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Abstract 
 

One of the challenges for the constraint satisfaction community has been to develop 

an automated approach to solving Constraint Satisfaction Problems (CSPs) rather than 

creating specific algorithms for specific problems. Much of this work has concen-

trated on the development and improvement of general purpose backtracking tech-

niques. However, the success of relatively simple local search techniques on larger 

satisfiability problems [Selman et al. 1992] and CSPs such as the n-queens [Minton et 

al. 1992] has caused interest in applying local search to constraint satisfaction. In this 

thesis we look at the usefulness of constraint weighting as a local search technique for 

constraint satisfaction. The work is based on the clause weighting ideas of Selman 

and Kautz [1993] and Morris [1993] and applies, evaluates and extends these ideas 

from the satisfiability domain to the more general domain of CSPs. Specifically, the 

contributions of the thesis are: 

 

• The introduction of a local search taxonomy. We examine the various better 

known local search techniques and recognise four basic strategies: restart, ran-

domness, memory and weighting. 

 

• The extension of the CSP modelling framework. In order to represent and effi-

ciently solve more realistic problems we extend the CSP modelling framework to 

include array-based domains and array-based domain use constraints. 

 

• The empirical evaluation of constraint weighting. We compare the performance 

of three constraint weighting strategies on a range of CSP and satisfiability prob-

lems and with several other local search techniques. We find that no one tech-

nique dominates in all problem domains. 
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• The characterisation of constraint weighting performance. Based on our em-

pirical study we identify the weighting behaviours and problem features that fa-

vour constraint weighting. We conclude weighting does better on structured prob-

lems where the algorithm can recognise a harder sub-group of constraints. 

 

• The extension of constraint weighting. We introduce an efficient arc weighting 

algorithm that additionally weights connections between constraints that are simul-

taneously violated at a local minimum. This algorithm is empirically shown to out-

perform standard constraint weighting on a range of CSPs and within a general 

constraint solving system. Also we look at combining constraint weighting with 

other local search heuristics and find that these hybrid techniques can do well on 

problems where the parent algorithms are evenly matched.  

 

• The application of constraint weighting to over constrained domains. Our em-

pirical work suggests constraint weighting does well for problems with distinctions 

between constraint groups. This led us to investigate solving real-world over con-

strained problems with hard and soft constraint groups and to introduce two dy-

namic constraint weighting heuristics that maintain a distinction between hard and 

soft constraint groups while still adding weights to violated constraints in a local 

minimum. In an empirical study, the dynamic schemes are shown to outperform 

other fixed weighting and non-weighting systems on a range of real world prob-

lems. In addition, the performance of weighting is shown to degrade less severely 

when soft constraints are added to the system, suggesting constraint weighting is 

especially applicable to realistic, hard and soft constraint problems.  
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Definitions of Abbreviations and Terms 
 
AIM refers to satisfiability problems created using an AIM generator (named after 

Asahiro, Iwama and Miyano, see [Asahiro et al., 1993]). The special feature of 
an AIM generator is that it can build single solution problems. 

 
ARCWGT a local search constraint weighting heuristic that additionally weights con-

straints that are simultaneously violated at a local minimum. 
 
BEST a stochastic local search heuristic that either moves randomly or selects the 

best cost move according to a probability or noise level p. 
 
BESTWGT a local search heuristic that combines BEST and MOVEWGT. 
 
bin40 refers to the randomly generated binary CSPs used in the thesis with 30 vari-

ables, each with 10 domain values, a constraint density of 40% and a con-
straint tighness of 32%.  

 
bin80 refers to the randomly generated binary CSPs used in the thesis with 30 vari-

ables, each with 10 domain values, a constraint density of 80% and a con-
straint tighness of 17%.  

 
CNF Conjunctive Normal Form: CNF problems are made up of a conjunction of 

clauses of disjunct literals. 
 
CSP Constraint Satisfaction Problem: a CSP is a problem expressed in terms of 

variables with domain values and constraints that define the allowable combi-
nations of domain values for the variables. A solution to a CSP is an instantia-
tion of all variables such that all the constraints are satisfied. 

 
Ct Constancy measure that looks at the amount of change in the top 10% of 

weighted constraints during a search. 
 
DIMACS benchmark refers to the set of benchmark satisfiability problems available 

from the Center for DIscrete MAthematics and Computer Science at 
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf. 

 
DWA Downward Weight Adjustment: a dynamic local search constraint weighting 

heuristic for hard and soft constraint problems where the hard constraint 
weight multiplier is initially set to the total number of soft constraints + 1. 
Hard weight is then adjusted downwards during the search to equal the num-
ber of soft constraints violated in the best solution found so far + 1. 



Definitions of Abbreviations and Terms   xii

EFLOP Escaping From Local Optima by Propagation: a local search heuristic that 
uses value propoagation to escape from local minima [Yugami et al., 1994]. 

 
FWA Flexible Weight Adjustment: a dynamic local search constraint weighting heu-

ristic for hard and soft constraint problems where the hard constraint weight 
multiplier is initially set to the weight of a soft constraint + 1. This weight is 
then incremented at a local minimum if any hard constraints are violated, oth-
erwise it is decremented. 

 
GLS Guided Local Search: a local search technique developed by [Voudouris and 

Tsang, 1996] that penalises problem features at a local minimum according to 
a utility function. 

 
GSAT original local search heuristic proposed by Selman et al. [1992] for solving 

satisfiability problems. 
 
HSAT a variant of GSAT proposed by [Gent and Walsh, 1993] that breaks ties on 

equal cost moves by considering when a move was last made. 
 
k-SAT refers to satisfiability problems with a fixed number of k literals in each 

clause, e.g. 3-SAT problems all have 3 literals per clause. 
 
ii32 refers to the inductive inference problems from the DIMACS challenge set 

used in the thesis (namely ii32b3, ii32c3, ii32d3 and ii32e3). 
 
MAX a local search constraint weighting heuristic for hard and soft constraint prob-

lems where the hard constraint weight multiplier is fixed to the total number of 
soft constraints + 1.  

 
MAX-SAT refers to over-constrained satisfiability problems where the objective is to 

satisfy as many clauses as possible. 
 
MIN a local search constraint weighting heuristic for hard and soft constraint prob-

lems where the hard constraint weight multiplier is fixed to the number of soft 
constraints violated in an optimal solution + 1.  

 
MINWGT a local search constraint weighting heuristic that adds weight to violated 

constraints at a local minimum. 
 
MOVEWGT a local search constraint weighting heuristic that adds weight to a vio-

lated constraint when an overall cost improving move that also improves the 
constraint cannot be found.  

 
NOVELTY a stochastic local search heuristic proposed in [McAllester et al., 1997] 

that evaluates moves based on how recently the move was last made. 
 
NOVELTYWGT a local search heuristic that combines NOVELTY and 

MOVEWGT. 

  



Definitions of Abbreviations and Terms   xiii

par refers to the parity function learning problems from the DIMACS challenge 
set used in the thesis (namely par8-2-c and par8-4-c). 

 
PCSP Partial Constraint Satisfaction Problem: a formalism for representing and solv-

ing over-constrained problems by searching for a solution that partially satis-
fies the problem constraints (from [Freuder and Wallace, 1992]). 

 
r100  (also r200 and r400) refers to randomly generated 3-SAT problems (see k-

SAT above) with a clause to variable ratio in the cross-over region of 4.3 : 1. 
r100 refers to 100 variable problems, r200 to 200 variable problems, etc. 

