
Dynamic Constraint Weighting for

Over-Constrained Problems

John Thornton1 and Abdul Sattar2

1School of Information Technology, Griffith University Gold Coast

Parklands Drive, Southport, Qld 4215, Australia
j.thornton@eas.gu.edu.au

2School of Computing and Information Technology, Griffith University

Kessels Road, Nathan, Qld, 4111, Australia
sattar@cit.gu.edu.au

Abstract. Many real-world constraint satisfaction problems (CSPs) can be
over-constrained but contain a set of mandatory or hard constraints that have to
be satisfied for a solution to be acceptable. Recent research has shown that
constraint weighting local search algorithms can be very effective in solving a
variety of CSPs. However, little work has been done in applying such
algorithms to over-constrained problems with hard constraints. The difficulty
has been finding a weighting scheme that can weight unsatisfied constraints and
still maintain the distinction between the mandatory and non-mandatory
constraints. This paper presents a new weighting strategy that simulates the
transformation of an over-constrained problem with mandatory constraints into
an equivalent problem where all constraints have equal importance, but the
hard constraints have been repeated. In addition, two dynamic constraint
weighting schemes are introduced that alter the number of simulated hard
constraint repetitions according to feedback received during the search. The
dynamic constraint weighting algorithms are compared with two algorithms
that maintain a fixed number of hard constraint repetitions, using a test bed of
over-constrained timetabling and nurse rostering problems. The results show
the dynamic strategies outperform both fixed repetition approaches.

1 Introduction

Recent research has shown that local search techniques can be remarkably effective in
solving certain classes of Constraint Satisfaction Problem (CSP) [10]. Particular
interest has focussed on the use of GSAT and variants to solve Conjunctive Normal
Form (CNF) satisfiability problems [7]. Attempts to improve GSAT have lead to the
development of a new class of clause weighting algorithms [6]. These algorithms
escape local minimum situations by adding weights to unsatisfied clauses. Further
research has looked at applying constraint weights to more general CSPs [8], and at

improving the weighting strategy by weighting the connections between constraints
[9]. Cha et al. [2] have also looked at using clause weighting in solving an over-
constrained timetabling problem. This paper further investigates the use of weighted
local search in solving over-constrained problems.
 An over-constrained problem is defined as a standard CSP (ie as a set of variables,
each with a set of domain values and a set of constraints defining the allowable
combinations of domain values for the variables) with the additional proviso that no
combination of variable instantiations can simultaneously satisfy all the constraints.
The objective therefore becomes to satisfy as many as possible of the constraints
[10]. Given all constraints are of equal importance, a standard weighting algorithm
can be applied to an over-constrained problem with minimal modification (see section
2). However, most realistic over-constrained problems involve constraints of varying
levels of importance. Typically there is a set of hard constraints that have to be
satisfied (otherwise the solution is not acceptable) and a set of soft constraints whose
satisfaction is desirable but not mandatory. The simplest way to represent the relative
importance of a constraint is to give it a weight. However, a weighting algorithm
already applies weights to constraints during the search when escaping local minima.
The question then arises, how can a weighting algorithm add weights to constraints
without distorting the original weights that indicate the relative importance of the
constraints? The primary purpose of the paper is to answer this question.
 Cha et al. [2] proposed an initial answer by calculating fixed hard constraint
weights based on an analysis of the problem domain. The present study describes two
algorithms that dynamically calculate the relative weights of hard and soft constraints
during program execution. This means the approach is independent of specific
domain knowledge and produces a more extensive search of the problem space. By
analysing a set of over-constrained problems, for which there are known optimal
answers, the study shows the two dynamic weighting schemes perform at least as well
as an ideal weight incrementing scheme that relies on foreknowledge of an optimal
answer (a situation not usually found in practice).
 The motivation of the study is to encourage the implementation of local search
weighting techniques developed in the domain of CNF satisfiability to the more
complex ‘real-world’ of constraint satisfaction. The dynamic weight incrementing
algorithms allow constraint weighting to be efficiently applied to over-constrained
systems that have already been weighted. The remainder of the paper describes the
algorithms used in the study, followed by an experimental evaluation of constraint
weighting based on a test-bed of real-world staff scheduling and timetabling
problems.

