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Abstract. The Hierarchical Temporal Memory (HTM) framework is a
deep learning system inspired by the functioning of the human neocor-
tex. In this paper we investigate the feasibility of this framework by
evaluating the performance of one component, the spatial pooler. Us-
ing a recently developed implementation, the augmented spatial pooler
(ASP), as a single layer feature detector, we test its performance using
a standard image classification pipeline. The main contributions of the
paper are the implementation and evaluation of modifications to ASP
that enable it to form overcomplete representations of the input and
to form connections with multiple data channels. Our results show that
these modifications significantly improve the utility of ASP, making its
performance competitive with more traditional feature detectors such as
sparse restricted Boltzmann machines and sparse auto-encoders.
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1 Introduction

One of the most significant developments in contemporary computational neu-
roscience is the emergence of a unified understanding that the basic function of
the neocortex is to form predictions concerning the structure of its own future
input. This approach has resulted in Friston’s proposal that free energy minimi-
sation is the fundamental organising principle behind all cognition [6] and that
such minimisation is best achieved within a hierarchical predictive coding (HPC)
architecture [2]. In this paper we examine a closely related model of neocortical
processing that fits within the basic paradigm of free energy minimisation but
differs from HPC in forming predictions by means of hierarchical sequence learn-
ing rather than by means of feedback with predictive coding error units. This
Hierarchical Temporal Memory (HTM) model of neocortical processing was first
proposed by Jeff Hawkins in his 2004 book On Intelligence [8] and has subse-
quently been partially implemented in a series of cortical learning algorithms
proposed by Hawkins and his colleagues [9, 7], and developed further in related
research [22, 23].
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The focus of this paper is the investigation and further improvement of one
component of the HTM model, the spatial pooler (SP). Specifically, we investi-
gate, for the first time, the performance of the spatial pooler as a feature detector
on colour images. In a complete HTM implementation, the spatial pooler is one
of two basic components, the other being the temporal pooler (TP). The primary
function of the SP is to form sparse distributed representations of the input data
that are then combined into temporal sequences by the TP and passed up to the
next level of the HTM hierarchy. At this next level an identical SP sparsifies the
input from the lower level and passes this to a second identical TP. This entire
process is then repeated at each level of the hierarchy until the apex is reached.
The techniques employed by the SP and TP algorithms exploit many key neu-
roscientific ideas, including the implementation of mini-columns [18], inhibition
[17], probabilistic connections to inputs [21] and geometric distances governing
the relationship between nodes and connections [12]. However, in a fully func-
tional HTM there would also be feedback between levels, such that higher level
sequence information is able to modify lower level sequences via a process of
Bayesian-like belief revision until an equilibrium state is reached that represents
the most probable causes of a given input stream and that predicts the most
probable trajectory of that stream. How such feedback will work is still a matter
for further research.

The augmented spatial pooler algorithm (ASP) [23] used in this study ex-
tends the original SP proposed by Hawkins et al. [7] in having the ability to
encode non-binary data. ASP was also shown to have superior convergence be-
haviour in comparison to the original SP, with the generated sparse codes ex-
hibiting similar properties of statistical independence to those found in biological
neural codes [23, 15]. In related work, ASP has shown promise as a single layer
unsupervised feature detector for use in classification of greyscale videos [22]
and handwritten digits [15]. In this paper we further evaluate the utility of ASP
as a single layer unsupervised feature detector by applying it to the domain of
natural colour image classification. Our main innovations are to extend the algo-
rithm by allowing it to form overcomplete representations of the input data and
by allowing individual coding units to form connections with multiple levels of
data input. These connections are then used to learn activation patterns across
multiple colour channels whilst still maintaining the topographic relationships
inherent in the original colour images.

