
Solving Over-constrained Temporal Reasoning
Problems using Local Search ⋆

M. Beaumont1, J. Thornton1, A. Sattar1 and Michael Maher2

1 School of Information Technology,
Griffith University Gold Coast,
Southport, Qld, Australia 4215

{m.beaumont, j.thornton, a.sattar}@griffith.edu.au
2 Department of Computer Science,

Loyola University,
Chicago, IL 60626, USA

mjm@cs.luc.edu

Abstract. Temporal reasoning is an important task in many areas of
computer science including planning, scheduling, temporal databases and
instruction optimisation for compilers. Given a knowledge-base consist-
ing of temporal relations, the main reasoning problem is to determine
whether the knowledge-base is satisfiable, i.e., is there a scenario which
is consistent with the information provided. However, many real world
problems are over-constrained (i.e. unsatisfiable). To date, there has
been little research aimed at solving over-constrained temporal reasoning
problems. Recently, we developed standard backtracking algorithms to
compute partial scenarios, in the spirit of Freuder and Wallace’s notion
of partial satisfaction. While these algorithms were capable of obtaining
optimal partial solutions, they were viable only for small problem sizes.

In this paper, we apply local search methods to overcome the deficiencies
of the standard approach to solving over-constrained temporal reasoning
problems. Inspired by our recent success in efficiently handling reason-
ably large satisfiable temporal reasoning problems using local search, we
have developed two new local search algorithms using a random restart
strategy and a tabu search. Further, we extend our previous constraint
weighting algorithm to handle over-constrained problems. An empirical
study of these new algorithms was performed using randomly generated
under- and over-constrained temporal reasoning problems. We conclude
that 1) local search significantly outperforms standard backtracking ap-
proaches on over-constrained temporal reasoning problems; and 2) the
random restart strategy and tabu search have a superior performance
to constraint weighting for the over-constrained problems. We also con-
jecture that the poorer performance of constraint weighting is due to
distortions of non-zero global minima caused by the weighting process.

⋆ The authors gratefully acknowledge the financial support of the Australian Research
Council, grant A00000118, in the conduct of this research



1 Introduction

Temporal reasoning plays an important role in many areas of computer science
including planning [2], scheduling [7], natural language processing [10], tempo-
ral databases and instruction optimisation for compilers. Temporal information
can generally be broken up into two categories, quantitative information and
qualitative information. Quantitative information is specific numerical informa-
tion about an event, whereas qualitative information is information about the
relationship between events. This study is primarily concerned with qualitative
temporal information.

Allen’s interval algebra [1] models qualitative information about temporal
problems by representing the relation between two events as a disjunction of up
to thirteen possible atomic relations. The reasoning problem is then the task of
finding a consistent labelling of every relation in the problem with one atomic
relation from the disjunctive set of relations available. Traditionally interval
algebra (IA) problems have been represented as binary temporal constraint sat-
isfaction problems (TCSP), expressed as constraint networks. where the arcs
between nodes represent relations and the nodes represent events.

An over-constrained TCSP is a TCSP that has no solution satisfying all the
constraints; to “solve” such problems we look for a labelling that is consistent
with a maximal number of constraints [4]. In [3], we developed a traditional
backtracking approach to solve over-constrained IA problems. While our algo-
rithm was capable of obtaining optimal solutions, it was only viable on small
problem sizes. Even with the use of path consistency, the search space is not
reduced sufficiently to find a solution in a practical time frame. To overcome
this problem we turned to the local search paradigm.

Local search techniques, while not complete, have been shown to be effective
on problems that are often too large for traditional backtracking to solve [8, 9,
11, 13]. Unfortunately, the standard approach of representing an IA problem as
a TCSP proved impractical for a local search approach, as to find an accurate
cost of a potential solution involves a significant search in its own right [3]. By
remodelling the problem as a standard CSP using the end point ordering model
[13] we were able to obtain the cost of potential solutions accurately without the
need of a separate search, thus allowing us to apply a local search algorithm in
a straight forward and efficient manner.

In this paper, we apply local search methods to overcome the deficiencies
of the standard approach to solving over-constrained temporal reasoning prob-
lems. Inspired by our recent success [13] in efficiently handling a reasonably large
(under-constrained) temporal reasoning problems using constraint weighting lo-
cal search, we develop two new algorithms using a random restart strategy and
a tabu search. Further, we extend our previous constraint weighting algorithm
to handle over-constrained problems and present an empirical evaluation of all
three algorithms.