2 Constraint Weighting Algorithms
Constraint weighting algorithms are extensions of local search or iterative repair. An
iterative repair algorithm starts with an initial instantiation of all problem variables
and attempts to improve this solution by repeatedly selecting the ‘best’ improving
local move. The algorithm terminates when no further improving move can be found.
This simple approach proves very effective for many problem domains (for instance
see [5]). However, a local search frequently terminates on a non-optimal solution or

local minimum, and a method is required to escape and continue the search. A simple
approach is to restart the algorithm from a different initial position. GSAT accepts
moves of equal cost in an attempt to find a better move later in the search. Other
approaches include randomly selecting a move (as in simulated annealing and random
walk [7]) and selecting the best move that does not repeat a previous move (as in tabu
search [4]). Constraint weighting takes the approach of adding a weight to all violated
constraints in a local minimum [6]. This changes the cost surface of the problem until
a lower cost solution becomes accessible. This is illustrated in the following example:

Example. Consider the over-constrained graph colouring problem in figure 1. The
nodes a, b, c and d represent the variables or areas to be coloured, each having a two
value domain {red, green}, and the arcs cab, cac, cbc, cbd and ccd represent the
constraints a ≠ b, a ≠ c, b ≠ c, b ≠ d and c ≠ d respectively. Using a simple cost
function, such that each constraint violation adds a cost of w to the solution, the
situation in figure 1(a) represents a local minimum of cost 2w. A constraint weighting
algorithm would continue by adding a further weight w to each violated constraint
until the cost of the solution becomes 4w. This alters the problem so that a choice of
lower cost moves become available. Figure 1(b) shows the effect of changing the
value of d to green, causing cbd to be violated at a cost increase of w, but satisfying ccd
at a cost decrease of 2w. From 1(b) the best cost decreasing move is to change b to
red, leading to the (optimal) solution in 1(c) where only one constraint, cbc, is
violated:

a
green

b
red

c
red

d
green

cab = 0

cac = 0 ccd = 0

cbd = 0

cbc = w

a
green

b
green

c
red

d
red

cab = w

cac = 0 ccd = w

cbd = 0

cbc = 0 a
green

b
green

c
red

d
green

 cab = 2w

cac = 0 ccd = 0

cbd = w

cbc = 0

 (a) Local minimum, cost 2w (b) After Weighting, cost 3w (c) Final solution, cost w

Fig. 1: Graph Colouring CSP

Figure 2 gives the pseudocode for the basic constraint weighting strategy used in the
study. As the algorithm solves over-constrained problems, it needs to keep track of
the best solution currently found in the search. This is not required for standard CSPs
because a clear stopping condition exists (ie when all the constraints are satisfied).
However, for over-constrained problems, it is generally not known when an optimal
solution is found (unless some other complete method has initially solved the

problem). Instead, the search terminates when it has continued for sufficiently long
without finding an improving move. This means the terminating solution cannot be
the best solution, hence the need to store each successive best solution as it is found.
 In addition, a constraint weighting algorithm may discover an optimum solution
during the search, but fail to recognise it because the current constraint weights make
another move more attractive. Therefore the algorithm must also calculate the
unweighted cost of each move and use this measure to evaluate the best solution.

procedure WeightedIterativeRepair
begin
 CurrentState ← set variables to initial assignments
 BestCost ← UnweightedCost(CurrentState), BestState ← CurrentState, StuckCounter ← 0
 while UnweightedCost(BestState) > DesiredCost and StuckCounter < MaxStucks do
 if CurrentState is not a local minima then
 for each variable vi involved in a constraint violation
 for each move mj in the domain of vi
 if UnweightedCost(CurrentState + mj) < BestCost then
 BestState ← CurrentState + mj
 BestCost ← UnweightedCost(CurrentState + mj)
 if WeightedCost(CurrentState + mj) < WeightedCost(CurrentState) then
 CurrentState ← CurrentState + mj
 end for
 end for
 else
 IncreaseViolatedConstraintWeights()
 StuckCounter ← StuckCounter + 1
 end while
end

