
Using Cost Distributions to Guide Weight Decay
in Local Search for SAT

John Thornton and Duc Nghia Pham

SAFE Program, Queensland Research Lab, NICTA and
Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia

{john.thornton,duc-nghia.pham}@nicta.com.au

Abstract. Although clause weighting local search algorithms have pro-
duced some of the best results on a range of challenging satisfiability
(SAT) benchmarks, this performance is dependent on the careful hand-
tuning of sensitive parameters. When such hand-tuning is not possible,
clause weighting algorithms are generally outperformed by self-tuning
WalkSAT-based algorithms such as AdaptNovelty+ and AdaptG2WSAT.
In this paper we investigate tuning the weight decay parameter of two
clause weighting algorithms using the statistical properties of cost dis-
tributions that are dynamically accumulated as the search progresses.
This method selects a parameter setting both according to the speed
of descent in the cost space and according to the shape of the accumu-
lated cost distribution, where we take the shape to be a predictor of
future performance. In a wide ranging empirical study we show that this
automated approach to parameter tuning can outperform the default
settings for two state-of-the-art algorithms that employ clause weighting
(PAWS and gNovelty+). We also show that these self-tuning algorithms
are competitive with three of the best-known self-tuning SAT local search
techniques: RSAPS, AdaptNovelty+ and AdaptG2WSAT.

Key words: Local search, clause weighting, automated parameter tun-
ing, satisfiability.

1 Introduction

One way to categorize the currently best performing satisfiability (SAT) lo-
cal search algorithms is according to the method used to escape local minima.
Firstly, there are those approaches that use randomized decision strategies, such
as the WalkSAT family of algorithms [1] and the more recent G2WSAT algo-
rithms [2]. Secondly, there are those that use weights to penalize local minima
features, such as DLM [3], SAPS [4], GLSSAT [5], and PAWS [6]. To date,
clause weighting algorithms have outperformed WalkSAT on many of the stan-
dard benchmark problems, but only when careful parameter tuning is allowed.
Conversely, WalkSAT-based algorithms have consistently dominated the recent
SAT competitions1, where the hand-tuning of parameters is not possible because
1 http://www.satcompetition.org/

the details of the competition problems are not known in advance. This restric-
tion more accurately reflects real-world situations where an answer is required
as quickly as possible, rather than needing to know how quickly we could have
found an answer if we had known the optimal parameter settings in advance.

One of the main reasons for the success of WalkSAT algorithms is that their
performance is primarily influenced by the value of a single noise parameter
(noise controls the degree of randomness in each flip decision). While the best
setting for this parameter varies widely from problem to problem, it can be
effectively adapted during the search using a simple heuristic that measures the
degree of search stagnation [7]. A similar heuristic was developed for the SAPS
clause weighting algorithm [4] but this remains uncompetitive with the best
WalkSAT techniques [8]

Of the other current clause weighting algorithms, the pure additive weighting
scheme (PAWS) is probably the best candidate for the development of a param-
eter adapting heuristic because its performance depends on a single MaxInc
parameter which controls the rate of decay of the clause weights [6]. However,
despite considerable effort, no effective online method for adapting MaxInc
has been discovered. More recently, the gNovelty+ algorithm has combined a
WalkSAT-based heuristic with a clause weighting mechanism to produce the
2007 SAT competition random satisfiable category winner [8]. gNovelty+ uses
the WalkSAT heuristic to adapt noise and has a second parameter to control the
rate of clause weight decay. Although it is known that gNovelty+’s performance
is affected by the setting of this second parameter, to date no method has been
proposed to adapt it automatically.

In this paper we investigate an online method to automatically adapt clause
weight decay using information extracted from distributions of false clause counts
recorded at each flip. By accumulating distributions at various parameter set-
tings, we can predict the best setting as the search continues. We have applied
this method to both PAWS and gNovelty+ in order to improve their average
case performance in comparison to the standard default weight decay settings.