The rest of the paper is organised as follows: Section 2 introduces Interval
Algebra (IA). Section 3 describes how local search can be applied to temporal
reasoning problems by reformulating them using end-point ordering. Section 4



describes local search algorithms for handling over-constrained temporal rea-
soning problems. Section 5 presents results and analysis of the empirical study.
Finally, we conclude the paper with a few remarks on future work.

2 Interval Algebra

Allen’s Interval Algebra (IA) provides a rich formalism for expressing qualitative
relations between interval events [1]. In IA, a time interval X is an ordered
pair of real-valued time points or end-points (X−,X+) such that X− < X+.
Allen defined a set B of 13 basic interval relations such that any pair of time
intervals satisfy exactly one basic relation. These relations capture the qualitative
aspect of event pairs being before, meeting, overlapping, starting, during, equal
or finishing each other. Indefinite information is expressed in IA as a disjunction
of basic relations, represented as an interval formula of the form: X{B1..Bn}Y
where {B1..Bn} ⊆ B. For example, the interval formula X{m, o}Y represents
the disjunction (X meets Y) or (X overlaps Y).
An IA problem has a solution if there is an assignment of an interval to each
interval variable such that all interval relations are satisfied. An I-interpretation
[6] maps each interval variable to an interval. It satisfies a basic relation X{B}Y
iff the end-points of the intervals assigned to X and Y satisfy the corresponding
end-point constraints (see Table ??). We say that an IA problem Θ is I-satisfiable
iff there exists an I-interpretation such that at least one basic relation in each
interval formula is satisfied. ISAT is the problem of deciding whether Θ is I-
satisfiable and is one of the basic tasks of temporal reasoning [6]. This problem
is known to be NP-complete [14] in general.

3 End Point Ordering

End-point ordering [13] translates the ISAT problem into a standard CSP,
taking the end-point relations of interval formulas to be constraints and the
time interval end-points to be variables. The main innovation of our approach
is that we define the domain value of each time interval end-point to be the
integer valued position or rank of that end-point within the total ordering of all
end-points. For example, consider the following solution S to a hypothetical IA
problem:

S = X{b}Y ∧ Y {m}Z ∧ Z{bi}X

Given the solution is consistent, a set of possible I-interpretations must exist
that satisfy S. One member of this set is given by Ia = (X− = 12, X+ = 15,
Y − = 27, Y + = 30, Z− = 30, Z+ = 45). For each I-interpretation, In, there
must also exist a unique ordering of the time-interval end-points that corresponds
to In. For example, the ordering of Ia is given by (X− < X+ < Y − < Y + =
Z− < Z+) and is shown in the following diagram:

X
✛ ✲

Y
✛ ✲

Z
✛ ✲



As any I-interpretation can be translated into a unique end-point ordering,
it follows that the search space of all possible end-point orderings will necessarily
contain all possible solutions for a particular problem. In addition, since it is the
end-point ordering that is key – and not the values assigned to each endpoint,
we can choose convenient values for the end-points. For example, we can assign
an integer to each of the end-points in a way that respects the ordering (e.g.
X− = 1, X+ = 2, Y − = 3, Y + = 4, Z− = 4, Z+ = 5 for the above ordering).

Ideally, we would use the smallest range of integers necessary to represent the
end-point orderings, but this is not practical as it would first involve finding all
feasible solutions. However, the total number of end-points is an upper bound
on the number of integers necessary. Thus we use the integers 1, 2, . . . , 2m to
represent the end-point orderings, where m is the number of interval variables
in the IA problem.

4 Local search for over-constrained problems

4.1 Constraint Weighting

The original constraint weighting algorithm [13] works with the certainty that a
solution to a problem exists and therefore only tracks the weighted cost (since
when this cost is zero the unweighted cost will also be zero). As there are no
zero cost solutions in an over-constrained problem, the algorithm will fail to
recognise that a new optimum cost solution has been found, and at timeout will
simply report failure. To solve over-constrained problems we extend the algo-
rithm by tracking the unweighted cost at every move point in the cost function,
shown by the FindBestMoves function in Figure 1, where the global variable
BestRealCost holds the current optimum cost. The algorithm will still navigate
the search space with the weighting heuristic but the best solution found so far
in the search will only be recorded and replaced based on the unweighted cost.