 
RLFAP refers to Radio Link Frequency Assignment Problems based on the real prob-

lem of assigning frequencies to radio links (made available by the French Cen-
tre d’Electronique l’Armament at listserver@saturne.cert.fr). 

 
RNOVELTY a stochastic local search heuristic proposed in [McAllester et al., 1997] 

that evaluates moves based on how recently the move was last made and the 
relative costs of the two most promising moves.  

 
RNOVELTYWGT a local search heuristic that combines RNOVELTY and 

MOVEWGT. 
 
SA Simulated Annealing: a stochastic local search heuristic modelled after the 

physical cooling process of heated atoms [Abramson, 1992]. 
 
ssa refers to the circuit fault diagnosis problems from the DIMACS challenge set 

used in the thesis (namely ssa7552-038, ssa7552-158, ssa7552-159 and 
ssa7552-160). 

 
TABU a constraint sampling local search heuristic that avoids undoing recently made 

moves [Glover, 1989]. 
 
TABUWGT a local search heuristic that combines TABU and MOVEWGT. 
 
tt_rand  refers to the randomly generated timetabling problem set used in the thesis 

where classes are assigned student groups, staff and room requirements on a 
random basis. 

 
tt_struct  refers to the randomly generated timetabling problem set used in the thesis 

that reflects the structure of a realistic problem. 
 
UTILWGT a constraint weighting algorithm based on the utility function proposed 

in [Voudouris and Tsang, 1996]. 
 
WSAT  refers to a family of local search techniques that grew out of the original 

WalkSat heuristic [Selman et al., 1994] (includes BEST, NOVELTY and 
RNOVELTY). 
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Chapter 1 
 

Introduction 
 
 
In this chapter we informally introduce the idea of applying constraint weighting to 

constraint satisfaction. We then describe the problems addressed in the thesis and ex-

plain our motivation for solving them. Finally we present a summary of the contribu-

tions of the thesis and an outline of the remaining chapters. 

 

1.1 Constraint Weighting for Constraint Satisfaction 
 
1.1.1  Constraint Satisfaction 
 
Representing and solving problems involving constraints has important applications 

in artificial intelligence, including satisfiability testing, scheduling, image interpreta-

tion and planning. The idea of constraint satisfaction is to represent problem knowl-

edge by defining constraints on the allowable values of problem variables. In this way 

we can model many different problems within a common framework and so develop 

algorithms that exploit this framework (rather than concentrating on solving individ-

ual problems).  

As an example, consider the well-known n-queens problem: here the aim is to 

place n queens on an n × n chessboard so that no two queens are attacking one an-

other. To transform this into a constraint satisfaction problem (CSP) we need to iden-

tify the variables in the problem (the things that can change, i.e. the queens), the do-

mains of the variables (the values that each variable can assume, i.e. the chessboard 

squares) and the constraints between the variables (i.e. the limitation that no two 

queens can be on squares that are in the same row, column or diagonal). A CSP is 
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solved by finding an answer where all variables are instantiated (i.e. all queens are on 

the board) and all constraints are satisfied  (i.e. no queen is attacking another). An ex-

ample solution to the four queens problem is shown in figure 1.1. 

 

 

 

 

 

 
Q4

Q3

Q2

Q1

Fig. 1.1. An example solution to a four queens chess problem 

 

1.1.2 Constraint Satisfaction Algorithms  
 
Constraint satisfaction algorithms can be placed in two general categories: 

• Constructive (backtracking) algorithms 

• Local search (iterative repair) algorithms 

A constructive algorithm builds up answers incrementally, checking at each stage that 

all constraints are satisfied. In the n-queens example, this means placing queens on 

the board one at a time, making sure each new queen is not attacked by a previous 

queen, until an answer is found or there are no more unattacked squares. If no unat-

tacked squares are available, the algorithm will backtrack, undo an earlier move, and 

continue on again. Such algorithms are systematic (i.e. they are guaranteed to find all 

possible solutions to a problem) but on many problems have worst case exponential 

time complexity [Mitchell 1998].  

Local search techniques prove useful as problem sizes grow and the performance 

of constructive techniques starts to decline. Although not guaranteed to find an an-

swer, and with unpredictable performance, local search techniques have proved the 

best practical alternative for many larger CSPs. A local search strategy starts with a 

complete but flawed answer to a problem and then tries to find ‘local’ moves that im-

prove the overall cost of the answer. For the n-queens problem, this means starting 

with all n queens on the board and searching the domain of each queen for moves that 

reduce the total number of attacks. As each move changes the situation for all the 

other queens, we can repeatedly find the best move for different queens until a solu-
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tion is found or there are no moves left that reduce the number of attacks. In this sec-

ond case we have reached a local minimum. The challenge for all non-trivial local 

search techniques is to find the best way to avoid or escape local minima and carry on 

the search.  

 

1.1.3 Constraint Weighting 
 
In the early 90’s, [Morris, 1993] proposed a new local search heuristic for satisfiabil-

ity testing called Breakout. At the same time, [Selman and Kautz, 1993] proposed a 

similar clause weighting algorithm and later [Thornton and Sattar, 1997] introduced a 

constraint weighting heuristic for solving general CSPs. All three techniques share the 

same basic mechanism for escaping or avoiding local minima: placing weights on un-

satisfied constraints. This makes answers that violate weighted constraints more 

costly, changing the structure of the problem so that other answers become more at-

tractive. For example, consider the situation in figure 1.2a: Q1 is attacking Q2, and 

there is no single move that can improve the situation. Constraint weighting would 

increase the cost of violating the diagonal constraint between Q1 and Q2, making any 

position that violates another constraint more attractive. Hence we can move Q2 to the 

position in figure 1.2b and from there we can move Q4 and arrive at the solution in 

figure 1.1. 

 

Q4

Q2

Q3

Q1

Q2

Q4

Q3

Q1 

 

 

 

 (a) (b) 

Fig. 1.2. Constraint weighting four queens example 

 

Constraint weighting techniques have proved effective on smaller hard satisfiability 

problems [Morris, 1993; Cha and Iwama, 1995], leading to the development of spe-

cialised algorithms for satisfiability [Cha and Iwama, 1996; Castell and Cayrol, 1997; 

Frank, 1996] and the application of weighting to over-constrained problems [Cha et 

al., 1997], scheduling [Thornton and Sattar, 1997], neural networks [Davenport et al., 
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1994] and genetic algorithms [Bowen and Dozier, 1996]. In addition, other related 

techniques such as Guided Local Search (GLS [Voudouris and Tsang, 1996]) and the 

discrete Lagrangian method [Wu and Wah, 1999] use the principle of constraint 

weighting but explain and apply it in different ways. Basic constraint weighting (as 

proposed by Morris [1993]) does not require the tuning of parameter values to obtain 

optimum performance and has no domain dependent features1. This makes it an excel-

lent candidate as a general purpose constraint solving algorithm. As products like 

ILOG® have shown, there is significant scope for the practical application of con-

straint technology, and the techniques developed here are directly relevant to solving 

larger and/or over-constrained problems within such general purpose systems. 

 

1.2  Research Problems 
 
As we have seen, the constraint satisfaction paradigm models the world using vari-

ables, domains and constraints. In many practical applications, standard CSP repre-

sentations, while capturing the essential problem features, produce models that cannot 

be solved efficiently using general purpose CSP algorithms. This typically leads to 

the development of problem specific techniques and the abandonment of a general 

approach. We address this area by looking at the application of CSP techniques to two 

complex, real world scheduling problems, and examine general extensions to the CSP 

framework that can be used to produce efficiently solvable models. 

