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Abstract. Many methods have been proposed to automatically gen-
erate algorithms for solving constraint satisfaction problems. The aim
of these methods has been to overcome the difficulties associated with
matching algorithms to specific constraint satisfaction problems. This
paper examines three methods of generating algorithms: a randomised
search, a beam search and an evolutionary method. The evolutionary
method is shown to have considerably more flexibility than existing al-
ternatives, being able to discover entirely new heuristics and to exploit
synergies between heuristics.

1 Introduction

Many methods of adapting algorithms to particular constraint problems have
been proposed in the light of a growing body of work reporting on the nar-
row applicability of individual heuristics. A heuristic’s success on one particular
problem is not an a priori guarantee of its effectiveness on another, structurally
dissimilar problem. In fact, the “no free lunch” theorems [1] hold that quite the
opposite is true, asserting that a heuristic algorithm’s performance, averaged
over the set of all possible problems, is identical to that of any other algorithm.
Hence, superior performance on a particular class of problem is necessarily bal-
anced by inferior performance on the set of all remaining problems.

Adaptive problem solving aims to overcome the difficulties of matching heuris-
tics to problems by employing more than one individual heuristic, or by provid-
ing the facility to modify heuristics to suit the current problem. Much of the
research into adaptive algorithms has however concerned the identification of
which heuristics, from a set of completely specified heuristics, are best suited
for solving particular problems. Heuristics in these methods are declared a pri-
ori, based on the developer’s knowledge of appropriate heuristics for the problem
domain. This is disingenuous, in that it assumes knowledge of the most appropri-
ate heuristics for a given problem, when the very motivation for using adaptive
algorithms is the difficulty associated with matching heuristics to problems.

Our previous work [2] introduced a new representation for constraint sat-
isfaction algorithms that is conducive to automatic adaptation by genetic pro-
gramming. Additionally, it was demonstrated that from an initial random and
poor-performing population, significantly improved algorithms could be evolved.



In this paper we examine other methods to automatically search the space of al-
gorithms possible within this representation. These methods are a beam search,
a random search as well as the previously considered evolutionary method.

Existing work on adaptive algorithms will be reviewed in section 2, before
the representation to be used in the current experiments is discussed in section
3. The three methods of exploration will be described in section 4, with details of
the experiments conducted to evaluate their performance in searching the space
of algorithms.

2 Background

A popular paradigm for representing finite domain problems is that of the con-
straint satisfaction problem (CSP). All CSPs are characterised by the inclusion
of a finite set of variables; a set of domain values for each variable; and a set
of constraints that are only satisfied by assigning particular domain values to
the problem’s variables. Whilst a multitude of algorithms have been proposed to
locate solutions to such problems, this paper focuses on methods that can adapt
to the particular problem they are solving. A number of previously proposed
adaptive methods will first be discussed.

The MULTI-TAC system proposed by Minton [3,4] is designed to synthesise
heuristics for solving CSPs. Such heuristics are extrapolated from “meta-level
theories” i.e. basic theories that describe properties of a partial solution to a CSP.
The theories explicated for use with MULTI-TAC lead primarily to variable and
value ordering heuristics for complete (backtracking) search. Exploration is by
way of a beam search, designed to control the number of candidate heuristics
that will be examined. Unlike some of the other adaptive methods, MULTI-TAC
is able to learn new heuristics from base theories.

The use of chains of low-level heuristics to adapt to individual problems has
also been proposed. Two such systems are the Adaptive Constraint Satisfaction
(ACS) system suggested by Borrett et al. [5] and the hyper-heuristic GA system
proposed by Han and Kendall [6]. ACS relies on a pre-specified chain of algo-
rithms and a supervising “monitor” function that recognises when the current
heuristic is not performing well and directs the search to advance to the next
heuristic in the chain. In contrast to a pre-specfied chain, the hyper-heuristic
system evolves a chain of heuristics appropriate for a particular problem using
a genetic algorithm. Although Borrett exclusively considered complete search
methods, their work would allow the use of chains of local search algorithms
instead. The same can be said wvice versa for Han and Kendall’s work which
considered chains of local search heuristics.

Gratch and Chien [7] propose an adaptive search system specifically for
scheduling satellite communications, although the underlying architecture could
address a range of similar problems. An algorithm is divided into four seperate
levels, each in need of a heuristic assignment. All possibilities for a particular
level are searched before a commitment is made to a particular one, and the
search proceeds to the next level. In this way, the space of possible methods is



pruned and remains computationally feasible. Unfortunately such a method is
unable to recognise synergies that may occur between the various levels.

