2 . Therefore, we can

compress the domain ofe−1 by skippingvalues3 and4 and immediately trying

e−1 ← 5. Similarly moving frome+
1 ← 6 to e+

1 ← 7 leaves all end-point relations

unaffected so a further evaluation ofe+
1 ← 7 is redundant.

The domain skipping technique is implemented in the final two lines of thefor

loop of the TSAT functionFindCost (Figure 5). In this function, thedmin param-

eter holds the domain value of eventei currently being tested inFindBestMoves

(Figure 4). TheFindCost line:

dskip ← largest domain value skip allowed forej from dmin by ci,j

17

then checks, for each constraintci,j , to find the next consecutive domain value of

ei greater thandmin that alters the current evaluation ofci,j and stores the value

precedingthis in dskip. The rangedmin . . . dskip therefore holds values for which

the current evaluation ofci,j remains unchanged. The next line:

if dskip < dmax then dmax ← dskip

calculates the smallest value ofdskip for all ci,j and stores this indmax. The

dmin . . . dmax range therefore holds the values for whichall currentci,j evalua-

tions remain unchanged, and which therefore can be safely skipped. Then, the

value ofdmax is returned toFindBestMoves (Figure 4) and used to instantiate

the next domain evaluation atdmax + 1 (thereby skipping the redundant domain

values betweendmin anddmax + 1).

4.4 Constraint Skipping

A central feature of theFindBestMoves function in Figure 4 is that the evaluation

of domain values for an eventei is separated into an outer loop that tests domain

values for the start-point of the event (e−i) and an inner loop that tests the finish-

point (e+
i). This structure allows us to exploit the property that once the current

test domain valued−min for e−i in the outer loop exceeds the finish-pointe+
j of any

eventej that shares a constraintci,j with ei, then it is no longer possible for the

violation cost ofci,j to alter during the subsequent evaluation ofei. Hence, such

past constraints can beskippedin the future evaluation of domain values forei. In

addition, thesumof fixed costs incurred by these skipped constraints becomes a

lower bound on the best cost that can be achieved by any future move forei. From

this it follows that if the fixed cost value exceeds the current solution cost, we can

abandon further evaluation ofei as it cannot improve on the current cost. As an

example, consider the following diagram depicting two eventse1 ande2:

18

e2
¾ -

e1
¾ -

Here the start-pointe−1 of e1 is greater than the end-pointe+
2 of e2 and due to the

order in which the domain values are tested (Figure 4) no further domain value

change fore1 can alter the situation. Additionally, if we assume a violated con-

straint exists betweene1 and e2 (e.g. e1{b}e2), then no further domain value

change fore1 can alter this violation.

Again, due to the division of processing between the start and finish-points

of events, the constraint skipping technique can be extended to skip constraints

involved in finish-point evaluations that could still be affected by future untested

start-point evaluations for the same event. This is because the start-point in the

outer loop (Figure 4) is held constant while all valid finish-points are evaluated in

the inner loop. For example, consider the following diagram:

e2
¾ -

e1
¾ -

In this casee+
1 has passede−2 and, as far ase+

1 is concerned, the constraintc1,2

betweene1 and e2 will no longer evaluate differently. Using the outer loop in

FindBestMoves (Figure 4), we can exploit this situation bypartially evaluating

c1,2, i.e. by only considering point relations involvinge−i in the outer loop and then

completing the evaluation for each domain value ofe+
i in the inner loop. Hence,

we can skip the overhead of re-evaluating anye−i relations ofci,j when processing

e+
i . Further, ifci,j is found to be inconsistent in the outer loop, it must remain

inconsistent in the inner loop and can therefore be skipped entirely.

19

The efficiency of partial constraint evaluation is further enhanced using the

temporal tree constraint representation described in Section 4.2, as the first two

levels of the tree only concern the pointe−i and the last two levels only concerne+
i .

Therefore we can easily divide the tree to reflect the processing between the inner

and outer loops of Figure 4.