Constraint weighting was originally developed as a method for solving satisfiabil-

ity problems. Outside of the satisfiability domain, the relative performance of con-

straint weighting in comparison with other local search techniques is poorly under-

stood. We address this in an empirical study which looks at techniques from satisfi-

ability [McAllester et al., 1997] and tabu search [Glover, 1989], and investigates al-

gorithm performance on a range of different CSPs. In the process, we examine the 

behaviour of several constraint weighting schemes and look for problem types for 

which weighting is more applicable.   

Next, we look at the problem of improving the performance of constraint weight-

ing. Existing enhancements have concentrated on satisfiability testing and produced 

heuristics that are not applicable to the broader domain of constraint satisfaction [Cha 

                                                           
1 this is not true for all weighting techniques, for instance GLS does use parameters 
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and Iwama, 1996; Castel and Cayroll, 1997]. To address this, we propose a domain 

independent arc weighting algorithm that weights binary connections between con-

straints that are simultaneously violated in a local minimum. In a second empirical 

study we compare the performance of arc weighting with a standard constraint 

weighting technique introduced earlier in the thesis. In addition we consider several 

hybrid algorithms that introduce a weighting component into existing non-weighting 

methods and empirically evaluate the benefits of mixing these techniques. 

Finally, we extend the application of constraint weighting to over-constrained 

problem domains containing hard (mandatory) and soft (desirable) constraints. This 

work is motivated by the common appearance of hard and soft constraints in realistic 

problems and the lack of a constraint weighting heuristic that can maintain the long-

term distinction between hard and soft constraints. We propose two dynamic con-

straint weighting schemes and evaluate their performance in comparison with two 

fixed weighting schemes, and four other non-weighting algorithms.  

 

1.3 Contributions 
 
The main contributions of the thesis are: 

• The extension and practical application of the CSP modelling framework to in-

clude array-based domains and array-based domain use constraints. 

• The characterisation of the behaviour of constraint weighting using constraint 

weight curves and measures of weighting constancy and problem structure. 

• The recognition that constraint weighting is best suited to problems where there is 

a clear distinction between a difficult constraint group and the remaining easier 

constraints.  

• The development and evaluation of a range of pure and hybrid constraint weight-

ing schemes. 

• The development of an efficient arc weighting algorithm that is shown to out-

perform standard constraint weighting within a general constraint solving system. 

• The development of two dynamic constraint weighting heuristics that can solve 

problems involving hard and soft constraints and that outperform other fixed 

weighting and non-weighting systems. 
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1.4 Outline 
 
In the next Chapter we give a general survey of constraint satisfaction techniques, 

concentrating on local search and the specific algorithms used in the remainder of the 

thesis. Then, in Chapter 3, we examine the modelling issues involved in efficiently 

solving two scheduling problems using CSP techniques. As a result of this, we pro-

pose several extensions to the standard CSP representation. In Chapter 4, we present 

an empirical study comparing constraint weighting with several recently proposed 

satisfiability techniques and with an implementation of tabu search. We also evaluate 

three versions of constraint weighting: move-based, local minimum-based and utility-

based. As part of this study, we graphically analyse the behaviour of constraint 

weighting and look for connections between algorithm performance, weighting be-

haviour and problem structure. In Chapter 5, we propose a new domain independent 

arc weighting algorithm that uses information about the frequency that constraints are 

simultaneously violated. We present an empirical study of arc weighting in compari-

son with a standard weighting scheme using problem domains introduced in Chapter 

4. In addition we further experiment with adding weighting schemes into other algo-

rithms. In Chapter 6 we propose two dynamic constraint weighting schemes for solv-

ing over-constrained problems involving hard and soft constraints. The schemes are 

evaluated on a range of over-constrained problems adapted from domains introduced 

earlier in the thesis, and in comparison to two fixed weighting schemes and an alter-

native dynamic weighting scheme for tabu search. Finally, in Chapter 7, the overall 

results and conclusions of the thesis are summarised and avenues for future work are 

presented. 

 



 
 
 
Chapter 2 
 

Constraint Satisfaction Techniques 
 
 
In this chapter we review the areas of constraint satisfaction of relevance to the thesis. 

We start with some formal definitions and a brief outline of the constructive approach 

to constraint satisfaction. We then present a taxonomy of local search techniques 

based on the method used to escape or avoid a local minimum solution. 

 

2.1  Definitions 
 
Constraint Satisfaction Problem (CSP): Formally, a constraint satisfaction problem 

(CSP) consists of a set V of n variables, {v1, v2, ..., vn}, with each vi having a domain 

Di of possible values. Constraint relations are defined on subsets of V, and consist of 

subsets of the Cartesian products of the domains of the variables that participate in the 

constraint. Each constraint relation tuple represents a combination of variable values 

from the subset of variables over which the constraint is defined, that satisfy the par-

ticular conditions of that constraint. Solving a CSP involves finding an n-tuple of val-

ues for each variable in V such that all constraint relations are satisfied. A CSP may 

require the complete set of n-tuple solutions, one member of the set, or to discover 

whether the set has any members [Mackworth, 1977].  

 

Partial Constraint Satisfaction Problem (PCSP): The above CSP definition covers 

problems where all constraints must be satisfied for an answer to exist. Many realistic 

problems are over-constrained, meaning there is no answer that satisfies all con-

straints. In this case we can model the problem as a Partial Constraint Satisfaction 

Problem (PCSP). A PCSP is here defined as a CSP, P, with the addition definition of 
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a solution space S, a cost function ƒ and a maximum solution cost C [Freuder and 

Wallace, 1992]. S is the set of all possible n-tuples of values for each variable in V in 

P and ƒ measures the distance between elements of S in terms of the number and im-

portance of the constraints violated. By relaxing the constraints of the original prob-

lem P, we can visit each solution s ∈ S. If a solution is found such that ƒ(s) ≤ C, then 

a solution to the PCSP is also found (we assume if ƒ(s) > 0 then s violates at least one 

constraint, hence a CSP can be defined as a PCSP where C = 0). 

 

Local Search Terminology: Following on from the definition of a PCSP, we can de-

fine a local search space LS ⊆ S, where LS is the set of all solutions that can be 

reached from some initial point s0 ∈ S by recursively applying a local neighbourhood 

function N. N generates and applies a set of moves M, such that each solution s’∈ 

N(s) is exactly one move m ∈ M away from s (each s’ is therefore called a neighbour 

of s). A local search moves between successive neighbouring solutions s0, s1, .. sn in 

LS, by selecting a move m from M, denoted by si + 1 ← si ⊕ m (see Section 2.3). 

 

Conjunctive Normal Form (CNF) Problem: Many of the recent advances in local 

search techniques have occurred in solving Boolean Satisfiability problems in con-

junctive-normal form (CNF). A CNF formula consists of a conjunction of clauses, 

where each clause is a disjunction of literals and each literal is a propositional vari-

able or its negation [Poole et al., 1998]. For example, consider a CNF formula with 

three propositional variables, x, y and z, and the following four clauses: 

 
{¬x ∨ ¬y ∨ ¬z} ∧ {x ∨ y ∨ ¬z} ∧ {¬x ∨ y} ∧ {¬y ∨ z} 

         (1)         (2)        (3)           (4) 

 
The formula is satisfiable if values for x, y and z exist, such that all clauses simultane-

ously evaluate to true. For example, x = false satisfies clauses 1 and 3, y = true satis-

fies clauses 2 and 3, and z = true satisfies clause 4. In this case all four clauses are 

true and the formula is satisfied. A CNF satisfiability problem can be easily formu-

lated as a non-binary CSP by taking each clause as a constraint and each literal as a 

variable with two domain values: {true, false}. Alternative binary CSP encodings are 
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possible using the dual and hidden variable techniques explained in Section 3.3.1 (for 

more detail see [Walsh, 2000]). 