In the remainder of the paper we provide more detail on existing approaches
to parameter tuning and then provide an in-depth description of our new ap-
proach and how it has been incorporated into PAWS and gNovelty+. Using an
empirical study, we compare the performance of the new approach against PAWS
and gNovelty+, and against AdaptG2WSAT, AdaptNovelty+ and RSAPS. Fi-
nally we discuss the results and present our conclusions.

2 Parameter Tuning and Performance Prediction

The literature on predicting algorithm performance can be divided along several
axes depending on whether the prediction is based on: (i) an off-line training
phase (e.g. [9]) or purely on feedback obtained while solving online instances
(e.g. [10])(ii) measuring problem features (e.g. [11]) or on measuring an algo-
rithm’s past runtime performance (e.g. [12]) (iii) deciding between a portfolio of
algorithms (e.g. [13]) or determining the parameter settings of a single algorithm

(e.g. [14]) (iv) predicting performance on a per instance basis (e.g. [14]) or on
a per distribution basis (e.g. [11]) (v) using a high or low complexity prediction
model (giving rise to so-called “low knowledge” approaches [15]).

While these distinctions cover a broad range of potential methods, there
is considerable overlap across axes and between the kinds of machine learning
technique that are effective. In relation to the current research, we are interested
in using a “low knowledge” approach based on online feedback about runtime
performance to predict parameter settings. Our aim is to improve the average
performance of a candidate parametized SAT algorithm in situations where we
are only allowed a single run on a problem instance and where the problem
characteristics are not known in advance.

Online SAT Implementations: The best known online self-tuning local search
SAT algorithms have not explicitly predicted performance, but instead have ex-
ploited measures of search stagnation. For example, AdaptNovelty+ (the self-
tuning version of Novelty+) adapts its noise parameter according to whether an
improvement is observed in the overall best cost after a fixed number of flips, i.e.:
if no improvement occurs, the value of the noise parameter is increased, thereby
increasing the probability that non-greedy moves are accepted; otherwise, if a
new minimum cost solution is found, then the noise value is immediately de-
creased. Hoos [7] demonstrated experimentally that this adaptive mechanism
is effective both with Novelty+ and other WalkSAT variants. The same basic
mechanism was also used to adapt the probability that clause weights will be
multiplicatively reduced in the RSAPS algorithm [4] and, in earlier work, stag-
nation measures were used in reactive tabu search [16]. Again, referring to the
SAT 2007 competition, the best individual local search algorithms (gNovelty+

and AdaptG2WSAT) both employ the AdaptNovelty+ self-tuning mechanism -
making this the state-of-the-art for online adaptation (at least within the SAT
local search community). However, in relation to the current research, stagnation
measures have not proved effective for tuning the clause weight decay parameter
of any clause weighting algorithm except RSAPS (and RSAPS is known to be
uncompetitive with gNovelty+ or AdaptG2WSAT [8]).

Local Search Invariants: In their influential paper, McAllester et al. [17] re-
ported an invariant statistical relationship in the cost distributions for a range
of SAT algorithms on a selection of planning, graph colouring and hard random
3-SAT problems. Here, and in the rest of the paper, we define a local search cost
distribution to be the distribution of the count of false clauses recorded at each
flip during a sequence of local search steps. McAllester et al.’s invariant relation-
ship was calculated as the mean divided by the standard deviation of the local
search cost distribution recorded over a large number of runs for a particular
algorithm, on both single instances and on groups of similar instances. We term
this measure the range statistic, where the range specifies the distance of the
mean search cost from the origin in standard deviation units. McAllester et al.
found that the optimal setting for the noise parameters they were investigating
consistently occurred at a value 10% greater than the noise value that minimized
the range measure. They consequently conjectured that range could be an effec-

tive online and off-line performance predictor for tuning local search parameters.

“Low Knowledge” Algorithm Control: Outside the SAT domain there are
several other approaches that attempt to predict performance on the basis of
search behaviour (e.g. [10, 12]). The most interesting of these for current pur-
poses is “low knowledge” algorithm control which uses reinforcement learning
to dynamically allocate runtime slices to different algorithms as the search pro-
gresses. Each algorithm has a weight that is updated after a given number of
iterations according to a reinforcement learning formula that takes the cost im-
provement per second as input, i.e. the faster an algorithm is descending in the
cost space, the greater the increase in its weight and the larger the time slice
it is allowed in the next series of iterations. In empirical tests, this method was
able to exceed the average performance of the pure algorithms on which it was
based. The “low knowledge” approach shows that an online application that
only examines the current best cost can effectively allocate time slices between
competing algorithms. The main differences between this work and our own, are
that we need to decide between different parameter settings rather than different
algorithms, and that we cannot accumulate knowledge between runs on different
instances.