In order to evaluate these innovations, we tested ASP on the CIFAR-10
dataset [14] adopting the same encoding and classification methodology used by
Coates et al. in 2011 [3]. This methodology allowed us to easily analyse how
modifications to the encoding/classification framework affect the relative perfor-
mance of ASP. We also experimented with changes to the patch size, varying
the number of detected features, whitening the input data, and altering the
ASP hyper-parameters governing the sparsity of the output and the probability
of connections to input elements. Overall, the experimental study showed that
our modifications significantly improved both the performance and the utility of
the original ASP as a feature detector for colour images, making it competitive
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with a range of more traditional approaches, such as the restricted Boltzmann
machine and the sparse auto-encoder.

In the remainder of the paper we provide a lower level description of the
ASP algorithm and the modifications that form the main contribution of this
research. We then provide details of the experimental design, present our results
and discuss their significance.

2 HTM Augmented Spatial Pooler

Within the Hierarchical Temporal Memory (HTM) model, the primary func-
tional unit is the column. This component is based on the mini-column found
in the neocortex [18]. Each HTM column contains a collection of coding units,
the majority of which form part of the temporal pooler (TP) and function as
sequence learners. A column’s spatial pooler component consists of a single cod-
ing unit that is activated entirely through connections made with bottom up
input and acts as a first order feature detector. As each column contains a single
SP coding unit and as we are not including temporal pooler coding units in the
current study, from now on we will refer to SP coding units as columns.

Unlike many other unsupervised feature detectors, such as restricted Boltz-
mann machines, auto-encoders and independent components analysis, the geo-
metric relationships between input data elements and ASP columns play a key
role in the learning and encoding processes. The columns are laid out in a matrix
and receive input which is also formatted in a matrix. These matrices share the
same topology, such that a column located at entry (2, 4) of the column matrix
will have a distance of zero to an input element located at entry (2, 4) of the
input matrix.

Columns connect to the input through binary (i.e. unweighted) synapses
that are either connected or unconnected. As with connections between layers
in the neocortex [12], columns are more likely to be connected to input elements
which have a smaller distance to the column [15]. In addition to the the use
of geometric distances, another way that ASP differs from many traditional
feature detectors is that the columns are not fully connected to the input. This
again reflects the situation in the neocortex, where cortical neurons are only
partially connected to their associated receptive fields [21]. In ASP this partial
connectivity is implemented during initialisation, where input elements with
which a column can potentially connect are chosen at random with a probability
p. During our experiments we test the effect of changing p, as reported in Section
4.2.

The sparsity of the ASP output codes is produced through a process of
inhibition. This process has conceptual similarities to the function of inhibitory
cortical neurons, such as basket cells, which can synapse directly to the soma of
neighbouring neurons and whose action potentials cause connected neurons to be
less likely to produce action potentials [13]. In ASP, inhibition is a competitive
process in which columns with a higher level of activity reduce neighbouring
column activities to zero. The inhibitory range of a column is determined by the
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average synapse receptive field size over all columns, which in turn is determined
by the area covered by a column’s connected synapses. Within this inhibitory
range, a column is fully connected to all of its neighbouring columns. This has a
biologically plausible grounding in that inhibitory neurons have extremely high
local connection densities [5]. The number of columns that a column can inhibit
is inversely proportional to the desired level of activity, which represents the
preferred fraction of columns active during encoding.

During training, ASP learns features through the modification of the perma-
nence values of a column’s synapses. If the value of an input element with which
a column synapses is greater than the average across the input matrix then
the permanence value is increased, otherwise it is decreased. Moreover, if the
permanence value falls below a predefined threshold, then the synapse becomes
disconnected. This learning strategy is directly inspired by Hebbian learning,
where neurons are more likely to form synapses with other neurons which are
active at the same time [10]. To aid learning a boost multiplier is applied to
columns with a low activity level. Finally, if the boost fails to activate a column
sufficiently, then the column will grow a new synapse by increasing the perma-
nence value of a previously disconnected potential synapse above the threshold
(for a more detailed explanation of the ASP algorithm see [23]).