 

2.2 Constructive Techniques 
 
Constructive techniques try to build consistent solutions incrementally. In solving 

CSPs, this has meant the use of backtracking, consistency techniques and structure-

driven algorithms [Kumar, 1992]. Analogous constructive techniques have also been 

applied to PCSPs using branch and bound [Freuder and Wallace, 1992].  

The constructive technique most relevant to the thesis is the backtracking algo-

rithm (see figure 2.1). Backtracking starts by selecting a value for an initial variable 

and then tries to extend the solution by selecting a value for a second variable, such 

that the two values are consistent (i.e. there are no constraint violations). This partial 

solution is then extended to a third variable, and so on, until either all variables are 

instantiated with consistent values, or a variable is found with no remaining consistent 

domain value. In this case (known as a dead-end), the algorithm will return (or back-

track) to a previously instantiated variable and try another value. If no other consis-

tent value can be found for this variable, the algorithm will backtrack further until a 

new consistent value is found for some other variable or no more consistent values are 

available.  

 
procedure Backtrack(Vleft, Vdone, S) 
begin 
 if Vleft ≠ ∅ then  
 begin 
  vi ← SelectVariable(Vleft) 
  for each dij ∈ Di of vi do 
  begin 
   vi ← dij
   if not InConflict(vi, Vdone) then Backtrack(Vleft - vi, Vdone ∪ vi) 
  end 
 end 
 else if S = ∅ then S ← Vdone
end 
begin program 
 S = ∅, Backtrack(V, ∅, S) 
end program 

 

Fig. 2.1. A backtracking algorithm 
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Simple backtracking is guaranteed to find all consistent solutions to a CSP, as it visits 

all consistent instantiations of a given variable ordering. In addition, backtracking 

prunes the search space by ignoring areas of the search tree that exist beyond a dead-

end, and so is more efficient than a simple exhaustive search. However, as the general 

task of solving a CSP is NP-complete [Mitchell, 1998], such pruning cannot be guar-

anteed to produce a polynomial time algorithm. The main problem for backtracking is 

thrashing [Mackworth, 1987]. Thrashing refers to repeated failure at dead-ends for 

the same underlying reasons. For example, figure 2.2 shows part of the search tree for 

a three variable (v1, v2, v3), two domain value (di1, di2) CSP. If there is no value for v3 

that is consistent with d11 for v1, we will repeatedly rediscover this conflict at differ-

ent parts of the tree and consequently fail for the same underlying reason:  

 

 

 

 

 

 

 

 

        =  consistent path     = inconsistent path 

v3 d32d31 v3 d32d31 v2 d22d21 v2 d22d21

v2 d22d21 v3 d32d31

v1 d12d11

v3 d32d31 v3 d32d31 v2 d22d21 v2 d22d21

v2 d22d21 v3 d32d31

 
Fig. 2.2. Thrashing behaviour in backtracking 

 

Three main strategies have been developed to improve the efficiency of backtracking: 

 

1. Consistency-enforcing algorithms: Consistency-enforcing algorithms (e.g. arc-

consistency, path-consistency, etc [Mackworth, 1987]) recognise domain values 

that cannot be a part of any complete solution. These values are then either de-

leted from their domains or new constraints are inferred that forbid the inconsis-

tent value combinations (for example in figure 2.2 we could delete d11).  

 

2. ‘Intelligent’ backtracking techniques: Intelligent backtracking techniques are 

generally divided into look-back and look-ahead schemes. Look-back schemes 

avoid unnecessary work by learning from already instantiated variables. For ex-
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ample, backmarking [Gaschnig, 1977] avoids repeating previous consistency 

checks, while backjumping [Gaschnig, 1978] avoids backtracking to variables that 

are not currently in conflict. Look-ahead schemes examine the effects of current 

moves on future uninstantiated variables, so that potential dead-ends can be de-

tected earlier (e.g. forward-checking [Haralick and Elliott, 1980] and maintaining 

arc-consistency [Sabin and Freuder, 1997]). 

 

3. Variable and value ordering heuristics: Variable ordering heuristics generally 

use a ‘fail-first’ principle to reduce the size of the search tree as fast as possible. 

This can involve dynamically selecting the variable with the fewest remaining 

domain values [Bitner and Reingold, 1975] or selecting the variable involved in 

the largest number of constraints [Dechter, 1992]. In addition, value ordering heu-

ristics can help to avoid dead-ends, for instance, by selecting values that least re-

duce the number of values available for future variables [Dechter, 1992]. 

 

2.3 Local Search Techniques 
 
On many CSPs, constructive algorithms have exponential time complexity (e.g. all 

known NP-complete problems). In these situations, as problem sizes get larger, alter-

native non-systematic local search techniques become more practical. As introduced 

in Chapter 1, a local search starts with a complete, but inconsistent solution, and then 

attempts to iteratively improve or repair constraint violations. Because a local search 

can move in the space of inconsistent solutions, it can be used to solve both CSPs and 

PCSPs without significant modification. 

Many well-known algorithms can be classified as local search techniques, ranging 

from ‘greedy’ hill-climbing algorithms to more specific approaches such as the sim-

plex algorithm in linear programming [Dantzig, 1963]. The connecting principle is 

that all the techniques search for improving solutions in the local neighbourhood of an 

existing solution. Generally if an improving solution is found then the search tries to 

find an improving solution for the new solution, otherwise behaviour depends on the 

particular technique that is employed [Papadimitriou and Steiglitz, 1982]. As intro-

duced in Section 2.1, a solution si+1 in the neighbourhood of an existing solution si is 

created by selecting a move m ∈ M, generated by a neighbourhood function N. Moves 
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can simply change the domain value for one variable, or can change several variables 

and include heuristics that ensure the generated move satisfies certain constraints. For 

instance, in the travelling salesman problem, 2-OPT moves delete two non-adjacent 

edges of a tour and then add back the unique two edges that create a new tour 

[Glover, 1989]. In addition, various move selection heuristics have been proposed, 

some accepting equal cost moves (e.g. GSAT, [Selman et al., 1992]) and others ac-

cepting cost increasing moves (e.g. Simulated Annealing, [Abramson, 1992]). Never-

theless, all techniques share the same basic approach. This is shown in figure 2.3, 

which uses the notation introduced in Section 2.1, where s is the current solution rep-

resented as variable value pairs (vi, dij), such that s ∈ LS, vi ∈ V, dij ∈ Di and M’⊆ M, 

where M is the set of all local moves for the solution s (for generality the exact proce-

dure for selecting the initial (vi, dij) pairs in s is left undefined). 

 
procedure LocalSearch(MaxCost, MaxMoves)  
begin    
 for each vi ∈ V do s ← s ∪ {(vi, dij) | dij ∈ Di} 
 while ƒ(s) > MaxCost and TotalMoves < MaxMoves do 
 begin   
      M’ ← GenerateLocalMoves(s, TotalMoves) 
  if M’≠ ∅ then MakeLocalMove(s, M’, TotalMoves) 
 end 
end 

Fig. 2.3. A general local search algorithm 

 
Within the structure of figure 2.3 we can characterise different local search strategies 

by redefining the GenerateLocalMove and MakeLocalMove functions. Firstly, figures 

2.4 and 2.5 define GenerateLocalMoves and MakeLocalMove for a hill-climbing lo-

cal search. The GenerateLocalMoves procedure returns the set of all best cost moves 

M’in the neighbourhood of s, where a move m ← {vi, d} consists of instantiating 

variable vi with domain value d. 