As an indication of the performance improvements achieved by our domain

and constraint skipping techniques, we compared the results for the current version

of TSAT, running on the random problem set described in Section 5.2, with our

initial TSAT algorithm reported in [14]. We found an average speed up of×4.5 on

the40 node problems and×8 on the 80 node problems2. We therefore concluded

that the overhead costs of the skipping techniques are more than compensated for

by the reduction in constraint and domain evaluations.

5 Empirical Study

5.1 Problem Generation

Due to the absence of a collection of large IA benchmark problems, earlier work in

the area [8, 15] conducted empirical evaluations of backtracking using randomly

generated IA problem instances. To remain in line with this work, we selected

Nebel’s random instance generator [8] to build a set of satisfiable problems on

which to compare the performance of local search with the existing backtrack-

ing approaches. Of the three models available in Nebel’s generator, we chose the

S(n, d, s) model, as it guarantees the generation of satisfiable instances3. Heren

2Here our measure of performance speed up is the ratio of average moves executed per unit time
for each algorithm.

3We required satisfiable instances as a local search will not terminate on an unsatisfiable instance
due to the incomplete nature of the algorithm.

20

determines the number of nodes (i.e. intervals) in the problem andd determines

the degree or the proportion of all possible arcs (i.e. interval formulas) that are

constrained. For example, if degree= 25% then, on average, a randomly selected

25% of the possiblen − 1 arcs for each node will be constrained, where a con-

strained arc is one that is labelled withless thanthe full 13 IA basic relations.

Thens sets the average label size for each arc, such that ifs = a, then an aver-

age ofa basic relations will be randomly selected for eachconstrainedarc, where

domain(a) = {1 . . . 12}. In a local search the unconstrained arcs remain unla-

belled whereas for backtracking+ path-consistency unconstrained arcs are labelled

with all 13 basic relations. This full labelling is needed because path-consistency

may later infer a reduced set of relations on an unconstrained arc, thereby making

it constrained.

To ensure a problem is satisfiable theS(n, d, s) model generates a random

problemP1 and a randomI-interpretation for that problem. TheI-interpretation

is then used to generate a second problemP2 with a unique labelling for each arc,

such that theI-interpretation is satisfied. ProblemsP1 andP2 are then combined

so that each label inP2 is added to the corresponding arc inP1 unless that label

already exists inP1. In this wayP1 becomes satisfiable but loses the property of

being a pure random problem.

5.2 Initial Tests

We initially set out to investigate the feasibility of the local search approach by

running TSAT on problems which a standard backtracking and path-consistency

approach has difficulty. Using theS(n, d, s) model, we started generating two sets

of random, consistent problemsS(40, 75, 9.5) and S(80, 75, 9.5). We then ran

each problem on Nebel’s backtracking-based problem solver (with all heuristics

21

CPU Time Number of Moves

nodes % solved mean median std dev mean median std dev

40 100.0 0.206 0.188 0.096 48.64 46 12.70
80 100.0 4.809 4.343 2.021 215.90 200 66.38

Table 2: Average TSAT results for 1000 runs on each problem set

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

%
 o

f I
ns

ta
nc

es
 S

ol
ve

d

Time (secs)

Figure 6: TSAT plot for 40 nodes

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

%
 o

f I
ns

ta
nc

es
 S

ol
ve

d

Time (secs)

Figure 7: TSAT plot for 80 nodes

turned off) [8] until 100 problems were found in each set that backtracking had

failed to solve (the 40 node problems were timed out after 300 seconds and the 80

node after 600 seconds). We then solved each of these problems 10 times with the

TSAT algorithm described in Figures 1, 4 and 5 (all experiments were conducted on

a Intel Pentium Celeron 450MHz machine with 160Mb of RAM running FreeBSD

4.2).