2.1 Multiple Input Matrices

To allow ASP to learn and encode data from multiple sources we have imple-
mented a multiple input paradigm where a column can form synapses to multiple
input matrices. These matrices share the same topographic relational properties
to the column matrix, such that in a system with two input matrices, an input
element at entry (2,4) of one input matrix would have the same distance to a
random column as an element in entry (2,4) of the second input matrix. This is
illustrated in Figure 1.

In our experiments we use this input paradigm to split the colour data across
three input matrices, with one input matrix for each of the RGB channels. In
this way columns can learn features incorporating the three colour channels while
preserving the pixels’ topographic relationship vis-à-vis the column matrix and
other pixels. We compare the performance of this method to that of a method
which does not maintain these topographic relationships in Section 4.1.

2.2 Overcompleteness

In previous implementations of ASP, the number of input columns was limited
to be less than or equal to the number of inputs. Although ASP performed well
under these constraints [22, 15] by allowing the number of columns to exceed the
number of inputs, ASP can learn an overcomplete feature set of the input data.
Based on empirical observation of the V1 area of visual cortex [19], we conjecture
that increasing the feature set size may allow for better representations of the
variances in complex data, such as natural images.
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Fig. 1. Diagram of a column connecting to two input matrices.

To properly implement overcompleteness in the ASP algorithm we must also
maintain the topographic relationships between the columns and the input ma-
trices. To solve this problem we stack the columns on top of each other, with
multiple columns sharing the same topographic location. Initialisation of the
columns’ location is accomplished by applying Algorithm 1, which is sufficient
for a square-shaped matrix of any size. In this algorithm the first column is
placed in the centre of the column matrix and subsequent columns are arranged
by spiralling away from the centre until the column matrix is filled. We recur-
sively call the function until all columns have been placed.

3 Feature Extraction and Classification Framework

For our experiments we decided to adopt the feature learning, extraction and
classification framework first developed by Coates et al. [3]. In this work, the au-
thors evaluated a number of unsupervised feature learning algorithms including
sparse Restricted Boltzmann Machines (RBMs), sparse auto-encoders, k-means
and k-means clustering with ‘triangle’ activation. These algorithms were tested
on patches taken from a collection of image datasets and were analysed on the
basis of varying the following settings: (i) the number of features used in the
algorithm, (ii) the ‘stride’ used in obtaining patches from the images (the num-
ber of pixels between each patch), (iii) the ‘receptive field size’ (the size of each
patch taken from the images), and (iv) the effect of preprocessing the data by
whitening the images. After feature extraction using the learning algorithms the
data was pooled to reduce dimensionality and classified using a linear SVM.

Following Coates et al. allows us to test the ASP within a simple framework
designed for unsupervised single layer feature detectors. Additionally we can
easily modify settings, such as the feature number and patch size, to investigate
how these changes affect ASP and compare the results to other algorithms within
the context of the same framework. In the remainder of this section we introduce
the key steps of this framework.
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Algorithm 1 initialiseColumnLocation(columnQueue,width, height)

1: x← dwidth÷ 2e
2: y ← dheight÷ 2e
3: setColumnLocation(pop(columnQueue), x, y)
4: count← 1
5: xInc← 1
6: yInc← 0
7: loop
8: for i← 0 to count do
9: x← x + xInc

10: y ← y + yInc
11: if isEmpty(columnQueue) then
12: return
13: end if
14: if x < 0 or x ≥ width or y < 0 or y ≥ height then
15: initialiseColumnLocation(columnQueue,width, height)
16: return
17: end if
18: setColumnLocation(pop(columnQueue), x, y)
19: end for
20: if yInc = 0 then
21: yInc← xInc
22: xInc← 0
23: else if xInc = 0 then
24: xInc← −yInc
25: yInc← 0
26: count← count + 1
27: end if
28: end loop

3.1 Feature Learning and Extraction

The first step is to train the unsupervised feature learning algorithms. This
training is performed on 400,000 randomly sampled patches from the training
set (8 from each image, taking all three colour channels). Using the trained
algorithms we then extract features from each image in a convolutional manner,
one patch at a time by ‘sliding’ across and down the image by a stride value.
On the basis of the the clear results of [3] in our experiments we only use a
stride of one pixel. Before feature learning and extraction the patches may be
preprocessed with a whitening algorithm.