The premise of Nayerek’s work [8] is that a heuristic’s past performance is
indicative of its future performance within the scope of the same sub-problem.
Each constraint is considered a sub-problem, and has a cost function and a set of
associated heuristics. A utility value for each heuristic records its past success in
improving its constraint’s cost function, and provides an expectation of its future
usefulness. Heuristics are in no way modified by the system, and their association
to a problem’s constraints must be determined a priori by the developer.

Epstein et al. proposed the Adaptive Constraint Engine (ACE) [9] as a sys-
tem for learning search order heuristics. ACE is able to learn the appropriate
importance of individual heuristics (termed “advisors”) for particular problems.
The weighted sum of advisor output determines the evaluation order of variables
and values. ACE is only applicable for use with complete search, as a trace of
the expanded search tree is necessary to update the advisor weights.

With the exception of MULTI-TAC, the primary limitation of these methods
is their inability to discover new heuristics. Although ACE is able to multiplica-
tively combine two advisors to create a new one, it is primarily, like Nayarek’s
work, only learning which heuristics are best suited to particular problems. Nei-
ther [7], which learns a problem-specific conjunctive combination of heuristics,
nor [6], which learns a problem-specific ordering of heuristics, actually learn new
heuristics.

A secondary limitation of the methods discussed (specifically MULTI-TAC
and Gratch and Chien’s work) is their inability to exploit synergies. Heuristics
that perform well in conjunction with other methods, but poorly individually,
will not be identified by these two methods. A discussion of synergies is not
applicable to the remaining methods, except for the hyper-heuristic GA, where
the use of a genetic algorithm permits the identification of synergies. Other
factors that should be mentioned include the ability of the methods to handle
both complete and local search; the maximum complexity of the heuristics they
permit to be learned; and whether the methods are able to learn from failure.
The properties of these methods are summarised in the taxonomy of Table 1
below.

Table 1. Taxonomy of Algorithm Adaptation Methods

Name Learns Local|Learns New| Exploits |[Learns From| Unlimited | Method of
or Complete | Heuristics |Synergies Failure Complexity‘ Search ‘
MULTI-TAC Both Yes No Yes No Beam
ACS Both No Yes No No N/A
HHGA Both No Yes No No Evolutionary
Gratch Both No No Yes No Beam
Nayarek Local No Yes Yes No Feedback
ACE Complete No Yes No No Feedback




3 A New Representation for CSP Algorithms

A constraint satisfaction algorithm can be viewed as an iterative procedure that
repeatedly assigns domain values to variables, terminating when all constraints
are satisfied, the problem is proven unsolvable, or the available computational
resources have been exhausted. Both backtracking and local search algorithms
can be viewed in this way. The traditional difference between the two methods
is that backtracking search instantiates variables only up to the point where
constraints are violated, whereas all variables are instantiated in local search
regardless of constraint violations. Despite these differences, at every iteration
both types of search make two decisions: “What variable will be instantiated
next?” and “Which value will be assigned to it?”.

Bain et al. [2] proposed a representation capable of handling both complete
and local search algorithms, together with a method of genetic programming to
explore the space of algorithms possible within the representation. In combina-
tion, the representation and genetic programming meet all five criteria discussed
in the preceeding section. Although the representation is capable of handling
complete search methods, the rest of this paper will concentrate on its use with
local search.

Algorithms in this representation are decomposed into three seperate heuris-
tics: the move contention function; the move preference function; and the move
selection function. At every iteration, each move (an assignment of a value to a
variable) is passed to the move contention function to determine which moves
will be considered further. For example, we may only consider moves that involve
unsatisfied constraints as only these moves offer the possibility of improving the
current solution. Each move that has remained in contention is assigned a nu-
meric preference value by the move preference function. An example preference
function is the number of constraints that would remain unsatisfied for a particu-
lar move. Once preference values have been assigned, the move selection function
uses the preference values to choose one move from the contention list to enact.
A number of well-known local search algorithms cast in this representation are
shown in Table 2. Extensions for representing a range of more complicated al-
gorithms are discussed in [2].