4.2 TABU Search

The TABU search is a local search technique that relies on keeping a memory
of the recent moves [5]. When a new move is selected, it is compared to the
moves currently kept in memory and, if a match is found, this move is rejected
as tabu. This prevents the algorithm from cycling back and forth between a few
common moves and effectively getting stuck. If the move selected is not tabu
and is different from the current value it is replacing, then the current value is
made tabu and is replaced by the new move. The length of time that a value
remains tabu for plays a vital role, if it is to large, then it becomes possible that
all available moves are tabu and, if it is too small, it is possible for the algorithm
to fall into a cycle and get stuck.

To improve the performance of our tabu search algorithm we allow it to
make aspiration moves [5]. An aspiration occurs when there exists one or more
tabu moves that could produce a better cost than the current best cost. In this



function FindBestMoves(Constraints, Cost, e−
i , e+

i )
Moves← ∅, OuterCost← 0
OuterConstraints← all ci ∈ Constraints involving (e−

i , e+
i )

d−
min ← min domain value of e−

i
while d−

min ≤ max domain value of e−
i do

(TestCost, OuterCost, d−
max)← FindCost(e−

i , d−
min, OuterConstraints, OuterCost)

if OuterCost > Cost then d−
max ← max domain value of e−

i
else if TestCost <= Cost then

InnerCost← OuterCost, InnerConstraints← OuterConstraints
d+

min ← d−
min + 1

while d+
min ≤ max domain value of e+

i do
(TestCost, InnerCost, d+

max, RealCost)
← FindCost(e+

i , d+
min, InnerConstraints, InnerCost)

if RealCost < BestRealCost then
BestRealCost← RealCost

if TestCost < Cost then
Cost← TestCost
Moves← ∅

else if TestCost = Cost then Moves←Moves ⊕ ((d−
min . . . d−

max), (d+
min . . . d+

max))
if InnerCost > Cost then d+

max ← max domain value of e+
i + 1

d+
min ← d+

max + 1
end while

end if
d−

min ← d−
max + 1

end while
return (Moves, Cost)

end

Fig. 1. The modified FindBestMoves TSAT Move Selection Function

instance the algorithm selects the first such move and instantiates it, ignoring
that it is currently tabu. However, if non-tabu best cost improving moves exist,
these will be preferred and an aspiration will not occur.

4.3 Random-Restart Search

The Random-Restart technique is a simplistic strategy for escaping a local min-
ima. In the event the algorithm detects a local minimum, all the variables in
the problem are randomly re-instantiated, and the search is restarted (the algo-
rithm is deemed to be in a minimum when for a pre-defined number of loops the
value for Cost has not changed). The Random-Restart algorithm is presented
in Figure 4, using the same FindBestMoves presented in [13]. This is virtually
the same function as FindBestMoves in Figure 1, except the code to calculate
BestRealCost is removed (as Random-Restart does not use a weighted cost
function).

5 Empirical Study

In our earlier work [3], we developed two backtracking based algorithms for han-
dling over-constrained temporal reasoning problems. These algorithms guaran-
teed to find the optimal partial solution of the problem. However, our empirical



function FindMoves(Constraints, Cost, e−
i , e+

i )
Moves← ∅, OuterCost← 0
OuterConstraints← all ci ∈ Constraints involving (e−

i , e+
i )

d−
min ← min domain value of e−

i
while d−

min ≤ max domain value of e−
i do

(TestCost, OuterCost, d−
max)← FindCost(e−

i , d−
min, OuterConstraints, OuterCost)

InnerCost← OuterCost, InnerConstraints← OuterConstraints
d+

min ← d−
min + 1

while d+
min ≤ max domain value of e+

i do
(TestCost, InnerCost, d+

max)← FindCost(e+
i , d+

min, InnerConstraints, InnerCost)
Moves←Moves ⊕ ((d−

min . . . d−
max), (d+

min . . . d+
max), TestCost)

d+
min ← d+

max + 1
d−

min ← d−
max + 1

end while
Sort the Moves into ascending order of TestCost
return (Moves)

end

Fig. 2. The Move Function for TABU

study was based on relatively small sized problems (we used problems with 8-10
nodes in the network with varying degrees).

In [13], we studied the application of local search to under-constrained (solv-
able) temporal reasoning problems. The main purpose of this study was to in-
vestigate practical value of local search techniques in this domain, which was
largely unexplored. Our results indicated that a portfolio algorithm using TSAT
(local search) and heuristic backtracking would be the best solution on the range
of the 80 node problems we considered.