3 Tuning PAWS Online

The preceding analysis has yielded two promising avenues for further investi-
gation: i) exploiting McAllester et al.’s range statistic as an online guide to
parameter performance and ii) using the “low knowledge” approach of dividing
online runtime resources according to the speed of descent of different parame-
ter settings in the cost space. The challenge is that both these approaches have
previously required multiple runs on the same problem or on distributions of
similar problems before they can act as reliable guides. If we limit ourselves to
looking at a single run, the stochastic nature of local search means we get little
better than vague hints of which direction to move. In addition, the problem of
tuning the PAWS MaxInc parameter is complicated by the large range of possi-
ble values (from 4 to 500) and the sensitivity of the parameter to small changes
(for example, see [18]). To counteract these issues we developed two strategies.
Firstly, we looked at changing the way that PAWS reduces weight to create a
more robust parameter with a smaller range of possible values. And secondly,
we broadened our view of the cost data available during each problem run to
include the shape of the local search cost distribution.

The MaxThres Parameter: The effect of periodically reducing clause weights
is to reduce the total number of clauses that have weight. An analysis of the
runtime behaviour of PAWS on individual problems shows that each MaxInc
setting yields a fairly stable mean number of false clauses. We therefore exper-
imented with reducing weight whenever the number of false clauses exceeds a
given threshold. This produced a new MaxThres parameter that exhibited sim-

ilar performance to MaxInc except that it proved more robust to small changes
in its value.

The operation of MaxThres is detailed in the pseudocode of the Update-
ClauseWeights function in Algorithm 1. This function is called whenever PAWS
decides it has reached a local minimum and differs from the original PAWS only
at lines 5 and 6. Previously, PAWS reduced weight at line 5 if IncCounter >
MaxInc and omitted the while loop of line 6. Now the MaxThres parameter
causes weight to be reduced when the number of weighted clauses (|W|) and
the number of false clauses (|F|) both exceed MaxThres and only after at least
MinInc consecutive weight increase phases have been completed (MinInc is
fixed at 3). In addition, the while loop at line 6 ensures that each weight re-
duction phase reduces |W| to a value less than MaxThres (this step becomes
necessary when evaluating the performance of different MaxThres values during
the same run).

The new MaxThres parameter alters the behaviour of PAWS by tending to
reduce weight relatively less frequently when there are fewer false clauses and
relatively more frequently when there are more false clauses. This change pro-
duced small differences in performance in comparison with the original PAWS,
but on the average the two approaches proved very similar. The main advantage
of MaxThres is that we can (on average) obtain equivalent performance with
the original PAWS while also reducing the set of parameter values from {4 5 6
7 8 9 10 11 12 13 15 20 25 30 35 40 50 75 100 125 250 ∞} for MaxInc to {25
50 75 125 250 500 750 ∞} for MaxThres.

Algorithm 1: UpdateClauseWeights
Input: F ← the set of currently false clauses; W ← the set of currently weighted clauses;
Output: updated membership of W; updated clause weights for F ∪W;
for each ci ∈ F do1

Weight(ci) ← Weight(ci) + 1;2
if Weight(ci) = 2 then W ←W ∪ ci;3

IncCounter ← IncCounter + 1;4
if |W| > MaxThres and |F| > MaxThres and IncCounter > MinInc then5

while |W| > MaxThres do6
for each ci ∈ W do7

Weight(ci) ← Weight(ci)− 1;8
if Weight(ci) = 1 then W ←W − ci;9

IncCounter ← 0;10

Local Search Cost Distribution Shape: Given a single run, the information
available to select a parameter setting is scarce and highly variable. Our first
approach to ameliorate this situation was to set up a version of PAWS that
progressively accumulates local search cost distributions for each parameter set-
ting and allows the user to change parameter settings and graphically visualize
the different cost distributions. From these observations it became clearer what
shape of cost distribution was most often associated with the best parameter
setting. The general rule of thumb is: select the distribution with the smallest
mean, given the distribution has a roughly normal shape. As a result of extensive
preliminary experimentation, we decided to use skewness and kurtosis statistics

as an additional guide for parameter setting. Skewness measures the degree of
symmetry of a distribution (where a zero value indicates perfect symmetry) and
is calculated as follows:

1
n

∑n
i=1

(
xi−x

σ

)3

In the case of measuring the skewness of a local search cost distribution for a
particular MaxThres value, n would be the number of flips taken at the selected
MaxThres value, xi the number of false clauses observed at flip i, and x and σ
the mean and standard deviation respectively of the distribution of xi’s.

Kurtosis measures the degree of “peakedness” of a distribution, where a
higher value indicates a sharper peak with flatter tails (in comparison to a stan-
dard normal distribution). We calculated kurtosis as follows:

1
n

∑n
i=1

(
xi−x

σ

)4 − 3

Simulated Annealing: Having identified a few promising measures, we re-
quired a method to control the parameter value selection process during the
lifetime of a single run. Inspired by the the ”low knowledge” approach, we used
two interleaved searches on the same problem, one with a high MaxThres set-
ting (750) and the other with a good low default setting (75), as follows: each
search starts with its own copy of the same problem initialisation, and then pur-
sues its own separate search trajectory; the two search procedures then compete
for processor time according to a simulated annealing (SA) [19] schedule shown
in Algorithm 2.

Algorithm 2: DecideUpperOrLowerSetting
Input: lowerThres ← lower MaxThres setting; upperThres ← upper MaxThres setting;
temp ← 1024; step ← 400; tempStep ← initial steps allocated to upper setting;
upperStep ← current steps allocated to upper setting;
lowerStep ← current steps allocated to lower setting;
if lowerStep < upperStep then tempStep ← tempStep + lowerStep;1
else tempStep ← tempStep + upperStep;2
while tempStep ≥ step do3

temp ← temp÷ 2;4
step ← step× 2;5

cost ← CostDifference(lowerThres, upperThres);6
diff ← AbsoluteValue(cost);7

uphillProb ← 50e
−(diff

temp
)
;8

if probability ≤ uphillProb then9
if cost ≥ 0 then return lowerThres; else return upperThres;10

else11
if cost ≤ 0 then return lowerThres; else return upperThres;12

Here, SA is used to control a decision model that begins by randomly al-
locating time slices to the two search procedures and then, as the temperature
decreases, biases decisions more and more towards respecting the CostDiffer-
ence measure defined in Algorithm 3. This measure quantifies our notion of
local search cost distribution shape. An important point to note here is that all
statistics for each distribution (i.e. the mean, standard deviation, skewness and
kurtosis) are reset each time the distribution reaches a solution that improves
on the previously best minimum cost (for that distribution). This eliminates

the initial high variance phase of the search and avoids the distorting effects of
outlying cost values. In addition, we ignore the sign of the skewness and kur-
tosis measures, taking their absolute value only (see AbsSkew and AbsKurt in
Algorithm 3).

Algorithm 3: CostDifference(thres1, thres2)
minCostRatio ← 10× (MinCost(thres1)÷ (MinCost(thres1) + MinCost(thres2));1
rangeRatio ← 10× (Range(thres1)÷ (Range(thres1) + Range(thres2));2
skewRatio ← 10× (AbsSkew(thres1)÷ (AbsSkew(thres1) + AbsSkew(thres2));3
kurtRatio ← 10× (AbsKurt(thres1)÷ (AbsKurt(thres1) + AbsKurt(thres2));4
return 100− ((9× rangeRatio) + (7×minCostRatio) + (2× (skewRatio + kurtRatio)));5

The DecideUpperOrLowerSetting procedure controls the PAWS MaxThres
setting for the first 50,000 flips of the combined search trajectories. During this
phase, the new PAWS will behave much like its predecessor (with MaxInc set
to 10), except that it will “waste” a certain number of flips exploring the non-
optimal distribution. Such exploration will help if the best setting is in the upper
distribution, but otherwise it will degrade the relative performance.