The TSAT feasibility results are shown in Table 2 and in the graphs of Figures 6

and 7 which plot the proportion of problems solved against the CPU time for each

run. The 40 node problem results indicate that TSAT finds these instances rela-

tively easy, with all runs being solved within 1.27 seconds and a median CPU time

of 0.188 seconds. This is in contrast to Nebel’s algorithm which failed to solve

any of these problems after 300 seconds. As would be expected, the larger 80 node

22

problems proved harder for TSAT, but all runs were still solved within 28.38 sec-

onds with a median run-time of 4.34 seconds. These results show that TSAT is up

to two orders of magnitude faster than standard backtracking+ path-consistency,

at least on this set of problems which backtracking already finds difficult.

5.3 Comparison with Backtacking

As the initial TSAT results were promising, we decided to obtain a clearer picture

of the relative performance of TSAT and Nebel’s backtracking algorithm by devel-

oping a more extensive test set of80 node problems. In these we varied the label

size from1 to 12 (in steps of0.5) across four degrees of constraint connectivity

(25%, 50%, 75%, and100%). By randomly generating100 problems at each de-

gree/label size combination we obtained a set of23 × 4 × 100 = 9200 problems.

We then ran two versions of Nebel’s algorithm on each problem, one (standard

backtracking) with all special heuristics turned off, and one (heuristic backtrack-

ing) using a combination of the heuristics that proved successful in Nebel’s earlier

empirical study [8]4. As before each run was timed out at600 seconds and TSAT

was allowed10 runs on each problem. The results for these runs are shown in

Tables 3, 4, 5, and 6 where the backtracking results average the100 problems gen-

erated at each degree/label size category and the TSAT results average10 runs on

each of the100 problems in each category.

5.4 Results

The comparison between backtracking and local search on the80 node problem

set does not yield a simple yes/no answer as to which algorithm is better. How-

4Specifically, we used theORD-Horn subclass for theSplit set, with thestatic constraint
evaluation heuristic, the weightedqueuescheme and theglobal heuristic criteron to evaluate
constrainedness.

23

Standard Backtrack Heuristic Backtrack TSAT Local Search

label % mean median % mean median % mean median
size fail time time fail time time fail time time

1 0 0.13 0.13 0 0.08 0.08 1 0.51 0.39
1.5 0 0.15 0.15 0 0.08 0.09 1 0.52 0.40
2 0 0.17 0.17 0 0.09 0.09 0 0.48 0.41
2.5 0 0.20 0.20 0 0.10 0.10 0 0.51 0.45
3 0 0.23 0.23 0 0.11 0.12 0 0.52 0.46
3.5 1 0.27 0.27 1 0.13 0.13 0 0.58 0.51
4 0 0.31 0.31 0 0.15 0.15 0 0.61 0.55
4.5 4 0.37 0.37 0 0.50 0.18 0 0.58 0.52
5 8 0.44 0.43 0 2.74 0.21 0 0.60 0.53
5.5 19 2.47 0.46 3 2.66 0.23 0 0.57 0.51
6 29 14.27 0.48 4 11.39 0.30 0 0.51 0.45
6.5 26 33.00 0.48 2 12.16 0.50 0 0.47 0.42
7 26 9.44 0.49 3 12.86 0.48 0 0.41 0.38
7.5 11 0.62 0.48 3 24.01 0.93 0 0.37 0.34
8 5 6.80 0.49 2 16.21 0.47 0 0.32 0.30
8.5 3 1.12 0.51 2 14.44 0.30 0 0.29 0.28
9 1 0.52 0.52 2 1.80 0.30 0 0.24 0.23
9.5 0 0.54 0.54 1 1.19 0.31 0 0.21 0.20
10 0 0.56 0.56 1 0.32 0.32 0 0.17 0.17
10.5 0 0.57 0.57 0 0.32 0.32 0 0.14 0.13
11 0 0.57 0.57 0 0.30 0.30 0 0.11 0.10
11.5 0 0.53 0.53 0 0.24 0.23 0 0.07 0.07
12 0 0.46 0.46 0 0.13 0.13 0 0.04 0.04

Table 3: Results for 80 node problems at 25% degree size

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
T

im
e

(s
ec

s)

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 8: Time plots at 25% degree size

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f I
ns

ta
nc

es
 U

ns
ol

ve
d

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 9: Fail plots at 25% degree size