5.1 Problem Generation

For this study, we used Nebel’s problem generator [6] to randomly generate
problems using the A(n, d, s) model, where n is the number of nodes or events,
d is the degree size (defining the percentage of all possible arcs that are actually
constrained) and s is the label size (defining the number of the thirteen possible
atomic relations that are actually assigned to a constrained arc). As the results
show, by varying the values of d and s it is possible to generate random problems
that are either nearly all over-constrained or nearly all under-constrained.

5.2 Results

The purpose of our empirical study is to evaluate comparative performance of
the extended weighting, TABU search and Random-Restart algorithms. We used
a randomly generated test set using n = 40, d = 25%, 50%, 75%, 100% and
s = 2.5, 9.5, giving a total of 8 problem sets. To further evaluate the three
algorithms, we re-tested the hard solvable problem set for 80 nodes used in our
initial study [13]. Each problem set, except the hard set, contains 100 problems,
and each problem was solved 10 times with a timeout of 15 seconds. The hard
solvable problem set contains 318 problems which were also solved 10 times



procedure TABU(Events, Constraints)
Randomly instantiate every event (e−

i , e+
i ) ∈ Events

Cost← number of unsatisfied constraints ∈ Constraints
TABULIST ← ∅
while Cost > 0 do

for each (e−
i , e+

i ) ∈ Events do
Add the range for (e−

i , e+
i ) to TABULIST

(Moves)← FindMoves(Constraints, Cost, e−
i , e+

i )
if the cost of the first Move ∈Moves < Cost then remove every Move ∈Moves ≥ Cost
Aspiration← first Move ∈Moves
while Moves ̸= ∅ do

Remove the first Move ∈Moves
if (randomly selected (d−

i , d+
i ) ∈Move) ̸∈ TABULIST then

Instantiate (e−
i , e+

i ) with (d−
i , d+

i )
Moves← ∅

if no Move ∈Moves was instantiated then
Instantiate (e−, e+) with randomly selected (d−

i , d+
i ) ∈ Aspiration

if cost of selected Move < Cost then Cost = cost of Move
end while

end

Fig. 3. The TABU Local Search Procedure for Interval Algebra

each with a timeout of 30 seconds. In the results of Table 1, Cost refers to
the least number of violated constraints found during a search, and Time and
Number of Moves refer to the elapsed time and the number of changes of variable
instantiation that had occurred at the point when the least cost solution was
found. All experiments were performed on a Intel Celeron 450MHz machine with
160Mb of RAM running FreeBSD 4.2. For Tabu search we set the list length of
the TABULIST to be 50, for Random-Restart RESTART was set at 250 and
for Weighting MAX FLATS was set to 4 and MAX WEIGHTS was set to
10 (refer to [13] for a complete explanation of these variables).

5.3 Analysis

The experimental results indicate that the problem sets fall into two groups: one
where nearly all problems had solutions (n = 40 d = 25 s = 9.5), (n = 40 d = 50
s = 9.5) and the original hard set (n = 80 d = 75 s = 9.5), and the remaining
sets where nearly all problems were over-constrained. Looking at the results in
Table 1, we can see that random re-start TABU search performs better than
Weighting in terms of cost on all over-constrained problem sets. For instance,
comparing the mean and min cost columns, Weighting is between 2% to 3%
worse for the mean cost and 4% to 20% worse for the min cost (min cost being
the minimum cost value found in all runs). In order to more clearly compare the
relative performance of the algorithms, we plotted cost descent graphs for each
algorithm against time. These graphs record the average best cost achieved at
each time point for each problem set. Figure 5 shows a typical over-constrained
descent curve (similar shapes were found for all other over-constrained problem
sets). Here we see all three algorithms starting in a similar descent, but with
Weighting starting to descend at a slower rate well before both TABU and



procedure Random-Restart(Events, Constraints)
Randomly instantiate every event (e−

i , e+
i ) ∈ Events

Cost← number of unsatisfied constraints ∈ Constraints
RESTART ← 0
while Cost > 0 do