Table 2. Table of Well-Known Local Search Heuristics

GSAT { CONTEND all-moves-for-unsatisfied-constraints;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves }
HSAT { CONTEND all-moves-for-unsatisfied-constraints;
PREFER on-left-shifted-constraint-violations-4-recency;
SELECT minimal-cost-move }

TABU { CONTEND all-moves-not-taken-recently;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves }
WEIGHTING|[{ CONTEND all-moves-for-unsatisfied-constraints;
PREFER moves-on-weighted-constraint-violations;
SELECT randomly-from-minimal-cost-moves }




Table 3. Function and Terminal Sets for Contention

Functions for use in Contention Heuristics

InUnsatisfled ::
Move — Bool

True iff Move is in an unsatisfied constraint.

‘WontUnsatisfy ::
Move — Bool

True iff Move won’t unsatisfy any constraints.

MoveNotTaken ::
Move — Bool

True iff Move hasn’t been previously taken.

InRandom ::
Move — Bool

True iff Move is in a persistent random constraint. The constraint is
persistent this turn only.

AgeOverlnt ::
Move — Integer
— Bool

True iff this Move hasn’t been taken for Integer turns.

RandomlyTrue ::
Integer — Bool

Randomly True Integer percent of the time.

And, Or ::

Bool — Bool — Bool

The Boolean AND and OR functions. Definitions as expected.

Not ::
Bool

The Boolean NOT function. Definition as expected.

Terminals for use in Contention Heuristics

Move :: Move

The Move currently being considered.

NumVariables :: Integer |The number of variables in the current problem.

True, False :: Bool

The Boolean values True and False.

10, 25, 50, 75 :: Integer |The integers 0 and 1.

Table 4. Function and Terminal Sets for Preference

Functions for use in Preference Heuristics

AgeOfMove :: Returns the number of turns since Move was last taken.
Move — Integer
NumWillSatisfy, Returns the number of constraints that will be satisfied or unsatisfied
NumWillUnsatisfy by Move, respectively.
:t Move — Integer
Degree :: Degree returns the number of constraints this Move (variable) affects.

Move — Integer

PosDegree, NegDegree|Return the number of constraints satisfied by respective variable

:: Move — Integer

settings.

DependentDegree, DependentDegree returns PosDegree if Move involves a currently
OppositeDegree True variable or NegDegree for a False variable. The reverse occurs
:: Move — Integer |for OppDegree.
TimesTaken :: Returns the number of times Move has been taken.
Move — Integer
SumTimesSat, Returns the sum of the number of times all constraints affected by
SumTimesUnsat Move have been satisfied or unsatisfied respectively.

:: Move — Integer

SumConstraint Ages
:t Move — Integer

For all constraints Move participates in, returns the sum of the
lengths of time each constraint has been unsatisfied.

NumNewSatisfied,
NumNeverSatisfied
:: Move — Integer

Returns the number of constraints that will be satisfied by Move that
are not currently satisfied, or have never been satisfied, respectively.

RandomValue ::
Integer — Integer

Returns random value between 0 and Integer-1.

Plus, Minus, Times

:: Integer — Integer

— Integer

Returns the arithmentic result of its two integer arguments.

LeftShift

:: Integer — Integer

Returns its input shifted 16 bits higher.

Terminals for use in Contention Heuristics

Move :: Move

The Move currently being considered.

NumVariables,
NumConstraints
:: Integer

The number of variables and constraints in the current problem.

NumFlips :: Integer

The number of Moves that have already been made.

0, 1 :: Integer

The integers 0 and 1.




Table 5. Function and Terminal Sets for Selection

Functions for use in Selection Heuristics

RandomFromMazx, The first two functions make a random selection from the max-

RandomFromMin, imum or minimum cost moves, respectively. The third makes

RandomFromPositive, a random selection from all moves with a positive preference

RandomFromAll :: value. The final function makes a random selection from all
Integer — MoveList moves in the preference list.

— CostList — Move
Terminals for use in Selection Heuristics
NumContenders :: Integer [The number of moves in contention.
ListOfMoves :: MoveList The list of moves determined by the contention stage.
ListOfCosts :: CostList The list of costs determined by the preference stage.

4 Adapting Algorithms

To study the performance of the three methods, experiments were conducted
to evolve algorithms for solving Boolean satisfiability problems. Such problems
have been widely studied and have a known hardness distribution. The prob-
lem selected (ufl00-01.cnf) is taken from the phase-transition region, which is
the area where the problems are (on average) the most difficult for traditional
backtracking search routines.