Binary Search: After the 50,000 flip threshold, both the upper and lower search
trajectories are allowed to explore other MaxThres settings within a lower range
of {25 50 75 125} and an upper range of {250 500 750 ∞}. This procedure takes
the form of a binary search, such that after every search step of 100 flips (where
the value of MaxThres remains fixed) the DecideUpperOrLowerSetting function
determines which half of the parameter space will be used next. Then we use the
DecideSetting and FindBestCost functions to further subdivide the parameter
space into a single setting. For example, if DecideUpperOrLowerSetting selects
lower, then we will call:

DecideSetting(FindBestCost(25, 50), FindBestCost(75, 125))
Otherwise we will call:

DecideSetting(FindBestCost(250, 500), FindBestCost(750, ∞))
The DecideSetting function follows the simulated annealing approach of Decide-
UpperOrLowerSetting with two changes to reflect the finer grain of the decision.
Firstly, the annealing function has a consistently higher probability of returning
an uphill move, replacing line 8 of Algorithm 2 with:

uphillProb ← 30e−(diff
temp) + 20

Secondly, the annealing schedule is only reduced according to the number of
steps taken since the last minimum cost was discovered for each distribution,
replacing lines 1-2 from Algorithm 2 with:

if (lowerStep < upperStep) then tempStep ← lowerStep;
else tempStep ← upperStep;

Finally, we limit the parameter search space on problems with more than 50,000
clauses to only consider 25 or 50 in the lower distribution (the upper distribu-
tion parameter range remains unchanged). This reflects empirical observations
showing that larger problems tend to have smaller optimal MaxThres settings.

4 Experimental Study

To test the new self-tuning version of PAWS (which we term iPAWS), we se-
lected a range of random problems from the SAT competition satisfiable bench-
marks and a range of structured problems from the SATLIB library. The SAT
competition problems are to give an idea of potential performance in the com-
petition’s satisfiable random category (this is the category where SAT local
search algorithms have consistently outperformed complete search techniques),
while the other problems allow comparison with the existing SAT literature.
Firstly, to form the SATLIB structured benchmark, we took two “flat” graph
colouring problems (flat200-median and hard2), two blocksworld planning prob-
lems (bw large.c and d), two logistics planning problems (logistics.c and d),
three all interval series problems (ais10, 12 and 14), five hard quasigroup prob-
lems (qg1-08, qg2-08, qg5-11, qg6-09, qg7-13), five 16-bit parity learning prob-
lems (par16-1-c to par16-5-c), four large graph colouring problems (g125.17,
g125.18, g250.15, g250.29), four circuit synthesis formula problems (2bitadd 11,
2bitadd 12, 3bitadd 31, 3bitadd 32) and four Beijing scheduling problems (enddr-
2-1, enddr2-8, ewddr2-1 and ewddr2-8). Secondly, to form the random bench-
mark set, we randomly selected 12 k3-SAT instances, 12 k5-SAT instances and
10 k7-SAT instances from the large satisfiable random problems used in the 2005
SAT competition.

To obtain a measure of the improvement in iPAWS over the original PAWS we
included a manually tuned PAWS (PAWS(t)) with MaxInc optimized for each
problem category and a default-valued PAWS (PAWS(d)) with MaxInc fixed
at 10. We also included the best-known self-tuning SAT local search algorithms:
AdaptNovelty+ [7], AdaptG2WSAT [2] and RSAPS [4]. Both AdaptNovelty+

and AdaptG2WSAT are included for their class leading performance in the re-
cent SAT competitions and RSAPS is included to compare iPAWS with another
clause weighting adaptive algorithm. Finally, we included gNovelty+, the winner
of the random satisfiable category of the 2007 SAT competition, and arguably
the best general purpose SAT local search solver currently available [8].