The hill-climbing local search algorithm is the basis of all local search techniques. 

Although simple, it has proved robust and effective at solving a wide range of CSPs 

and PCSPs [Minton et al., 1992; Glover, 1989; Thornton, 1995]. In comparison to a 

constructive approach, local search looks at a complete rather than a partial instantia-

tion of variables, and so knows the exact (rather than probable) cost of a move. For 

this reason it can move quickly to a low cost solution [Minton et al., 1992]. Unlike a 
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constructive algorithm, local search does not systematically cover the search space. 

Given a move operator that can connect all solutions and a mechanism to avoid run-

ning out of moves, a local search will eventually visit all solutions in the search space 

[Morris, 1993]. However, this involves the assumption of infinite time and the prob-

ability that the search will frequently revisit many of the same solutions. Conse-

quently, worst case local search performance will usually be inferior to a constructive 

method, making local search impractical for finding a complete enumeration of ac-

ceptable cost solutions or for discovering that a problem cannot be solved.  

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestCost ← ƒ(s) - δ   /* best cost slightly less than current cost */ 
 for each vi ∈ V do if vi in constraint violation then 
 begin       /* only variables in violation can be in a cost reducing move */ 
  dcurr ← current domain value of vi
  for each d ∈ Di | d ≠ dcurr do        /* ignore current domain value */ 
  begin 
   m ← {vi, d} 
   if ƒ(s ⊕ m) ≤ BestCost then 
   begin 
    if ƒ(s ⊕ m) < BestCost then 
    begin 
     BestCost ←ƒ(s ⊕ m) 
     M’ ← ∅           /* new best move so start again */ 
    end 
    M’ ← M’∪ m            /* move accepted as candidate */ 
   end  
  end 
 end 
 if M’ = ∅ then TotalMoves ← MaxMoves       /* local minimum so quit */ 
 return M’ 
end 

 
Fig. 2.4. Hill-climbing version of GenerateLocalMoves 

 

The idea of local search is to find a short-cut to an answer by descending quickly to 

the nearest minimum cost solution in the search space. It avoids the expense of a sys-

tematic search by exploiting the cost topography of the search space. The average 

case performance of a local search therefore depends on the particular cost surface of 

the problem being solved. For this reason local search techniques are usually evalu-

ated empirically on a problem by problem basis rather than using formal analysis 
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techniques (although certain smaller problems have proved amenable to analysis, e.g. 

[Papadimitriou, 1994]). 

 
procedure MakeLocalMove(s, M’, TotalMoves) 
begin 
 randomly select m from M’ 
 s ← s ⊕ m, TotalMoves ← TotalMoves + 1 
end 

 
Fig. 2.5. Hill-climbing version of MakeLocalMove 

 

The main problem with a hill-climbing local search (i.e. one that only accepts cost 

improving moves) is that it descends to the nearest minimum cost solution in the 

search space. If no single move can improve on a solution, the search becomes stuck, 

even though it may not have found the global minimum. Although for certain prob-

lems (e.g. n-queens) a simple local search can be effective, most interesting problems 

have a search topography that contains many non-optimal local minima. One way to 

move on from a local minimum is to combine local search with a constructive ap-

proach and backtrack through the space of possible cost reducing moves [Minton et 

al., 1992]. However, several more sophisticated and powerful local search heuristics 

have been developed that escape or avoid local minima. These heuristics can be di-

vided into four areas (according to the method of escape) forming the basis of the lo-

cal search taxonomy used in the remainder of the thesis: 

 

1. Restart strategies that restart the search either at a local minimum, or after a cer-

tain number of moves. 

2. Stochastic strategies that allow cost increasing moves (according to a fixed or 

dynamically adjusted probability).  

3. Memory strategies that remember previous moves or solutions and so avoid 

moves that  lead back to an already visited solution. 

4. Constraint weighting strategies that change the cost topography by dynamically 

adjusting the cost of violating selected constraints. 
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2.3.1  Restart Strategies 
 
2.3.1.1 Local Minimum Random Restart 
  
The simplest restart strategy is to randomly reassign all variable values each time a 

local minimum is encountered. By starting the search in a different area, we are likely 

to find a different local minimum (depending on the topography) and eventually to 

find a global minimum. However, this approach discards any information we could 

have learned in a previous search. In cases where a global minimum shares many 

common values with other local minima (as in figure 2.6a), restarting means we will 

have to relearn these assignments. In contrast, if the search space contains many 

evenly distributed local minima and there is no gradient towards a global solution (as 

in figure 2.6b) then there is little to learn from each minima and a random restart 

strategy becomes more efficient (note that in this situation a systematic search tech-

nique also becomes more competitive). 

 

 

 

 

 

 

   
Global Minima

       (a)                     (b) 
Fig. 2.6. Example local search topologies [Morris, 1993] 

 
 

2.3.1.2  Fixed Iteration Restart  
 
Fixed iteration restart restarts a problem after a fixed number of moves. The idea ex-

ploits the wide variation in the number of moves observed for local search techniques 

solving the same (usually hard) problem instances. For example, figure 2.7a plots the 

percentage of 10,000 runs on the same CNF satisfiability problem that are solved at 

different numbers of moves. Figure 2.7b uses this information to calculate the opti-

mum number of restarts for the problem. The graphs show (for this problem and algo-

rithm) it is optimal to restart an unsuccessful search after approximately 700 moves 



Chapter 2  Constraint Satisfaction Techniques     16

rather than risk a slow search in the tail area. Empirical tests with various hard CNF 

satisfiability problems using GSAT have shown that the optimum restart point is 

fairly constant for a given problem type and size [Selman and Kautz, 1993].  
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Fig.2.7. Graphical analysis of optimal restart value 

 

2.3.1.3 GSAT 
 
GSAT [Selman et al., 1992] is a fixed iteration restart local search heuristic specifi-

cally developed for solving CNF satisfiability problems. The algorithm tries ‘flipping’ 

variables in the problem and accepts the best move that does not increase the number 

of unsatisfied clauses (breaking ties randomly). Flipping is equivalent to a move 

which tries each non-instantiated domain value for each variable, however, as SAT 

problem variables only have two values (true or false), a domain test simply changes a 

value from true to false or vice versa. Because GSAT accepts ‘sideways’ or equal cost 

moves the ‘plateau’ around a local minimum can be explored for another cost reduc-

ing move. If no cost reducing move exists on a plateau then different equal cost 

moves will be accepted indefinitely. For this reason, and to avoid the tail area (dis-

cussed in the previous section), the algorithm is artificially terminated after a certain 

number of moves (flips) and then restarted. The CSP version of GSAT (shown in fig-

ure 2.8) differs from the hill-climbing approach of Figure 2.4 in three areas: 

1. All variables are considered, rather than just those in a constraint violation. 

2. Equal or increasing cost moves are allowed  

3. Hence GSAT does not recognise local minima (i.e. M’cannot = ∅). 
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procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestCost ← ∞ 
 for each vi ∈ V do  
 begin 
  dcurr ← current domain value of vi
  for each d ∈ Di | d ≠ dcurr do 
  begin 
   m ← {vi, d} 
   if ƒ(s ⊕ m) ≤ BestCost then 
   begin 
    if ƒ(s ⊕ m) < BestCost then 
    begin 
     BestCost ← ƒ(s ⊕ m), M’ ← ∅ 
    end 
    M’ ← M’∪ m 
   end  
  end 
 end 
 return M’ 
end 

 
Fig. 2.8. GSAT version of GenerateLocalMoves 

 

Averaging-In: To avoid discarding information learnt in earlier searches, an averag-

ing-in heuristic was proposed for GSAT [Selman and Kautz, 1993]. This heuristic re-

cords the initial and best solutions for the first search (i1 and b1), and generates the 

initial state for the second search (i2) leaving variables that have the same assignment 

in i1 and b1 unchanged, and randomly assigning values to the variables that differ. 