24

Standard Backtrack Heuristic Backtrack TSAT Local Search

label % mean median % mean median % mean median
size fail time time fail time time fail time time

1 0 0.10 0.09 0 0.07 0.07 1 6.35 3.79
1.5 0 0.10 0.10 0 0.08 0.08 0 5.28 3.17
2 0 0.11 0.11 0 0.08 0.08 1 4.55 2.81
2.5 0 0.12 0.13 0 0.08 0.08 1 4.04 2.53
3 0 0.14 0.13 0 0.08 0.09 0 3.39 2.25
3.5 0 0.15 0.16 0 0.09 0.09 1 3.38 2.25
4 0 0.17 0.17 0 0.09 0.09 0 3.15 2.20
4.5 0 0.20 0.20 0 0.10 0.10 0 2.83 2.14
5 0 0.23 0.23 0 0.24 0.11 0 2.86 2.11
5.5 0 0.28 0.27 0 0.13 0.13 0 2.63 2.18
6 0 0.35 0.34 0 0.15 0.15 0 2.61 2.26
6.5 2 0.59 0.44 1 1.23 0.19 0 2.90 2.51
7 17 21.56 0.62 3 11.00 0.49 0 2.64 2.34
7.5 71 52.14 11.27 15 35.67 4.41 0 2.59 2.29
8 90 49.27 39.55 27 69.78 16.18 0 2.49 2.23
8.5 88 57.37 1.14 49 108.12 36.32 0 2.16 1.95
9 85 29.31 0.98 52 182.30 168.09 0 1.92 1.75
9.5 75 37.77 0.69 57 121.16 52.64 0 1.53 1.42
10 63 8.40 0.62 49 104.19 33.91 0 1.29 1.23
10.5 22 1.34 0.61 19 37.72 2.33 0 0.97 0.94
11 0 0.63 0.63 3 12.50 0.38 0 0.69 0.66
11.5 0 0.67 0.66 2 0.38 0.38 0 0.44 0.43
12 0 0.66 0.66 0 0.78 0.32 0 0.21 0.20

Table 4: Results for 80 node problems at 50% degree size

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
T

im
e

(s
ec

s)

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 10: Time plots at 50% degree
size

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f I
ns

ta
nc

es
 U

ns
ol

ve
d

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 11: Fail plots at 50% degree size

25

Standard Backtrack Heuristic Backtrack TSAT Local Search

label % mean median % mean median % mean median
size fail time time fail time time fail time time

1 0 0.09 0.09 0 0.08 0.08 5 24.79 15.57
1.5 0 0.09 0.09 0 0.08 0.08 2 22.67 13.86
2 0 0.09 0.09 0 0.08 0.08 1 22.34 14.52
2.5 0 0.10 0.10 0 0.08 0.08 1 17.73 11.02
3 0 0.11 0.11 0 0.08 0.09 1 16.44 10.03
3.5 0 0.11 0.12 0 0.09 0.09 0 17.38 10.24
4 0 0.13 0.13 0 0.09 0.09 1 14.74 8.90
4.5 0 0.14 0.14 0 0.09 0.09 0 13.23 8.40
5 0 0.16 0.16 0 0.09 0.09 0 11.64 6.56
5.5 0 0.18 0.18 0 0.10 0.10 0 9.91 6.44
6 0 0.21 0.21 0 0.11 0.11 0 8.67 5.33
6.5 0 0.26 0.26 0 0.12 0.12 0 7.92 5.24
7 1 0.33 0.33 0 0.19 0.14 0 6.81 5.10
7.5 3 0.45 0.43 0 0.39 0.19 0 6.04 5.09
8 11 6.0 0.65 0 17.86 0.60 0 6.23 5.23
8.5 69 111.84 57.13 12 46.62 10.53 0 5.91 5.13
9 98 1.14 1.49 61 184.94 122.04 0 5.37 4.77
9.5 97 67.32 23.49 80 265.25 236.04 0 4.80 4.30
10 99 23.91 23.91 86 149.08 162.91 0 3.77 3.46
10.5 86 44.09 0.79 87 225.61 242.43 0 3.08 2.85
11 56 10.09 0.67 61 99.92 61.14 0 2.11 2.01
11.5 10 2.60 0.67 7 36.80 3.13 0 1.30 1.27
12 0 0.71 0.71 3 1.21 0.39 0 0.61 0.59