Fig. 2. The Weighted Iterative Repair Algorithm

2.1 Weighting with Hard and Soft Constraints

Constraint weighting was developed as an enhancement to GSAT for CNF problems.
Empirical studies have shown clause weighting to be one the best approaches for
CNF satisfiability [1] [3] [7]. Further work has looked at applying constraint
weighting to more general CSPs such as nurse rostering [8], university timetabling
[2], graph colouring and blocks world planning [7]. Several enhancements to
weighting have also been proposed, including causing weights to decay over time [3],
adding new clauses for CNF problems [1] and weighting connections between
constraints [9].
 Constraint weighting is therefore recognised as an important and effective
technique for solving hard CSP problems. As yet, however, there has been little work
in applying constraint weighting to more realistic over-constrained problems
involving hard and soft constraints. A pioneering work in this area was Cha et al.’s
paper on university timetabling [2]. They converted a small graduate student
timetabling problem into CNF format, dividing the clauses into hard and soft
constraints. The hard constraint clauses were limited to being either all positive or all
negative literals, reflecting the restriction that the problem of satisfying the hard

constraints must be relatively easy. The greater importance of the hard constraints
was then represented by adding a fixed weight to each hard constraint clause.
 Thornton and Sattar [8] also looked at solving a set of realistic over-constrained
nurse rostering problems using constraint weighting. In their approach only violated
hard constraint weights are incremented at a local minimum. A soft constraint
heuristic is then used to bias the search towards solutions that satisfy a greater
number of soft constraints. However, empirical tests showed the soft constraint
heuristic, although causing some improvement, was rarely able to find the (already
known) optimal solutions.
 Both Cha et al. and Thornton and Sattar’s algorithms attempt to satisfy as many as
possible soft constraints while looking for a solution that satisfies all hard constraints.
Once such a solution is found, a limited search is made for the best soft constraint
cost and then the algorithms are either terminated or reset. Cha et al. reset their
constraint weights because, in further searching, the distinction between hard and soft
constraints weights is lost (due to the weighting action of the algorithm) and the
search is no longer able to find acceptable solutions. In Thornton and Sattar’s
approach the algorithm terminates because there is no mechanism that allows the soft
constraint weights to increase, so the search is unable to move out of it’s local area.

Maintaining the Hard Constraint Differential. One of the contributions of this
study is the extension of Cha et al.’s concept of repeating hard constraints [2]. If each
hard constraint is actually repeated in a problem (say n times) then, when a hard
constraint is violated in a local minimum, all n copies of the constraint would receive
a weight increment, causing a total increase in cost of n × w. This can be simulated, as
with Cha et al., by giving each hard constraint an initial weight of n. The new step is
to increment each hard constraint violated at a local minimum with a weight of n × w
instead of w (soft constraint violations are still incremented by w). Such a system
behaves identically to a system where all constraints have equal weight, with each
hard constraint repeated n times. Previous studies have already demonstrated that
simple constraint weighting is an effective search strategy. Therefore we should
expect our new hard constraint weighting strategy to be equally effective.
 In order to adequately explore the search space, a constraint weighting algorithm
must be able to move from one area to another where all hard constraints are satisfied,
via intermediate solutions where some hard constraints are violated. Unlike the
previously discussed algorithms, the new hard constraint weighting strategy is able to
do this systematically rather than accidentally:

Example. Consider the situation in figure 3: A, B, c and d represent four constraints
in an unspecified over-constrained problem, where A and B are hard constraints, c
and d are soft constraints, and wA, wB, wc and wd represent the constraint weights of A,
B, c and d respectively. Let the number of hard constraint repetitions n = 3 and the
weight increment w = 1. Hence, the soft constraints are given initial weights wc = wd =
w = 1, and the hard constraints are given initial weights wA = wB = n × w = 3. Figure
3(a), represents the first local minimum found in the search, where all hard
constraints are satisfied and both soft constraints are violated. As yet no weights have
been added by the search so the cost of the solution = wc + wd = 2. A constraint