iNovelty+: As discussed in the introduction, gNovelty+ also performs clause
weighting and has a parameter that can control the rate of clause weight de-
cay. Experimental observations have shown that gNovelty+’s performance can
be significantly enhanced by treating this parameter as a binary switch that
either allows weight to accumulate without reduction, or turns off clause weight-
ing altogether [8]. To investigate the applicability of the iPAWS weight decay
heuristic to other clause weighting algorithms, we decided to partially implement
the iPAWS tuning process into gNovelty+. This involved controlling the binary
decision about whether or not to accumulate weight in gNovelty+ in the same
way that iPAWS decides whether to use an upper or lower setting of MaxThres.
More specifically, gNovelty+ was adapted to match iPAWS so that it runs two
separate searches on same problem starting point, one with weight accumulation

2 We take all designations of median and hard problems from [4]

turned on and the other with it turned off. Each search then competes for proces-
sor time using the DecideUpperOrLowerSetting procedure defined in Algorithm
2. We term this new weight-tuning version of gNovelty+ as iNovelty+.

4.1 Results

To obtain an overall measure of performance, we adapted the SAT competition
scoring metric (see http://www.satcompetition.org/2007/rules07.html) to suit
the situation of our allowing each algorithm 100 runs on each instance with a
600 second cutoff for each run. This required us to divide the SAT competition
solution purse up in proportion to the number of successful runs for solver s on
problem p, as follows:

solutionAward(p, s) ← 1000×successCount(p,s)∑n

i=1
successCount(p,i)

where successCount counts the number of runs where a solution has been found
within the standard timeout of 600 seconds. Similarly, the SAT competition speed
purse is divided as follows:

speedAward(p, s) = 1000×speedFactor(p,s)∑n

i=1
speedFactor(p,i)

where speedFactor(p, s) calculates the sum, in seconds, of: 600 ÷ (1+solution
time) for each successful run of algorithm s on problem p. Finally, the SAT com-
petition series purse allocates 3000 points for a problem series containing 5 or
more problems (i.e. the parity, quasigroup, k3-SAT, k5-SAT and k7-SAT series),
otherwise it allocates 1000 points. Here the points are divided equally amongst
all algorithms that can find any solution to any problem within a given series.
The final measure for each solver is then calculated as the sum of the three purses.

Structured Benchmarks: Table 1 shows the scores for the structured bench-
mark problems using the SAT competition measure, both overall and on a per
series basis. These results clearly show the gNovelty+ variants outperform the
other solvers regardless of the parameter tuning methods employed. Within the
gNovelty+ solvers, iNovelty+ produced a slight improvement over gNovelty+(d)
but this almost entirely rests on iNovelty+’s ability to beat the default algorithm
on the parity series. There are other signs of improvement on the bw large and
large graph colouring problems, but on the remaining problems the improve-
ments have not outweighed the overhead of performing two interleaved searches.

The iPAWS results show that the self-tuning heuristic has produced a more
sizable improvement in comparison to the default PAWS(d), raising the over-
all score from 4,656 to 7,940. In particular, iPAWS has performed better than
PAWS(d) on all the structured series except bw large (where performance is
still similar), having the largest improvement on the parity problems. Compar-
ing iPAWS with the optimally tuned PAWS(t) shows that iPAWS sometimes
gains an advantage from being able to adapt to individual problems (particu-
larly in the bitadd and qg series). Overall, however, the prior tuning of PAWS(t)
outperforms iPAWS, particularly on the bw large problems.

Looking at PAWS in comparison with AdaptG2WSAT, AdaptNovelty and
RSAPS shows that the improvement on PAWS(d) is enough to move PAWS

from being the worst performing solver, to being the best (excepting gNovelty+).
While the difference between iPAWS and AdaptG2WSAT is slight, the relative
effect of the iPAWS self-tuning method is impressive, especially considering the
extra effort needed to perform an interleaved search on two problem instantia-
tions, of which one is necessarily exploring the worse half of the parameter space.