Table 5: Results for 80 node problems at 75% degree size

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
T

im
e

(s
ec

s)

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 12: Time plots at 75% degree
size

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f I
ns

ta
nc

es
 U

ns
ol

ve
d

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 13: Fail plots at 75% degree size

26

Standard Backtrack Heuristic Backtrack TSAT Local Search

label % mean median % mean median % mean median
size fail time time fail time time fail time time

1 0 0.08 0.08 0 0.08 0.08 14 47.99 35.38
1.5 0 0.08 0.09 0 0.08 0.08 8 45.17 33.63
2 0 0.09 0.09 0 0.08 0.08 6 41.00 30.10
2.5 0 0.09 0.09 0 0.08 0.09 6 44.07 31.11
3 0 0.09 0.09 0 0.08 0.09 5 42.20 30.81
3.5 0 0.10 0.09 0 0.09 0.09 6 40.05 29.37
4 0 0.10 0.10 0 0.09 0.09 2 36.80 25.26
4.5 0 0.11 0.12 0 0.09 0.09 3 36.04 24.27
5 0 0.12 0.13 0 0.09 0.09 2 32.06 20.94
5.5 0 0.14 0.14 0 0.09 0.09 2 29.33 18.45
6 0 0.16 0.16 0 0.10 0.10 1 25.27 16.15
6.5 0 0.19 0.19 0 0.10 0.10 1 21.36 11.82
7 0 0.23 0.23 0 0.12 0.12 1 17.61 10.77
7.5 0 0.30 0.30 0 0.13 0.13 0 13.08 8.62
8 0 0.40 0.40 0 0.22 0.17 0 11.17 8.69
8.5 7 1.26 0.55 0 0.80 0.38 0 11.08 8.73
9 26 87.97 22.47 5 48.67 8.18 0 9.92 8.60
9.5 95 140.42 140.71 55 114.33 71.76 0 9.10 8.29
10 100 600.00 600.00 94 303.18 279.67 0 8.39 7.47
10.5 99 1.41 1.41 96 219.24 249.64 0 6.46 5.94
11 93 1.56 0.71 88 144.59 86.09 0 4.55 4.28
11.5 62 5.91 0.70 74 121.47 46.21 0 2.84 2.75
12 0 0.71 0.70 8 12.42 0.41 0 1.30 1.26

Table 6: Results for node problems at 100% degree size

0

50

100

150

200

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
T

im
e

(s
ec

s)

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 14: Time plots at 100% degree
size

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f I
ns

ta
nc

es
 U

ns
ol

ve
d

Label Size

Standard Backtrack
Heuristic Backtrack
TSAT Local Search

Figure 15: Fail plots at 100% degree
size

27

ever, various patterns do emerge from the data, which are detailed in the following

points:

Firstly, for all degree valuesd, both the heuristic and standard backtracking tech-

niques proved better than TSAT for smaller label sizes. Further, asd increases, the

number of label size values for which backtracking is better also increases, from a

range of{1 . . . 5} for d = 25 (Table 3) to{1 . . . 8.5} for d = 100 (Table 6).

Secondly, asd increases, the label size at which the backtracking techniques

have their worst performance also increases. For example, the worst performance

of heuristic backtracking moves from label sizes = 7.5 at d = 25 to s = 10.5 at

d = 100. Also, asd increases, the execution times and failure rates for backtrack-

ing on the larger label sizes grow significantly, whereas there is little change for

the smaller label size problems. For example, the worst performance of heuristic

backtracking ford = 25 is ats = 7.5 with a 3% failure rate and a mean time of

24.01 seconds, whereas ford = 100 the worst failure rate has grown to96% with a

mean time of249.64 seconds (ats = 10.5). Conversely, the best performance for

heuristic backtracking actually decreases slightly asd increases from a0% failure

rate and mean time of0.13 seconds ford = 25, s = 1 to a 0% failure rate and

mean time of0.08 seconds ford = 100, s = 1.