weighting algorithm will now add weight w to c and d, making wc = 2 and wd = 2, and
a new solution cost = 4. If we assume there is no move available that does not violate
both hard constraints, then we are still at a local minimum (as wA + wB > wc + wd) and
the soft constraints will be incremented twice more until wc + wd = 4. In this case the
cost of violating both hard constraints (6) is less than the cost of violating both soft
constraints (8), so the move which violates both hard constraints will be accepted
(shown in figure 3(b)). Assuming this solution is another local minimum, the weights
of a and b are now incremented. In Cha et al.’s scheme, wA and wB will be
incremented by w to 4 (figure 3(c)), whereas in the new constraint weighting scheme
wA and wB will each be incremented by n × w to 6 (figure 3(d)). Here the crucial
difference between the two approaches is evident. In Cha et al.’s solution all
constraints now have the same weight and there is no way to further distinguish
between the hard and soft constraints. This means the search has no guidance
towards solutions which satisfy the hard constraints. In the new constraint weighting
strategy, the soft constraints have been allowed to overpower the hard constraints, but
as soon as a hard constraint is violated the dominance of the hard constraints is
reasserted and the search will now concentrate on finding another solution where all
hard constraints are satisfied.

d
wd =4

c
wc =4

B
wB =4

A
wA =4

 (c)

Cost=wA+wB =8
Increment = w

(b) Cost=wc+wd =8

d
wd =4

c
wc =4

B
wB =3

A
wA =3

(a) Cost=wc+wd =2

d
wd =1

c
wc =1

B
wB =3

A
wA =3

d
wd =4

c
wc =4

B
wB =6

A
wA =6 (d)

Cost=wA+wB =12
Increment = nw

Fig. 3. Weighting Hard and Soft Constraints

Deciding the Initial Hard Constraint Weights. Cha et al. [2] recognised the crucial
question for their research was to find the best number of repetitions of the hard
constraint clauses. In the extreme case, the weight on each hard constraint can be set
to equal the total initial cost of violating all soft constraints plus one (as in the
previous example). However, such a scheme when applied to their timetabling
problem places very large initial weights on the hard clauses. In practice they found
the hard constraint clauses are quickly satisfied with such weights, but high levels of
soft constraint violation remain. At the other extreme, giving insufficient weight to
the hard constraints results in a search that is unlikely to find any solution where all
hard constraints are satisfied (although soft constraint satisfaction would be very
high).
 The issue of the number of repetitions is equally important to the new constraint
weighting scheme. The greater the difference between the initial hard and soft
constraint weights the slower the search will be, as it will take longer to build up

weights on the soft constraints. However, setting the initial hard and soft constraint
weights too close together will cause the search to excessively explore areas of hard
constraint violation where (by definition) no acceptable solution can exist. Worse
still, the search may approach an optimum solution but fail to converge on it because
of the over-valuing of the soft constraints. The question therefore arises, how much
weight is too much and how much is too little? Cha et al.’s answer was to look at
their particular problem and calculate the average number of soft constraint violations
that would be caused by satisfying a currently violated hard constraint (they assume
that most constraints are already satisfied). They then use this value to set the initial
hard constraint weights. Clearly there are problems with this approach. Firstly, the
number soft violations caused by the satisfaction of a hard constraint will vary within
the search space and secondly, the method requires a detailed analysis of the search
space.

2.2 Dynamic Constraint Weighting

A useful property for a hard and soft constraint weighting algorithm would be the
ability to learn the correct ratio of hard to soft constraint weights during the search
itself. Consequently, the second contribution of the paper is the development and
empirical evaluation of two such dynamic constraint weighting strategies.