StartCost← Cost
for each (e−

i , e+
i ) ∈ Events do

(Moves, Cost)← FindBestMoves(Constraints, Cost, e−
i , e+

i )
Instantiate (e−

i , e+
i ) with randomly selected (d−

i , d+
i ) ∈Moves

if Cost < StartCost then RESTART ← 0
else if (++RESTART ) > MAX RESTART then

Randomly instantiate every event (e−
i , e+

i ) ∈ Events
TCost← number of unsatisfied constraints ∈ Constraints
if TCost < Cost then Cost← TCost
RESTART ← 0

end while
end

Fig. 4. The Random-Restart Local Search Procedure for Interval Algebra

Random-Restart. A probable cause for the poorer performance of Weighting on
the over-constrained problems is that by adding weight to unsatisfied constraints,
a weighting algorithm distorts the original cost surface (i.e. by changing the
relative cost of the constraints). In an under-constrained problem this will not
change the relative cost of a solution, as this is always zero. However, in an over-
constrained problem, the weighting process can disguise an optimal minimum
cost solution by adding weights to the constraints that are violated in that
solution. In that case, the search may be guided away from potentially optimal
regions of the search space. As both TABU and Random-Restart are guided by
the true unweighted cost, they are not subject to such misguidance.

Conversely, on all the under-constrained problem sets, Weighting has a dis-
tinct advantage, as shown in the results table and in the graph of Figure 6. This
performance is paralleled in other studies that have shown weighting to outper-
form standard local search heuristics on a range of difficult constraint satisfaction

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t

Time (secs)

Weighting
Tabu

Random Restart
Branch and Bound

Fig. 5. Over-constrained descent graph
for n = 40, d = 75, s = 9.5

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t

Time (secs)

Weighting
Tabu

Random Restart

Fig. 6. Under-constrained descent graph
for n = 80, d = 75, s = 9.5



Solved Cost Number of Moves Time

Problem Method % Mean Std Dev Max Min Mean Median Std Dev Mean

n = 40 TABU 0.00 61 8.69 91 37 16203 15838 4304 3.37
d = 25 Random-Restart 0.00 61 8.39 86 38 4166 4182 605 1.14
s = 2.5 Weighting 0.00 63 8.75 89 40 3234 3175 432 5.22

n = 40 TABU 72.00 0 0.59 2 0 1712 38 4111 0.06
d = 25 Random-Restart 91.00 0 0.31 2 0 83 39 128 0.03
s = 9.5 Weighting 100.00 0 0.00 0 0 30 30 4 0.03

n = 40 TABU 0.00 179 9.69 211 151 3598 3548 798 5.58
d = 50 Random-Restart 0.00 179 9.53 210 153 3339 3341 554 4.81
s = 2.5 Weighting 0.00 185 9.44 219 160 1756 1750 107 6.23

n = 40 TABU 0.60 3 1.59 13 0 3894 3977 2543 1.17
d = 50 Random-Restart 2.70 3 1.77 10 0 1264 1228 525 0.85
s = 9.5 Weighting 96.10 0 0.31 3 0 478 188 870 1.45

n = 40 TABU 0.00 310 10.65 341 282 1510 1469 297 7.16
d = 75 Random-Restart 0.00 310 10.53 338 280 1705 1663 346 7.32
s = 2.5 Weighting 0.00 318 10.49 351 290 1426 1415 96 6.99

n = 40 TABU 0.00 16 3.30 28 5 3328 3272 714 6.33
d = 75 Random-Restart 0.00 16 3.20 26 7 3218 3207 512 5.52
s = 9.5 Weighting 0.00 18 3.70 31 6 2952 2913 402 7.17

n = 40 TABU 0.00 433 7.72 454 410 905 892 172 8.38
d = 100 Random-Restart 0.00 433 7.51 454 405 1004 988 185 7.90
s = 2.5 Weighting 0.00 443 6.36 460 424 1252 1243 89 6.68

n = 40 TABU 0.00 37 4.70 50 24 1945 1905 391 8.18
d = 100 Random-Restart 0.00 36 4.70 55 25 2158 2109 413 8.31
s = 9.5 Weighting 0.00 45 4.65 58 29 2107 2075 287 6.61

n = 80 TABU 0.60 4 2.54 19 0 2092 2125 1081 8.33
d = 75 Random-Restart 3.18 4 2.60 19 0 1717 1666 710 7.41
s = 9.5 Weighting 99.97 0 0.02 1 0 215 200 69 4.80

Table 1. Experimental Results

and satisfiability problems [12]. The results and graphs also show there is little
difference between the long-term performance of TABU and Random-Restart.
This is somewhat surprising, as we would expect TABU to have an advantage
over a simple restart (i.e. if TABU provides good guidance in escaping a lo-
cal minimum this should lead us more efficiently to a more promising solution
than randomly restarting the algorithm and losing all current instantiations).
Random-restart is generally effective on cost surfaces where local minima occur
discontinuously, i.e. where they occur singly and are fairly distant from each
other. Our results may imply such a cost surface, or alternatively there may
be more work needed in optimising TABU’s performance (i.e, by experimenting
with different heuristics and tabu list lengths).