4.1 Beam Search

Beam search is an effective method of controlling the combinatorial explosion
that can occur during a breadth first search. It is similar to a breadth first
search, but only the most promising nodes at each level of search are expanded.
The primary limitation of beam search is its inability to recognise and exploit
synergies that may exist in the problem domain. With respect to evaluating
algorithms, this may be two heuristics that perform poorly individually but
excellently together.

To determine whether such synergies occur, a study of possible contention
heuristics was conducted using a beam search. The set of possible contention
heuristics for the first level of beam search were enumerated from the function
and terminal sets shown in Table 3. These heuristics contain at most 1 functional
node and are shown in Table 6. As contention heuristics are Boolean functions
that determine whether particular moves warrant further consideration, each
subsequent level of the beam search will consider more complicated heuristics,
by combining additional functional nodes using the Boolean functions: AND,
OR and NOT.

As contention heuristics cannot be considered in isolation from preference
and selection heuristics, the preference and selection heuristics of the GSAT
algorithm were adopted for this experiment. This provides an initial 16 algo-
rithms for evaluation, the results for which are shown in Table 6. Accompanying
these are the results for the beam search, which extends the heuristics to all
Boolean combinations of up to 2 functional nodes!. For a beam width of p, only

! with the exception of redundant combinations like “a AND a” and “False OR b”



the heuristics composed entirely from the p best performers are considered, i.e.
when the beam width is 2, only heuristics composed of “AgeOverInt(Move, 10)”
and “RandomlyTrue(50)” are considered.

Table 6. Beam Search Results

Problem: uf100-01, Tries: 500, Cutoff: 40000
Heuristics with up to one functional node Beam search up to two functional nodes
Rank Algorithm Percent|Best Avg.|[ Beam [Domain|Best Avg.|Percent|Best %
Solved Flips Width| Size Flips |Improv.|Solved
1[AgeOverInt(Move, 10) 76 21924
2|RandomlyTrue(50) 71 20378 2 4 20105 1.34 69%
3|RandomlyTrue(25) 67 23914 3 9 11262 44.73 98%
4|RandomlyTrue(75) 50 24444 4 16 11262 44.73 98%
5|True 36 28111
6|Randomly'Irue
(NumVariables) 35 28846 6 25 11262 44.73 98%
7[InUnsatisfied (Move) I 39455 7] 36] 1988] 90.24] 100%
8|AgeOverInt(Move, 25) 1 39893 :
9|Randomly True(10) 0] 39936
10[False 0 40000
11{AgeOverInt(Move, 75) 0 40000 :
12]AgeOverInt(Move, 50) 0 40000 No further improvement
13|AgeOverInt(Move, :
NumVariables) 0 40000
14|InRandom(Move) 0 40000
15|MoveNotTake(Move) 0 40000 :
16 WontUnsatisfy (Move) 0] 40000 16] 196 1988] 90.24] 100%

The heuristics examined in the first level of beam search have been delin-
eated into two groups based on the percentage of problems that each was able
to solve. Although significant performance improvements can be observed when
the better-performing heuristics are combined, the most drastic improvement
occurs after the inclusion of one of the poorly-performing heuristics. The “In-
Unsatisfied(Move)” heuristic, although obvious to human programmers, is not
at all obvious to beam search, where its poor individual performance denotes it
as a heuristic to be considered later, if at all. Whilst it may be possible to locate
good heuristics using beam search, the width of the beam necessary eliminates
much of the computational advantage of the method.

4.2 Evolutionary Exploration of the Search Space

Genetic programming [10] has been proposed for discovering solutions to prob-
lems when the form of the solution is not known. Instead of the linear (and
often fixed length) data structures employed in genetic algorithms, genetic pro-
gramming uses dynamic, tree-based data structures to represent solutions. The
two methods are otherwise quite similar, using equivalent genetic operators to
evolve new populations of solutions. When genetic programming is used to evolve
algorithms, the data structures are expression trees modelling combinations of
heuristics. The fitness function used by the genetic operators relies on solution
rates and other performance metrics of the algorithms under test.