Table 1. Scoring of solvers’ performance on structured problems

Solver bitadd ais bw large e*ddr flat g* logistics par16 qg Total

gNovelty+ (t) 1, 477.2 916.1 820.7 1, 333.9 594.7 1, 199.4 571.9 1, 855.3 2, 911.5 11, 680.6

gNovelty+ (d) 1, 477.2 916.1 609.1 1, 333.9 594.7 875.4 571.9 466.6 2, 447.9 9, 292.7

iNovelty+ 1, 440.0 830.3 677.8 1, 156.0 530.2 1, 072.7 566.4 1, 296.4 1, 941.0 9, 510.7

PAWS (t) 380.1 822.5 835.8 1, 166.9 569.2 1, 298.2 569.2 2, 685.4 805.6 9, 132.8

PAWS (d) 380.1 694.8 324.4 377.5 528.2 578.7 535.3 407.4 829.7 4, 656.1

iPAWS 640.2 824.3 310.8 971.9 537.1 1, 021.8 561.9 2, 011.2 1, 060.6 7, 940.0

AdaptG2WSAT0 1, 283.5 631.6 546.6 787.6 576.8 1, 252.3 496.6 1, 529.4 749.4 7, 853.7

AdaptNovelty+ 1, 348.9 505.1 491.7 708.5 507.7 1, 216.1 555.9 1, 392.4 743.3 7, 469.6

RSAPS 572.8 859.3 383.2 1, 163.9 561.4 485.4 570.8 1, 355.9 1, 511.0 7, 463.8

Table 2. Scoring of solvers’ performance on random problems

Series gNovelty+ PAWS (d) iPAWS AdaptG2WSAT0 AdaptNovelty+ RSAPS

k3-SAT 7, 468.6 11, 364.3 1, 476.5 2, 618.7 4, 071.9 0.0

k5-SAT 5, 892.8 742.3 7, 052.4 7, 174.3 5, 633.6 504.6

k7-SAT 4, 424.2 2, 966.6 3, 600.6 4, 973.8 5, 335.8 1, 699.0

Total 17, 785.7 15, 073.1 12, 129.5 14, 766.9 15, 041.3 2, 203.6

Random Benchmarks: Table 2 shows the results for the random benchmark
problems (again using the SAT competition metric). Here we have reproduced
the parameter settings for PAWS (MaxInc = 10) and gNovelty+ that were used
in the original SAT competitions. In this case, gNovelty+ used a heuristic that
sets its clause weight decay parameter to 1.0 for all 5-SAT and 7-SAT prob-
lems (turning clause weighting off) and to 0.4 for all 3-SAT problems (reducing
weight after an increase with probability 0.4) [8]. This heuristic means gNovelty+

is no longer using a fixed parameter value for these problems and makes a di-
rect comparison with iNovelty+ unfair. We therefore propose that iNovelty+ use
the gNovelty+ heuristic whenever it detects uniform 3, 5, and 7-SAT problems
(making it equivalent to gNovelty+ on these problems).

The results again show gNovelty+ outperforming all other solvers by a size-
able margin, with PAWS(d) and AdaptNovelty+ coming in a close second and
third respectively, followed by AdaptG2WSAT, iPAWS and finally RSAPS (after
a large gap). Looking in more detail, we can see the relatively poor performance
of iPAWS is due to the 3-SAT problems, otherwise it outperforms PAWS(d) on
both the 5-SAT and 7-SAT series. If we allow the gNovelty+ heuristic to be le-
gitimate, then a similar heuristic applied to iPAWS could switch it to perform a
default PAWS search on all 3-SAT problems. In this case, iPAWS would defeat
both PAWS(d) and gNovelty+ on the random benchmarks.

5 Discussion and Conclusions

The primary aim of this paper was to develop an effective online method to
tune the PAWS weight decay parameter within single runs on single problems.
The secondary aim was to explore the use of this method within another clause
weighting algorithm. The results have shown the new iPAWS heuristic to be
effective across a range of structured problems and across two of the three classes
of uniform random SAT problems. We have also proposed a simple heuristic to
improve iPAWS on the 3-SAT benchmarks.