Thirdly, TSAT execution times and failure rates show a more consistent rela-

tionship to degree and label size than the backtracking techniques, with times and

failure rates generallyincreasingasd increases anddecreasingass increases. This

is in marked contrast to backtracking, and results in the situation that the problems

backtracking finds easier (smaller label size), TSAT finds harder and the problems

TSAT finds easier (larger label size) backtracking finds harder. Additionally, the

problems TSAT finds easier, it finds much easier than backtracking does, whereas

the problems backtracking finds easier are only somewhat more difficult for TSAT.

This is illustrated by the fact that TSAT can reach any of our9200 problems in a

28

worst case average time of35 seconds, whereas heuristic backtracking was unable

to solve1118 or 12% of the problem set within600 seconds.

Finally, the results were also able to confirm that the backtracking heuristics

selected for our experiments were able to improve on the performance of standard

backtracking, except for the largest label sizes (s = 11.5 ands = 12).

5.5 Analysis

In analysing the results, our first observation is that a portfolio algorithm using

TSAT and heuristic backtracking appears to be the best solution on the range of

problems we are considering. Such portfolio algorithms [5] have already been

considered in the CSP literature, and operate by running two or more algorithms

simultaneously on the same problem, and terminating all algorithms when one

finds a solution (or the whole system is timed out). This approach would be espe-

cially useful on problems for which the question of consistency is undecided, as

a local search will never terminate on an inconsistent problem5. A portfolio al-

gorithm is also justified by the significant difference in run-times exhibited by the

two algorithms, as the potential benefit of running a TSAT in the hard region for

backtracking would then outweigh the redundant cost of using TSAT on the easier

problems. A refined portfolio technique may further consider eliminating TSAT

for smaller label sizes.

However, our results also raise questions about the hardness of the underlying

problem distribution and the reasons for the wide divergence of performance. From

a CSP perspective, we would expect problems to be hardest when the label size is

small, as this is where the number of expected solutions would be at a minimum

5In the case that no algorithm can successfully terminate on a problem, we would rely on a time
out value to terminate all searches, as per Figure 1).

29

(i.e. a problem with exactly one label on each arc has either zero or one possi-

ble consistentO-instantiations). Hence TSAT performs poorly on problems with

smaller label sizes because there are fewer expected solutions and the reduction in

label size does not reduce the size of the search space (i.e. label size does not affect

the number of constraints or the size of any domain).

Conversely, as backtracking+ path-consistency techniques explicitly work by

testing the consistency of individual relations, a problem with fewer relations is

actually a smaller problem, and the size of the search tree is reduced. Consequently

we would expect problem difficulty to grow as label size increases due to the effect

of increasing the size of the search tree. However, it can be seen from the results

that an opposite effect predominates once the label size exceeds a certain critical

point for each degree size, and problem instances start becoming easier. From this

we conjecture that the existence of more possible solutions at higher label sizes

finally counteracts effects from the increasing size of the search tree.

Finally, the question of a phase-transition in the underlying problem distribu-

tion remains unanswered. Many NP-complete problem domains exhibit phase-

transition behaviour, with an order parameter that is known to have a critical value

where hard to solve problems exist [3]. Examples are the 4.3 clause to variable

ratio in the 3-SAT problem domain, and the known relationship between the num-

ber of variables, the domain size and the density and tightness of constraints in

the binary CSP domain. Nebel conjectured a similar phase-transition in randomly

generated temporal reasoning problems, existing between the average degreed and

the average label sizes [8]. His empirical tests indicated, for a fixeds = 6.5, that

most hard problems (for backtracking) exist aroundd = 9.5. Our local search re-

sults on the transformed OSAT problems show no such transition, with problems

generally becoming more difficult as label size becomes smaller. However, this

may partly or fully be explained by the fact we did not use a true random problem

30

generation model (i.e. we generated onlysatisfiableproblems as explained in Sec-

tion 5.1). Hence, our method of eliminating over-constrained problems may also

have eliminated phase-transition behaviour. In our future work we intend to revisit

this question by running a local search on a larger range of fully random OSAT

problems.