Two of the limitations identified from existing work, the inability to exploit
synergies and the inability to learn from failure are overcome with genetic pro-



gramming. Synergies can be exploited as individuals are selected probabilistically
to participate in cross-over. Poorly performing individuals still have a possibility
of forming part of a subsequent generation. Genetic programming is also able
to learn from failure, as the fitness function can comprise much more informa-
tion than just whether or not a solution was found. Specifically in local search,
information about a candidate algorithm’s mobility and coverage [11] can prove
useful for comparing algorithms.

As well as combining different contention, preference and selection heuristics
in novel ways, the inclusion of functions like “AND”, “OR”, “PLUS” and “MI-
NUS” permit a range of new heuristics to be learned. No limit is placed on the
complexity (size) of the algorithms that may be learned, which will vary depend-
ing on the fitness offered by such levels of complexity. Set levels of complexity
were an additional limiting factor of some existing work.

Details and results of the experiment can be found in Table 7. These results
show that the evolutionary method rapidly evolves good performing algorithms
from an initially poor performing population. Although the experiment was con-
tinued for 100 generations, there was little improvement after generation 30.

Table 7. Conditions and Results for the Genetic Programming Experiment

Experiment Conditions Experimental Results
Population Composition Gen.| Mean | Mean |Best Avg.| Best
Population Size 100 Success|Unsat.| Moves |So Far
Elitist copy from previous gen. 25( 0O 0.04%]| 34.89 38435 38435
Randomly selected and crossed 70|| 10 9.52%| 13.45 9423 9423
New elements generated 5[] 20 [65.68%| 3.16 1247 1247
Evaluation of Algorithm Fitness 30 [83.23%| 2.35 981 981
F;=Standardised(UnsatConstraints;)+ 40 [85.12%| 3.04 1120 981

100 * SuccessRate; 50 [89.88%| 3.14 1131 981
Test Problem uf100-01{] 60 [91.96%| 2.15 898 898
Number of runs for each algorithm 25]] 70 [88.96%| 1.90 958 898
Maximum moves per run 40000]] 80 [89.04%| 2.64 1062 898
Mean number of moves required 90 [90.56%| 1.35 876 876
by the state-of-the-art [12] 594|[ 99 [92.88%] 1.73 1070 876

4.3 Random Exploration of the Search Space

In order to demonstrate that the observed performance improvements in the
evolutionary experiment over time are not purely the result of fortuitously gen-
erated algorithms, the experiment was repeated without the genetic operators.
That is, each generation of the population was composed entirely of randomly
generated elements. As genetic programming must begin with a similar randomly
generated population, any observed differences in overall performance between
the random experiment and the evolutionary experiment, can be attributed to
the genetic operators of selection, cross-over and cloning.

With the exception of the differences in population composition, parameters
for this experiment were the same as for the previous experiment. Results are
tabulated in Table 8, when three different (practical) limits are placed on the
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Fig. 1. Results for the genetic programming experiment

size of the generated contention and preference trees?. Only the best average
moves to solution (so far) and the best success rate (so far) are reported, as
generational averages have no meaning within the context of this experiment.
The results clearly show that a random exploration of the search space does not
approach the performance of an evolutionary method.

Table 8. Results for the Random Exploration Experiment

Node Limit = 6 Node Limit = 20 Node Limit = 80

Gen.||Best Average] Best Best Average| Best Best Average] Best
Moves Success % Moves Success % Moves Success %
0 33981 32 38424 4 40000 0
10 33543 32 33531 20 23671 64
20 33543 32 6301 100 23671 64
30 6959 92 6301 100 23671 64
40 6959 92 6301 100 23671 64
50 6959 92 6301 100 23671 64
60 6959 92 6301 100 20814 88
70 6959 92 6301 100 6726 100

5 Conclusions and Future Work

This paper has demonstrated that within the space of algorithms, synergies do
exist between heuristics, so a heuristic that performs poorly individually may
perform well in conjunction with other heuristics. For this reason, beam search
is not the most appropriate method for searching the space of algorithms.
Furthermore, the usefulness of genetic programming was demonstrated by
comparing it with an entirely random method of search. As genetic programming
begins with a similar, entirely random set of solutions, the observed performance

% Selection heuristics are restricted by the function and terminals sets to have exactly
4 nodes.



improvements are attributable to the genetic operators. Even with a fixed set
of functions and terminals, albeit one large enough to be combined in many
novel ways, an initial random and poorly-performing population of algorithms
was significantly improved by the application of genetic programming operating
within a recently proposed representation.
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