Downward Weight Adjustment (DWA). The first strategy, Downward Weight
Adjustment, involves starting the search with the number of repetitions, n, set to the
total number of soft constraints + 1 (ie the maximum value). Then, as soon as a
solution is found where all hard constraints are satisfied (ie an acceptable solution),
the value of n is adjusted downwards to equal the number of soft constraints currently
violated (scur). Each time a new acceptable solution is found such that scur < n, then n
is set to scur (the new best level of soft constraint violation), ie the number of hard
constraint repetitions is dynamically adjusted according to the best solution found so
far in the search.
 This approach is based on the insight that number of hard constraint repetitions, n,
should not be set to less than the optimum number of soft constraint violations, sopt. If
n is less than sopt then the search will tend to prefer a solution where a hard constraint
is violated over an optimal solution. If n is close to but greater than sopt then the
search may prefer a single hard constraint violation over many non-optimal
acceptable solutions, but will still prefer an optimal solution. However the value of
sopt is generally unknown (unless a complete method has already solved the problem).
Therefore, Downward Adjustment Weighting keeps making a closer and closer
estimate of sopt by resetting the value of n each time a new unweighted cost reducing
solution is found. However, the definition of unweighted cost has become more
complex due to introduction of constraint repetition. Now the unweighted cost equals
the number of violated constraints including repetitions and the weighted cost equals
the sum of the weights of all violated constraints including repetitions. Put more
formally, consider an over-constrained problem with a set of hard constraints H = {h1,
h2, h3, ... hk} and a set of soft constraints S = {s1, s2, s3, ... sj}. Each hard constraint has
a weight whi, i = 1... k, and each soft constraint has a weight wsi, i = 1 ... j, where the

weight i equals the number of times constraint i has been violated in a local
minimum. Letting n be the number of hard constraint repetitions, CH be a vector with
elements chi, where i = 1... k, such that element chi = 0 if hi is satisfied and chi = 1
otherwise, and CS be a vector with elements csi, where i = 1 ... j, such that element csi
= 0 if si is satisfied and csi = 1 otherwise, then we have the following definitions:

 WeightedCost = n wh ch ws ci
i

k

i i
i

j

i
=

s
=

∑ ∑+
1 1

 (1)

 UnweightedCost = n ch ci
i

k

i
i

j

=
s

=
∑ ∑+

1 1
 (2)

(Note that n is equivalent to BestCost in figure 2). The analysis so far assumes a
weight increment of one and that constraints have only two states: satisfied or
violated. However, the approach can be easily extended to include different additive
or multiplicative weight increments and varying levels of constraint violation.

Flexible Weight Adjustment (FWA). The second dynamic constraint weighting
strategy involves adjusting the value of n according to the current state of the search.
We start with the smallest differential that distinguishes hard and soft constraints (ie n
= 2) and then proceed to increase the value of n by 1 each time a non-acceptable local
minimum is encountered. n is therefore increased to a level sufficient to cause all hard
constraints to be satisfied. Each acceptable local minimum encountered, causes n to
be reduced by 1, making it easier for hard constraints to be violated and so
encouraging the search to diversify out of the current local area. In effect, in non-
acceptable areas the search becomes increasingly attracted to acceptable areas and in
acceptable areas the attraction moves to the non-acceptable. Using the earlier
definitions of n, hi, si, whi and wsi, figure 4 gives the pseudocode necessary to
implement FWA (Note IncreaseViolatedConstraintWeights() is called from the main
constraint weighting algorithm in figure 2).

procedure IncreaseViolatedConstraintWeights()
begin
 TotalHardViolations ← 0
 for each violated hard constraint hi
 whi ← whi + 1
 TotalHardViolations ← TotalHardViolations + 1
 end for
 for each violated soft constraint si
 wsi ← wsi + 1
 end for
 if TotalHardViolations > 0 then n ← n + 1
 else if n > MinRepetitions then n ← n - 1
end

Fig. 4. The Flexible Weight Adjustment Algorithm

3 Experiments

3.1 Control Algorithms

The two dynamic weighting strategies were compared to two forms of fixed
weighting called MaxIncrement (MAX) and MinIncrement (MIN). MaxIncrement
sets the weights of all hard constraints to the total number of soft constraints plus one,
and increments all hard constraints by this amount in a local minimum. This is the
largest realistic setting for the constraint increment and favours solutions where all
hard constraints are satisfied at the expense of satisfying the soft constraints.
MinIncrement sets the weights of all hard constraints to the number of soft constraints
left unsatisfied in an optimal solution (plus one) and again increments by this value.
The optimum level of constraint violation is the smallest realistic setting for an
increment, otherwise the search is likely to ignore an optimum solution (see section
2.2). An implementation of Cha et al.’s reset algorithm [2] was also tried on our test
problems, but in most cases the algorithm was unable to find an acceptable solution.
Cha et al.’s approach assumes the initial problem of finding an acceptable solution is
relatively easy. In our test problems this was not the case.