From then on the initial state is generated by averaging in the two best previous solu-

tions. 

 

2.3.1.4 Value Propagation 
 
Following on from Averaging-In, Yugami et al. [1994] proposed a more sophisticated 

restart strategy that involves moving from a local minimum using value propagation 

(called Escaping From Local Optima by Propagation or EFLOP). This method in-

volves perturbing a local minimum by randomly selecting a variable in conflict, and 

changing its value. EFLOP then propagates this change by moving into a loop that 

tries to build a consistent sub-problem. This is done by selecting variables in newly 

unsatisfied constraints that a) have not been selected before in the current call of 
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EFLOP procedure b) were consistent in the original local minimum c) have a value 

that satisfies the constraint and d) are consistent with all other variables changed in 

the current EFLOP call. When no more variables meet these conditions EFLOP ter-

minates and the local search is restarted. 

 

2.3.2  Stochastic Strategies 
 
Stochastic local search techniques escape or avoid local minima by adding a random 

element to the move selection heuristic that allows cost increasing moves. This is the 

basis of several techniques including simulated annealing (SA) and WSAT. (note 

GSAT and hill-climbing also use randomised selection to break ties and set up initial 

solutions but not as a method to escape local minima). 

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin 
 if TotalMoves = 0 then 
 begin  
  M’← ∅, 
  for each vi ∈ V do for each d ∈ Di do M’← M’∪ {vi, d} 
 end 
 return M’ /* i.e. return entire local neighbourhood */ 
end 

 
Fig. 2.9. SA version of GenerateLocalMoves 

 
 
procedure MakeLocalMove(s, M’, TotalMoves) 
begin 
 randomly select m from M’ 
 ∆E ← ƒ(s ⊕ m) - ƒ(s) 
 if TotalMoves = 0 then T ← Tstart
 else T ← T * R  
 if ∆E < 0 or e -∆E/T  > (random value between 0 and 1) then s ← s ⊕ m 
 TotalMoves ← TotalMoves + 1 
end 
 

Fig. 2.10. SA version of MakeLocalMove 
 
2.3.2.1  Simulated Annealing  
 
Simulated annealing is a general purpose optimisation technique modelled after the 

physical cooling process of heated atoms [Abramson, 1992]. As with all local search, 
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a cost function is defined and local or neighbourhood solutions are generated accord-

ing to a move operator. These solutions are automatically accepted if they produce a 

reduction in cost, but if a solution causes an increase in cost (also known as energy), it 

is accepted or rejected on the basis of an annealing probability function and the cur-

rent system temperature [Connolly, 1992]. As the algorithm executes, the temperature 

of the system reduces (according to a cooling function), causing the probability of ac-

cepting an increased cost solution to reduce. 

Various annealing probability and cooling functions have been proposed. As an 

example, classical annealing [Lo and Bavarian, 1992] uses a version of the Boltzman 

distribution to generate the probability of acceptance:  

P(accept) = e -∆E/T

where T = temperature and ∆E = change in cost caused by accepting the new solution. 

The temperature is then reduced using a geometric cooling schedule: 

Tn = Tn-1 * R 

where R is the cooling rate 0 ≤ R ≤ 1 and T is a positive real number [Abramson, 

1992]. An example CSP simulated annealing algorithm is shown in figures 2.9 and 

2.10. Here we allow the local neighbourhood to include all possible moves, rather 

than restricting selection to variables that are in conflict (as in hill-climbing). This is 

in line with the standard SA approach, although empirical tests on various CSPs sug-

gest SA does better with a more selective choice of moves [Selman and Kautz, 1993; 

Thornton, 1995]. 

 
 
procedure MakeLocalMove(s, M’, TotalMoves) 
begin 
 randomly select m from M’ 
 if ƒ(s ⊕ m) ≤  ƒ(s) or p > (random number between 0 and 1) then s ← s ⊕ m  
 TotalMoves ← TotalMoves + 1 
end 

 
Fig. 2.11. WSAT version of MakeLocalMove 
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procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestCost ← ∞  

randomly select a violated constraint c 
if p > (random number between 0 and 1) then while M’= ∅ do 
begin 

randomly select move m from domain of variables in c 
if m improves c then M’ ← M’∪ m 

end 
 else for each vnext ∈ c do 
 begin 
  dcurr ← current domain value of vnext
  for each d ∈ Dnext | d ≠ dcurr do 
  begin 
   m ← {vnext, d} 
   if ƒ(s ⊕ m) ≤ BestCost and m improves c then 
   begin 
    if ƒ(s ⊕ m) < BestCost then 
    begin 
     BestCost ← ƒ(s ⊕ m) 
     M’ ← ∅ 
    end 
    M’ ← M’∪ m 
   end  
  end 
 end 
 return M’ 
end 

 
Fig. 2.12. WSAT version of GenerateLocalMoves 

 

2.3.2.2 WSAT  
 
WSAT [Selman et al., 1994] is an extension of GSAT, again specifically developed to 

solve satisfiability problems. The version of WSAT we consider here is available 

from http://www.research.att.com/~kautz/walksat/ and differs from GSAT in restrict-

ing the move neighbourhood by randomly selecting a constraint in violation and then 

only considering the domain values of those variables in the constraint that cause the 

constraint to be satisfied (or improved). Then with probability p, a variable is selected 

at random from the constraint and its value is flipped, otherwise the best cost move is 

selected from the domain of the constraint. This allows the acceptance of cost increas-

ing moves based on a probability threshold and so is similar to simulated annealing. 

However, in WSAT only variables involved in constraint violations are considered for 
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flipping, and the value of p is fixed during the search (i.e. is not sensitive to the size 

of cost increase and does not decay over time). Additionally the WSAT cost function 

selects moves on the basis of minimising the number of constraints a move will vio-

late, ignoring the constraints that become satisfied.  A version of WSAT for solving 

general CSPs is shown in figures 2.11 and 2.12 (more recently developed WSAT heu-

ristics are discussed in section 2.3.3.2).  