3.2 Dimension Reduction and Classification

Before classification, the feature activations are pooled to reduce dimensionality.
This is achieved by a simple sum-pooling algorithm where the image is divided
into quadrants (top-left, top-right, bottom-right and bottom-left). Each of the
quadrants is represented by a vector of size f , where f is the number of features
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extracted by the feature learning algorithm. The activities for each individual
feature are summed across each patch within its corresponding quadrant. The
summed value for each feature is stored within the quadrant vectors which are
then concatenated. Thus each image is represented by a 4f sized real-valued
vector. We then perform classification of the images using a simple 1-vs-all linear
SVM.

4 Experiments and Results

We performed a number of experiments to analyse the performance of ASP
on colour natural images. For all experiments we use the CIFAR-10 dataset of
colour natural images [14]. CIFAR-10 is a popular dataset for computer vision
benchmarking comprising 60,000 32×32 pixel RBG images. The dataset contains
10 separate classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck, pre-divided into a training set of 50,000 images and a testing set of
10,000 images.

When experimenting with different parameter settings for ASP and differ-
ent configurations of the feature extraction and classification framework we ran
multiple tests to ensure that the results we obtained are representative. To this
end, we used two different randomly sampled sets of patches to train ASP, and
two different initialisation seeds for ASP for each of the sets; making a total of
four tests for each experimental setting (except where noted). When classifying
each of these four tests with the SVM we used the same C hyper-parameter that
was found to be the best through optimisation.

4.1 Handling Colour

We first present the results of experiments designed to evaluate the effect of
maintaining topological relationships of the input pixel colour channels using
our multiple input matrix method, versus only partially maintaining these rela-
tionships.

The number of ASP columns used in this round of experiments is 108. This is
equal to number of input elements (6×6 pixels across 3 colour channels). When
using multiple input matrices we use three input 6×6 matrices, one for each
colour channel. For the single input matrix we attempt to preserve the topological
relationships by grouping the three channels together and interlocking adjacent
pixel groups, as shown in Figure 2. This process results in a 9×12 input matrix.

For both methods we ran a total of 20 tests, using the two sample sets
and ten initialisation seed values. Across the 20 tests the single matrix input
configuration produced an average classification accuracy of 59.49% while the
multiple matrix input configuration produced an accuracy 60.58%. A one-tailed
t-test (p < 0.01) verified that the multiple matrix input method’s higher average
classification accuracy is statistically significant.
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Fig. 2. Diagram of RBG pixel input data using a single matrix. Groups of three squares
with the same level of shading represent the R, G and B channels of the same underlying
pixel. The diagram therefore encodes the RGB channels of four (2×2) underlying pixels
in a 4×3 matrix.

4.2 Probability of Input Connections

To evaluate the utility of a column having a sparse connection to the input
matrices, we experimented with adjustments to the p hyper-parameter. This
parameter governs the probability that a connection will be formed with any
given input element, as discussed in Section 2.

In these experiments we used the multiple input matrices method, using a
patch size of 6×6 and 200 columns. We ran tests using p values ranging from
0.05 to 0.8 in steps of 0.05. Given that the higher classification accuracies were
between 0.1 and 0.2 we ran further tests between 0.1 and 0.2 in steps of 0.01.
The results from these tests are graphed in Figure 3.
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Fig. 3. Average classification accuracy with changes to the probability of input con-
nection or p hyper-parameter value.