To obtain a clearer picture of the advantages of local search in the over-
constrained domain, we ran an existing branch and bound algorithm (known
as Method 1 in [3]) on a range of the over-constrained problems. The graph
in Figure 5 shows the descent curve of this algorithm on the (n = 40 d = 75
s = 9.5) problems in comparison to our three local search techniques (similar
curves were obtained across the range of our over-constrained problem sets).
These results showed branch and bound was unable to make any significant cost
descent within a 100 second cut-off period.



6 Conclusion

We have demonstrated that a local search approach to solving over-constrained
temporal reasoning problems is both practical and efficient. While we do not
have an absolute measure of optimum cost for our problem sets (as no known
complete algorithm is able to solve them), our 40 node graphs show that a local
search is able to reach a flat area on a descent curve within a few seconds. This
should be compared to the performance of existing backtracking techniques,
which have trouble finding solutions for over-constrained random problems of
greater than ten nodes [3]. We have also introduced and compared three new local
search algorithms for over-constrained temporal reasoning. Our results indicate
that the existing Weighting algorithm does not compare well to the relatively
simple TABU and Random-Restart local search heuristics on over-constrained
problems, but is still superior in the under-constrained domain.

Our work opens up several possibilities for further research. Firstly, existing
work on constraint weighting has shown that hybrid constraint weighting and
tabu search algorithms perform well on over-constrained problems with hard
and soft constraints [12]. Hence, it would be interesting to explore such hybrid
algorithms in the temporal reasoning domain. Additionally, as many real world
problems resolve into hard (mandatory) and soft (desirable) constraints, it would
be useful to extend our work to look at such realistic problems.

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. J. Allen and J. Koomen. Planning using a temporal world model. In Proceedings
of the 8th International Joint Conference on Artificial Intelligence (IJCAI), pages
741–747, Karlsruhe, W.Germany, 1983.

3. M. Beaumont, A. Sattar, M. Maher, and J. Thornton. Solving over-constrained
temporal reasoning problems. In Proceedings of the 14th Australian Joint Confer-
ence on Artificial Intelligence (AI 01), pages 37–49, 2001.

4. E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1):21–70, 1992.

5. F. Glover. Tabu search: Part 1. ORSA Journal on Computing, 1(3):190–206, 1989.
6. B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the

efficiency of using the ORD-Horn class. Constraints, 1:175–190, 1997.
7. M. Poesio and R. Brachman. Metric constraints for maintaining appointments:

Dates and repeated activities. In Proceedings of the 9th National Conference of the
American Association for Artificial Intelligence (AAAI-91), pages 253–259, 1991.

8. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis-
fiability problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), pages 440–446, 1992.

9. Y. Shang and B. Wah. A discrete Lagrangian-based global search method for
solving satisfiability problems. J. Global Optimization, 12:61–99, 1998.

10. F. Song and R. Cohen. The interpretation of temporal relations in narrative.
In Proceedings of the 7th National Conference of the American Association for
Artificial Intelligence (AAAI-88), pages 745–750, Saint Paul, MI, 1988.



11. J. Thornton. Constraint Weighting Local Search for Constraint Satisfaction. PhD
thesis, School of Information Technology, Griffith University Gold Coast, Australia,
January 2000.

12. J. Thornton, S. Bain, A. Sattar, and D. Pham. A two level local search for MAX-
SAT problems with hard and soft constraints. In Proceedings of the Fifteenth
Australian Joint Conference on Artificial Intelligence (AI 2002), pages 603–614,
2002.

13. J. Thornton, M. Beaumont, A. Sattar, and M. Maher. Applying local search
to temporal reasoning. In Proceedings of the Ninth International Symposium on
Temporal Representation and Reasoning (TIME-02), pages 94–99, 2002.

14. M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reasoning.
In Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-
86), pages 377–382, 1986.