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅ 

BestCost ← ∞     /* setting best cost to ∞ allows cost increasing moves */ 
 for each vi ∈ V do 
 begin    
  dcurr ← current domain value of vi
  for each d ∈ Di | d ≠ dcurr do 
  begin 
   m ← {vi, d} 
   if TotalMoves - LastUse(m) ≤ MaxListLength and ƒ(s ⊕ m) ≤ BestCost then 
   begin 
    if ƒ(s ⊕ m) < BestCost then 
    begin 
     BestCost ← ƒ(s ⊕ m) 
     M’ ← ∅  
    end 
    M’ ← M’∪ m  
   end  
  end 
 end 
 return M’ 
end 
 

Fig. 2.13. Tabu search version of GenerateLocalMoves 
 

2.3.3  Memory Strategies 
 
2.3.3.1 Tabu Search 
 
The strategy of a tabu search is to keep a list of previously visited solutions to ensure 

the search does not visit the same solution twice (i.e. the solutions on the list become 

tabu or forbidden). When a local minimum is encountered, the search will escape by 

selecting the best alternative solution to the minimum [Glover, 1989]. However, it is 

usually impractical to store all visited solutions, as the list can become large and diffi-
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cult to search. Instead a list is usually kept of the most recent moves made in the 

search. By forbidding the undoing of an existing move, a search can still avoid revisit-

ing the same solution. Generally lists of forbidden moves have a fixed length, mean-

ing that after a certain number of iterations a move is dropped from the list and be-

comes allowable again (otherwise all possible moves can become tabu, and the search 

will become stuck). However, a fixed-length list can lead to the possibility of cycling 

(i.e. the same series of moves are repeated). Therefore the choice of list length is im-

portant - long enough to avoid cycles, but short enough to avoid running out of possi-

ble moves. Empirical studies have shown the optimum list length to differ between 

problems but to remain fairly stable for the same problem type and size [Glover, 

1989]. An example CSP tabu search algorithm is shown in figure 2.13. Here the tabu 

list is implemented using the LastUse(m) function which returns the iteration in which 

move m was last used, hence if TotalMoves - LastUse(m) > MaxListLength then m is 

tabu (MakeLocalMove for tabu search follows figure 2.5, i.e. a move is randomly se-

lected from M’): 

Within the literature, a number of more complex tabu search techniques have been 

developed, a selection of which are introduced in the following subsections: 

 

Aspiration Level Conditions: The inclusion of a move on a tabu list can mean that 

many possible solutions become tabu, not just the solution created by the move. Later 

in the search, the same move may be considered and rejected, even though (because 

other variable values have changed) it could lead to a new and better solution. The 

inclusion of an aspiration level is designed to remedy this situation and allow the 

repetition of a tabu move if it results in a better than previously possible solution. This 

can be implemented by comparing the cost of the solution produced by the tabu move 

with the least cost solution found so far in the search - if the move results in a lower 

cost then it is accepted [Hertz et al., 1995]. More complex aspiration level schemes 

have been developed (e.g. see [Glover, 1989]), but the basic principle remains the 

same: tabu moves can be accepted so long as they aspire to produce solutions that 

improve upon a defined cost threshold. 

 

Reactive Search: Battiti extended the idea of a fixed length tabu list, by proposing 

the length of the tabu list should vary according to the current state of the search [Bat-
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titi, 1995]. This reflects the idea that a search should concentrate in promising areas, 

but also be able to diversify once an area no longer appears promising. Hertz et al. 

[1995] proposed adjusting the cost function so that solutions with similar characteris-

tics are either penalised or rewarded depending on whether concentration or diversifi-

cation is desired. Both schemes represent a reactive search, that changes behaviour 

through feedback about the current state of the search. Battiti's Reactive Tabu Search 

(RTS) operates on the principle that the more a search attempts to re-visit the same 

solution, the more diversification is required (repeatedly visiting the same solutions 

indicates the search has found a local minima and is having trouble escaping). Con-

versely, the fewer repetitions there are, the more concentrated a search has to be in 

order not to miss a promising alternative. In Battiti's method, diversification is con-

trolled by allowing the length of the tabu list to grow as more repetitions are encoun-

tered, and to shrink as the number of repetitions decrease. 

 

Cancellation Sequences: Glover [1990] extended the idea of keeping a list of tabu 

moves, with the idea of cancellation sequences. The insight behind this is that a solu-

tion is not necessarily revisited unless a move is made, and then reversed, without any 

intervening moves. If there are intervening moves, then the whole sequence of moves 

also have to be undone for the same solution to re-occur. A cancellation sequence (C-

Sequence) is recognised when a move is made that undoes a previous move. Instead 

of making the move tabu, the previous move is cancelled, and all moves between the 

cancelled move and the current move are added to a C-Sequence. Only if a C-

Sequence is empty does the current move become tabu. 

 

2.3.3.2 HSAT, NOVELTY and RNOVELTY 
 
HSAT was an early variation of GSAT proposed by Gent and Walsh [1993] that  ex-

ploited the idea of memory for tie breaking. Here, if there is a choice of least cost do-

main values for a move, the value that was used longest ago is chosen. More recent 

versions of WSAT [McAllester et al., 1997] also have incorporated the HSAT idea to 

avoid revisiting previous solutions by keeping track of when a variable was last 

‘flipped’. This idea is analogous to a tabu search but uses a simpler mechanism: when 

choosing a move (flip) to fix a constraint (clause), the least cost move is selected un-

less this move uses the most recently instantiated domain value (in comparison to the 
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the set of domain values available to fix the constraint). In this case the second best 

cost move may be accepted (depending on the heuristic). NOVELTY accepts the sec-

ond best move with probability p (0 ≤ p ≤ 1), whereas RNOVELTY additionally al-

lows n (the difference in cost between the best and second best moves) to influence 

the selection (see figures 2.14 and 2.15). By considering n, RNOVELTY applies an-

other idea from simulated annealing, where the probability of acceptance is also con-

ditioned by the size of cost increase caused by a move. 

 
 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 if TotalMoves modulus RandomMovePeriod = 0 then s ← s ⊕ random move 
 BestCost ← ∞, SecCost ← ∞ 
 randomly select a violated constraint c 
 for each vnext ∈ c do 
 begin 
  dcurr ← current domain value of vnext
  for each d ∈ Dnext | d ≠ dcurr do 
  begin 
    m ← {v , d} next
   if (ƒ(s ⊕ m) = BestCost and LastUse(m) < LastUse(mbest)) or  

ƒ(s ⊕ m) < BestCost then 
   begin 
    SecCost ← BestCost  
     m ← m best 
    BestCost ← ƒ(s ⊕ m) 
   end 
   else if (ƒ(s ⊕ m) = SecCost and LastUse(m) < LastUse(msec)) or  

   ƒ(s ⊕ m) < SecCost then 
   begin  
    m  ← m sec
    SecCost ← ƒ(s ⊕ m) 
   end 
  end 
 end 
 if mbest does not undo most recent change of all vnext ∈ c then msec ← ∅  
 return mbest ∪ msec
end 
 

Fig, 2.14. RNOVELTY version of GenerateLocalMoves 
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procedure MakeLocalMove(s, M’, TotalMoves) 
begin 
 select best move mbest from M’ 
 select second best move msec from M’ 
 if msec ≠ ∅ then 
 begin 
  n = ƒ(s ⊕ msec) - ƒ(s ⊕ mbest) 
  r = random number between 0 and 1 
  if (n ≤ MinDiff and r < 2p)   
  or (n > MinDiff and r < 2p - 1) then mbest ← msec
 end  
 s ← s ⊕ mbest, LastUse(mbest) ← TotalMoves, TotalMoves ← TotalMoves + 1 
end 

 
Fig. 2.15. RNOVELTY version of MakeLocalMove 

 

2.3.4  Weighting Strategies 
 
Constraint weighting schemes solve the problem of local minima by adding weights 

to the cost of violated constraints. These weights permanently increase the cost of vio-

lating a constraint and so change the shape of the cost surface until the minimum can 

be exceeded [Morris, 1993]. This is illustrated in the following example of an over 

constrained graph colouring problem: 

 

a  
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b  
red 

c  
red 

d  
green

cab = 0 

cac = 0 ccd = 0

cbd = 0

cbc = w a  
green

b  
green

c  
red 

d  
green

 cab = 2w

cac = 0 ccd = 0

cbd = w

cbc = 0

 