As can be seen from Figure 3, the accuracy has a broad ‘peak’ between 0.1
and 0.2, before trending lower as the value of p increases. The highest accuracy
was achieved using a value of 0.14 with an average accuracy of 64.66%.
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4.3 Number of Features, Patch Size and Whitening

In line with [3], we performed a series of experiments with ASP while varying
various dimensions of the feature extraction/classification framework. On the
basis of the results of the previous experiments, we applied the multiple input
matrix method, a p hyper-parameter value of 0.14 and performed experiments
using six different numbers of features (100, 200, 400, 800, 1200 and 1600), three
different patch sizes (6×6, 8×8 and 12×12) and with and without whitening.
The results from these experiments are graphed in Figure 4 and the results from
the best performing configurations of the framework are presented in Table 1
alongside the best results listed in [3].
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Fig. 4. Average classification accuracy with changes to the number of features. Key
represents patch size and WHT indicates data was whitened.

The highest average ASP classification accuracy achieved in these tests was
72.88% using a patch size of 6×6, 1600 features and unwhitened input. As can
be seen from the graph in Figure 4, as we increase the feature count, the clas-
sification accuracies increase for all patch sizes, with or without whitening. The
smallest patch size (6×6) consistently achieves the higher classification accuracy,
while the largest (12×12) achieves the lowest. However the gap between the patch
size accuracies becomes smaller as the feature count increases, with the differ-
ence between 6×6 and 12×12 (unwhitened) patches reducing from 4.075% at
100 features down to 3.415% at 1600 features. However, the difference between
6×6 and 8×8 patches is less pronounced: at 1600 features it is only 0.265%
when unwhitened and when whitened becomes negligible after 800 features. In
addition, the whitened patches all have lower accuracies than their unwhitened
equivalents, with a highest whitened accuracy of 70.58% (using a 6×6 patch size
and 1600 features) which is 2.3% less than its unwhitened equivalent.
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Table 1. Average classification accuracy using ASP (left) and algorithm results from
[3] (right). These results all used 1600 features except where noted.

Algorithm/Patch Size Accuracy Algorithm Accuracy

ASP 6×6 72.9% Sparse auto-encoder 73.4%
ASP 8×8 72.6% Sparse RBM 72.4%
ASP 12×12 69.5% k-means (hard) 68.6%
ASP 6×6 (whitened) 70.6% k-means (triangle) 77.9%
ASP 8×8 (whitened) 70.5% k-means (triangle, 4000 features) 79.6%
ASP 12×12 (whitened) 67.6%

5 Discussion

The main aim of this research is to have developed a version of the ASP algo-
rithm that is competitive with other state-of-the-art feature detection algorithms
in the domain of colour image classification. The experimental results show that
we have been broadly successful in achieving this aim. Firstly, the two basic in-
novations we have introduced, viz overcompleteness and topography-preserving
multichannel connectivity, have both produced significant performance enhance-
ments on the CIFAR data set, and secondly, incorporating these innovations
into ASP has produced classification accuracies comparable to the algorithms
reported in the Coates et al. study.

5.1 Improving ASP

The results in Section 4.1 show that a multiple matrix input configuration can
produce a statistically significant improvement in classification accuracy in com-
parison to a single matrix configuration. This indicates that our topography-
preserving strategy is effective on colour image data.

In addition, the results in Section 4.3 show that increasing the number of ASP
columns to exceed the number of inputs (i.e. to produce overcomplete encodings)
has a strong positive effect on classification accuracy. This is illustrated in Figure
4, where increasing the feature count consistently improves the performance
on all configurations of the extraction/classification framework. Although the
improvements begin to taper off as the feature count increases, we still see an
increase between 1200 and 1600 features, which (when using a patch size of
6×6) have an overcomplete ratio of 11.11 and 14.81, respectively. This ability
of ASP to continue to encode useful features of natural images at this level of
overcompleteness is desirable, particularly given that V1 is believed to have an
overcomplete ratio of over 100 [1].