However, our attempt to extend the iPAWS approach to gNovelty+ did not
produce such dramatic improvements. We propose two reasons for this. Firstly,
gNovelty+ already uses an adaptive online mechanism to tune the Novelty noise
parameter. It may be that the two adaptive mechanisms do not interact to
good effect. A promising area of future research would therefore be to use an
iPAWS approach to simultaneously tune the gNovelty+ noise and weight decay
parameters. This also suggests using the local search cost distributions to tune
the noise parameters of other WalkSAT algorithms, to test if this would be more
effective than using the current stagnation measures. Secondly, the relatively
small improvement of iNovelty+ over gNovelty+(d) could also be explained by
iNovelty+ not having the advantage of being able to do a more refined search
of the parameter space. As the gNovelty+ weight decay parameter has so far
proved relatively insensitive to intermediary settings between 0 and 1 - with the
exception of preferring a 0.4 setting on 3-SAT problems and a 0.1 setting on the
parity 16 problems - this suggests the gNovelty+ parameter may not be suitable
for an iPAWS-type heuristic.

Overall, the iPAWS heuristic is complex (e.g. in comparison to AdaptNovelty)
and relies on a large number of hand-tuned (but robust) settings. This would
argue against it if there were an effective, simpler heuristic available. However,
after extensive exploration, we were unable to find a more compact combination
of measures that correlated well with an optimal weight decay setting and were
reliable across a wide range of problem types. Also, despite the complexity of the
implementation, the underlying principles remain quite simple, i.e. we use the
statistical properties of local search cost distributions, accumulated for different
parameter settings, to bias future parameter selection decisions, according to a
simulated annealing schedule. Nevertheless, it would be worthwhile to search for
a more principled way to fix (or remove) the various settings on which the algo-
rithm depends - most obviously by using existing machine learning approaches
(e.g. as in [14]).

In conclusion, the paper has introduced a new approach to tuning local search
parameters online. The initial implementation has been the product of consider-
able trial and error and should not be considered definitive. Rather, it is intended
to show that the underlying concept is workable and to act as a foundation for
further investigation. Nevertheless, the initial results are encouraging, and the
new iPAWS algorithm has been shown to be competitive with a range of the
best known local search SAT solvers.

Acknowledgements

We thankfully acknowledge the financial support from NICTA and the Queens-
land Government. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT Centre of Excellence
program.

References

1. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Proceedings of AAAI-92. (1992) 440–446

2. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satis-
fiability. In: Proceedings of SAT-05. (2005) 158–172

3. Wu, Z., Wah, B.: An efficient global-search strategy in discrete Lagrangian methods
for solving hard satisfiability problems. In: Proceedings of AAAI-00. (2000) 310–
315

4. Hutter, F., Tompkins, D., Hoos, H.H.: Scaling and probabilistic smoothing: Effi-
cient dynamic local search for SAT. In: Proceedings of CP-02. (2002) 233–248

5. Mills, P., Tsang, E.: Guided local search applied to the satisfiability (SAT) problem.
In: Proceedings of ASOR’99. (1999) 872–883

6. Thornton, J.R., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplica-
tive clause weighting for SAT. In: Proceedings of AAAI-04. (2004) 191–196

7. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI-
02. (2002) 635–660

8. Pham, D.N., Thornton, J.R., Gretton, C., Sattar, A.: Advances in local search for
satisfiability. In: Proceedings of Australian AI-07. (2007) 213–222

9. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: The design and analysis of an
algorithm portfolio for SAT. In: Proceedings of CP-07. (2007) 712–727

10. Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. In: Proceedings of
AI-MATH-06. (2006)

11. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: Proceedings of AAAI-07. (2007) 1152–1157

12. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of GECCO-02. (2002) 11–18

13. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126 (2001)
43–62

14. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Proceedings
of CP-06. (2006) 213–228

15. Carchrae, T., Beck, J.C.: Low-knowledge algorithm control. In: Proceedings of
AAAI-04. (2004) 49–54

16. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-
SAT. ACM Journal of Experimental Algorithmics 2(Article 2) (1997)

17. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search.
In: Proceedings of AAAI-97. (1997) 321–326

18. Thornton, J.: Clause weighting local search for SAT. Journal of Automated Rea-
soning 35(1-3) (2005) 97–142

19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598) (1983) 671–680