3.2 Test Problems

The algorithms were tested on a set of 16 over-constrained nurse rostering problems
taken from real situations in a Queensland public hospital. The rostering problem
involves allocating a set of pre-generated legal schedules to each nurse in a roster,
such that all hard constraints involving numbers of staff for each shift are satisfied.
The soft constraints define how attractive a schedule is for a nurse. A typical problem
involves 25-35 nurses, each with up to 5,000 legal schedules, and approximately 400
constraints. Further details of the problems are described elsewhere [8]. One
attractive feature of the domain is that, although the problems are difficult for a local
search algorithm to solve, we have optimal answers for each problem obtained from
an integer programming application [8].
 The second over-constrained problem was taken from another real-life situation of
university timetabling. A single, large problem was considered involving 1237
classes, 287 full-time and part-time staff, 103 rooms and 1511 student groups of 1 to
5 students. In this problem the hard constraints are set to avoid timetable clashes and
the soft constraints define the preferred class times for staff members and student
groups. The problem proved too large to solve in total, so it was divided into 4 sub
problems: firstly laboratories are allocated, then lectures, then tutorials and finally the
remaining classes. The results reported here refer to solution times and constraint
satisfaction levels for phase two of the problem (laboratories + lectures).

3.3 Results

All problems were solved on a Sun Creator 3D-2000. For the rostering problems, the
algorithms were either terminated on finding an optimum solution, or after 250 local
minimum were encountered without improvement. The timetable problem, being

much larger and with no known optimal solution, was terminated after 75 phase two
iterations of the main program loop. The optimum timetabling solution was then
defined as the best solution found in all runs.
 Table 1 shows the average times and proportion of problems solved for seven runs
of each test problem with each algorithm. In all cases the averages are calculated only
for those runs that actually found an optimal solution. The results show the Flexible
Weight Adjustment algorithm (FWA) has the best overall performance on both
problems (ie it equals or exceeds the other algorithms in the proportion of optimal
solutions found and has the smallest average execution times). The results also show
the MaxIncrement (MAX) algorithm is unable to reliably find optimal solutions (only
51% of roster and 29% of timetable runs were successful), and generally has longer
execution times for those problems it can solve.

 Roster Results Timetable Results
Method FWA MIN MAX DWA FWA MIN MAX DW

A
Mean time (secs) 141.3 169.6 306.7 159.5 674 1192 1163 900
% Optimal 79.5 78.6 50.9 76.8 86 86 29 86
% Unsolved 0.9 2.7 0.9 0 0 0 0 0

Table 1. Proportions and Average Solution Times for each Method and Problem

Overall, the dynamic weighting strategies (FWA and DWA) proved more efficient at
finding optimal solutions than the fixed weighting strategies (MIN and MAX).
However, an important element in evaluating local search is the solution path
represented by the so-called ‘anytime curve’ [10]. This plots the cost of the best
solution found in the search against execution time, and represents the quality of
solution that would be found if an algorithm were terminated at a particular point.
Anytime performance is significant for problems where there is insufficient time to
find an optimal solution, or the optimum is unknown, and so are relevant to over-
constrained problems. Figures 6 and 7 show the anytime curves for each method and
problem type. In these graphs, the y-axis represents the sum of all soft constraint
costs of the best solutions found at a given time for all runs of an algorithm.