The results in Figure 4 also show that a patch size of 6×6 consistently pro-
duces higher classification accuracies on unwhitened input. However, the distinc-
tion between the whitened 6×6 and 8×8 patches becomes unclear as the number
of features reaches and exceeds 800. These results, as well as the generally lower
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classification accuracies on whitened patches, indicate that ASP is using infor-
mation that is being discarded in the whitening process to usefully distinguish
features in unwhitened data.

The graph in Figure 3 shows that increasing the value of the p hyper-
parameter, and thereby connecting each column to more data elements, does
not necessarily improve performance. Instead an optimum level of sparsity ap-
pears around 0.15, after which increasing column connectivity causes column
synapses to overlap in such a way as to degrade their discriminatory power. Set-
ting p at 0.15 was also found to work well in previous studies evaluating ASP on
character recognition and greyscale images [15, 23], indicating that this setting
is robust to different kinds of input.

5.2 Comparing ASP

Table 1 shows that the highest performing algorithm from the experiments in [3]
is k-means with triangle activation, a result which the authors describe as “sur-
prising”. This algorithm differs from the more commonly used k-means clustering
(shown as k-means (hard) in Table 1), by applying a competitive coding scheme
where the more distant centroids are set to zero. This coding scheme reflects a
more simplistic form of competition compared to ASP’s cortically inspired in-
hibition model. It does, however, illustrate the effectiveness of competition in
forming sparse codes, producing a 10% increase in classification accuracy over
k-means (hard), which otherwise would have been the least effective algorithm
in the study.

ASP’s performance in the current study most closely matches that of the
sparse auto-encoder and sparse restricted Boltzmann machine (RBM) reported
in [3], with ASP’s accuracy of 72.9% sitting midway between the 72.4% of the
RBM and the 73.4% of the auto-encoder. These two algorithms have performed
well as single layer feature detectors across a broad range of domains [16, 4, 20]
and have also been ‘stacked’ together to form multilayer deep learning networks
[24, 11] in a way that is loosely analogous to the incorporation of ASP into
the HTM framework. Our results therefore show that ASP’s feature detecting
abilities are at least competitive with other widely used and comparable feature
detecting algorithms.

However, given ASP is outperformed by k-means with triangle activation,
we must emphasise that the aim of this study is not to have developed the best
possible feature detector for colour images, it is to have developed a version of
ASP that is effective in discriminating features in colour images. ASP itself is
of interest because it represents a biologically plausible model of the kind of
feature detection that may be occurring in the neocortex (for example, it uses
continuous online Hebbian learning, inter-column inhibition, sparse distributed
representations and dynamic creation and destruction of synapses). In addition,
ASP is only a component of a larger unified model of the neocortex, whose overall
function is not to detect static features of images, but to learn temporal sequences
of inputs within a system of mini-columns that are engaged in a hierarchically-
structured system of sequence prediction. Consequently, a full evaluation of ASP
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can only occur within the context of a complete HTM implementation. In the
current research, we are instead interested in developing the best possible spatial
pooler within the constraints and requirements laid down by the overall HTM
system. To this end, our basic contribution is to have improved the original
version of ASP so that it can now more effectively handle the dimensionality of
colour data.

6 Conclusions

The primary contributions of this paper are as follows:

1. We have shown that maintaining the topographic relationship of colour im-
age data is an important factor in the classification performance of ASP and
we have provided a simple but generalisable approach to achieve this using
the multiple input matrices method.

2. We have presented a suitable way of producing overcomplete ASP feature
sets and have demonstrated that these feature sets improve recognition clas-
sification as the degree of overcompleteness increases.

3. We have shown, in the domain of colour image classification, that using ASP
as a single layer feature detector is competitive with the performance of both
sparse auto-encoders and sparse restricted Boltzmann machines.

In future work we plan to integrate ASP with a temporal pooler in a hierarchy
of regions and investigate how feedback between regions can be used to improve
the system’s ability to predict its own input.
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