6 Conclusion

In conclusion, the paper has demonstrated that an end-point ordering local search

approach to solving interval algebra problems is both feasible and practical. The

TSAT algorithm is a first indication that local search can outperform existing back-

tracking + path-consistency approaches on a range of difficult problems. Our main

conclusion is that a portfolio algorithm, simultaneously applying local search and

backtracking to the same underlying problem, is the best approach for the kind of

random problems we have been considering.

Our work opens up several avenues for further research. Firstly, we have not

explored alternative local search heuristics, such as tabu search or random walk,

and a fuller evaluation of these techniques seems called for. Also, we have only

considered a fairly narrow range of random problems for which consistency is

guaranteed. A larger empirical study looking at both pure random problems and

problems exhibiting real-world structure would allow us to draw more general con-

clusions about the applicability of our end-point ordering approach. Finally, local

search appears especially promising for over-constrained temporal reasoning prob-

lems, where standard consistency-checking techniques become ineffective [2, 4],

but local search can be applied relatively easily.

31

References

[1] J. Allen. Maintaining knowledge about temporal intervals.Communications

of the ACM, 26(11):832–843, 1983.

[2] M. Beaumont, A. Sattar, M. Maher, and J. Thornton. Solving over-

constrained temporal reasoning problems. InProceedings of the 14th Aus-

tralian Joint Conference on Artificial Intelligence (AI 01), pages 37–49, 2001.

[3] B. Cheesman, P. Kanefski and W. Taylor. Where thereally hard problems

are. InProceedings of the Twelfth International Joint Conference on Artificial

Intelligence (IJCAI-91), pages 331–337, 1991.

[4] E. Freuder and R. Wallace. Partial constraint satisfaction.Artificial Intelli-

gence, 58(1):21–70, 1992.

[5] I. Gent, H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure

and randomness. InProceedings of the Sixteenth National Conference on

Artificial Intelligence (AAAI-99), 1999.

[6] A. Mackworth. Constraint satisfaction. Technical report, TR-85-15, Univer-

sity of British Columbia, Vancouver, Canada, 1985.

[7] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling problems.

Artificial Intelligence, 58:161–205, 1992.

[8] B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating

the efficiency of using the ORD-Horn class.Constraints, 1:175–190, 1997.

32

[9] B. Nebel and H. B̈urckert. Reasoning about temporal relations: A maximal

tractable subclass of Allen’s interval algebra.Journal of the ACM, 42(1):43–

66, 1995.

[10] E. Schwalb and L. Vila. Temporal constraints: A survey.Constraints, 3:129–

149, 1998.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard

satisfiability problems. InProceedings of the Tenth National Conference on

Artificial Intelligence (AAAI-92), pages 440–446, 1992.

[12] Y. Shang and B. Wah. A discrete Lagrangian-based global search method for

solving satisfiability problems.J. Global Optimization, 12:61–99, 1998.

[13] J. Thornton. Constraint Weighting Local Search for Constraint Satisfac-

tion. PhD thesis, School of Information Technology, Griffith University Gold

Coast, Australia, January 2000.

[14] J. Thornton, M. Beaumont, A. Sattar, and M. Maher. Applying local search

to temporal reasoning. InProceedings of the Ninth International Symposium

on Temporal Representation and Reasoning (TIME-02), pages 94–99, 2002.

[15] P. van Beek and D.W. Manchak. The design and an experimental analysis of

algorithms for temporal reasoning.Journal of AI Research, 4:1–18, 1996.

[16] M. Vilain and H. Kautz. Constraint propagation algorithms for temporal rea-

soning. InProceedings of the Fifth National Conference on Artificial Intelli-

gence (AAAI-86), pages 377–382, 1986.

33