4 Analysis

Figures 6 and 7 show the evaluation of the algorithms is more complex than a simple
comparison of execution times. There is little to distinguish each algorithm in the
timetable problem curves (figure 6), but these results are for a single problem,
repeatedly solved, hence it would be unwise to generalise. With the roster curves in
figure 7 (using 16 problem instances), the DWA curve is noticeably lower than the
other curves. Although DWA’s ability to find an optimal solution is slightly inferior
to FWA, the faster descent of DWA indicates it may be more useful when looking for
‘good enough’ solutions. FWA is more appropriate for longer searches where small
cost improvements are considered important. These results can be inferred from the

algorithms directly: DWA initially places greater importance on the hard constraints
and only slowly reduces these weights. Therefore we would expect DWA to quickly
find acceptable solutions of reasonable quality. Then, as DWA approaches an
optimum it will find it harder to move by violating a hard constraint, because the
relative weights of the hard and soft constraints are only adjusted when a new best
solution is found. In contrast, FWA starts by strongly valuing the soft constraints, and
so finds acceptable solutions more slowly. However, as FWA’s ability to adjust
weights remains constant regardless of the distance from an optimum solution, we
would expect FWA to be more effective in the later stages of the search.

0

100

200

300

400

500

600

700

0 250 500 750 1000

Time

To
ta

l S
of

t C
on

st
ra

in
t C

os
t

FW A

MIN

MAX

DW A

Fig 6. Anytime Curves for the Timetabling Problem

0

1000

2000

3000

4000

5000

6000

7000

8000

0 250 500 750 1000

Time

To
ta

l S
of

t C
on

st
ra

in
t C

os
t

FW A

MIN

MAX

DW A

5

 Fig 7. Anytime Curves for the Roster Problems

An interesting result of the study is that both flexible weighting strategies have
performed slightly better than the MinIncrement (MIN) algorithm. MinIncrement
uses what is probably the best fixed increment (ie the optimal solution cost), a value
that would typically be estimated from an analysis of the problem domain (as in Cha
et al.’s study). In contrast, the dynamic weighting strategies do not rely on domain
knowledge, and so avoid the effort and possible errors in using fixed increments,
while delivering at least comparable performance.

5 Conclusions and Further Work

The main contributions of the paper are as follows
• The development of a constraint weighting strategy that simulates the

transformation of an over-constrained problem with hard and soft constraints into
an equivalent problem with a single constraint type, where the importance of each
hard constraint is represented by repetition.

• The development of two dynamic constraint weighting strategies that adjust the
number of repetitions of each hard constraint through dynamic feedback with the
search space.

• The empirical evaluation of the new weighting strategies.
The main finding of the study is that both dynamic weighting strategies outperform
alternative fixed weighting strategies on a test bed of over-constrained timetable and
nurse rostering problems. Clearly further empirical work is required to evaluate
proposed algorithms. Future research will look at timetabling in more detail and at
solving random over-constrained CSP and CNF problems. We will also look at
comparing dynamic constraint weighting with other local search techniques such as
WSAT, simulated annealing and tabu search.

References

1. B. Cha and K. Iwama. Adding new clauses for faster local search. In Proc. of

AAAI-96, pages 332-337, 1996.
2. B. Cha, K. Iwama, Y. Kambayashi and S. Miyazaki. Local search algorithms

for partial MAXSAT. In Proc. of AAAI-97, pages 332-337, 1997.
3. J. Frank. Learning short-term weights for GSAT. In Proc. of AAAI-97, pages

384-389, 1997.
4. F. Glover. Tabu search - part 1. ORSA J on Computing, 1(3):190-206, 1989.
5. S. Minton, M. D. Johnston, A. B. Philips and P. Laird. Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling problems.
Artif. Intell., 58:161-205, 1992.

6. P. Morris. The breakout method for escaping local from minima. In Proc. of
AAAI’93, pages 40-45, 1993.

7. B. Selman and H. Kautz. Domain independent extensions to GSAT: Solving
large structured satisfiability problems. In Proc. of IJCAI’93, pages 290-295,
1993.

8. J. R. Thornton and A. Sattar. Applied partial constraint satisfaction using
weighted iterative repair. In A. Sattar editor, Advanced Topics in Artificial
Intelligence, pages 57-66. Springer-Verlag, 1997.

9. J. R. Thornton and A. Sattar. Using arc weights to improve iterative repair. In
Proc. of AAAI ‘98, (to appear), 1998.

10. R. J. Wallace and E. C. Freuder. Heuristic methods for over-constrained
constraint satisfaction problems. In M. Jampel, E. Freuder and M. Maher,
editors, Over-Constrained Systems, pages 207-216. Springer-Verlag, 1996.