 
 
 
 
 
 
 
 
 
 
 

a  
green 

b  
green 

c  
red 

d  
red 

cab = w 

cac = 0 ccd = w 

cbd = 0 

cbc = 0 

 
  (a) Local minimum, cost 2w              (b) After Weighting, cost 3w          (c) Final solution, cost w 

 
Fig. 2.16. Using constraint weighting for graph colouring 

 

In the graphs of figure 2.16 the nodes a, b, c and d represent the variables or areas to 

be coloured, each having two domain values {red, green}, and the arcs cab, cac, cbc, cbd 

and ccd represent the constraints a ≠ b, a ≠ c, b ≠ c, b ≠ d and c ≠ d respectively. Given 

that each constraint violation adds a cost of w to the solution, the situation in figure 
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2.15a represents a local minimum of cost 2w. A constraint weighting algorithm could 

then add a further weight w to each violated constraint increasing the cost of the solu-

tion to 4w. This alters the problem so that a choice of lower cost moves become avail-

able. Figure 2.15b shows the effect of changing the value of d to green, causing cbd to 

be violated at a cost increase of w, but satisfying ccd at a cost decrease of 2w. From 

figure 2.15b the best cost decreasing move is to change b to red, leading to the (opti-

mal) solution in figure 2.15c where only one constraint, cbc, is violated: 

Figure 2.17 shows a CSP constraint weighting algorithm for solving CSPs and 

PCSPs. Because constraint weighting makes moves in a weighted cost space, but is 

looking for a solution in an unweighted cost space, two cost functions are required: 

• ƒw(s) finds the weighted cost of s and is used for move selection. 

• ƒ(s) finds the original (unweighted) cost of s and is used to test whether the desired 

cost level has been reached in the local search framework of figure 2.3.  

Otherwise the algorithm follows the basic hill climbing strategy of figures 2.4 and 

2.5, with the addition of adding weights at each local minimum (M’ = ∅). 

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestCost ← ƒw(s) - δ   
 for each vi ∈ V do if vi in constraint violation then 
 begin    
  dcurr ← current domain value of vi
  for each d ∈ Di | d ≠ dcurr do   
  begin 
   m ← {vi, d} 
   if ƒw(s ⊕ m) ≤ BestCost then 
   begin 
    if ƒw(s ⊕ m) < BestCost then 
    begin 
     BestCost ←ƒw(s ⊕ m) 
     M’ ← ∅  
    end 
    M’ ← M’∪ m  
   end  
  end 
 end 
 if M’ = ∅ then increase weights on all violated constraints 
 return M’ 
end  

Fig. 2.17. Constraint weighting version of GenerateLocalMoves 
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2.3.4.1  Developments in Constraint Weighting 
 
Since the initial application of constraint weighting to solve satisfiability prob-

lems, [Frank, 1996; Frank, 1997] suggested several performance enhancing modi-

fications to the original algorithm, including updating weights after each move (in-

stead of at each minimum), using different functions to increase weights and al-

lowing weights to decay over the duration of the search. [Cha and Iwama, 1996] 

produced significant performance improvements on CNF satisfiability problems 

with their Adding New Clauses (ANC) heuristic, which instead of adding weights 

at a local minimum, adds a new clause for each violated clause (the new clause be-

ing the resolvent of the violated clause and one of it’s neighbours). [Castell and 

Cayrol, 1997] suggest an extended weighting algorithm called Mirror which, in 

addition to weighting, has a scheme for ‘flipping’ variable values at each local 

minimum. However, both ANC and Mirror are domain dependent techniques, 

ANC relying on constraints being represented as clauses of disjunct literals and 

Mirror requiring Boolean variables (Mirror also only appears useful for a small 

class of satisfiability problems). More recently, Wah [Wah and Shang, 1997; Wu 

and Wah, 1999] has done significant work in providing a mathematical framework 

for constraint weighting based on the idea of discrete Lagrangian multipliers, 

called Discrete Lagrangian Methods (DLM). Wah’s work has also introduced sev-

eral variations on the basic weighting scheme, including the rescaling of weights 

during the search [Wah and Shang, 1997], the introduction of tabu lists and a spe-

cial weighting scheme that places extra weight on frequently violated constraints 

[Wu and Wah, 1999].  

In the broader domain of AI, constraint weighting heuristics have been applied to 

neural networks [Davenport et al. 1994], genetic algorithms [Bowen and Dozier, 

1996], timetabling problems [Cha et al., 1997; Thornton and Sattar, 1999] and staff 

scheduling [Thornton and Sattar, 1997]. Specialised constraint weighting algorithms 

have also been proposed for over-constrained problems with hard (mandatory) and 

soft (desirable) constraints (e.g. [Cha et al., 1997; Voudouris and Tsang, 1996; Thorn-

ton and Sattar, 1998b]). In particular, Guided Local Search (GLS) [Voudouris and 

Tsang, 1996] broadens the idea of weighting constraints to the idea of penalising ‘fea-

tures’ in the problem and introduces a utility function to guide the weighting of indi-

vidual features (GLS is considered further in Chapters 4, 5 and 6). 
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2.3.4.2 Constraint Weighting and Tabu Search 
 
Alternative constraint weighting schemes have been independently developed to en-

hance the performance of tabu search strategies in over-constrained environments 

[Gendreau et al., 1994]. These schemes apply weights to different groups of con-

straints, increasing the weight if a group is consistently in violation and decreasing 

the  weight if the group is consistently satisfied. Generally the weights cycle between 

upper and lower bounds and assist the search to maintain the differing importance of 

constraints while encouraging the search to diversify (i.e. not to get fixed on solutions 

that satisfy the more important constraints). The issue of solving over-constrained 

problems with differing constraint priorities is explored further in Chapter 6. 

 

 
Minima Avoiding  

Strategy 
Strategy Method Example Techniques 

None Accept the best local move that 
does not increase the solution 
cost (hill-climbing) 

Min-Conflicts Heuristic 
[Minton et al., 1992]; Simplex 
Method [Dantzig, 1963] 

Restart Terminate unsuccessful search 
at stopping condition and restart 
from a new initial solution 

GSAT [Selman et al., 1992], 
Averaging-In [Selman and 
Kautz, 1993], EFLOP 
[Yugami et al., 1994] 

Stochastic Accept non-improving moves 
according to a given probability 
distribution 

Simulated Annealing [Abram-
son, 1992], WSAT [Selman et 
al., 1994] 

Memory Use recorded characteristics of 
previously visited solutions to 
avoid revisiting these solutions  

Tabu Search [Glover, 1989], 
HSAT [Gent and Walsh, 
1993] NOVELTY, 
RNOVELTY [McAllester et 
al., 1997] 

Weighting Place weights on unsatisfied 
constraints to bias the search to 
satisfy these constraints 

Breakout [Morris, 1993], 
Clause Weighting [Selman 
and Kautz, 1993], DLM [Wah 
and Shang, 1997], GLS [Vou-
douris and Tsang, 1996]  

 
Table 2.1. A local search taxonomy 
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2.4 Summary 
 
The chapter firstly introduced the basic principles of constraint satisfaction and con-

structive search. Then a taxonomy of local search techniques was developed, based on 

the methods used to escape or avoid local minima. Using a common local search 

framework and an explanation of the neighbourhood searching heuristic, four funda-

mental local search strategies were introduced and then specified by redefining the 

functions called from the general local search algorithm of figure 2.3. The resulting 

local search taxonomy is summarised in table 2.1. This taxonomy shows that a large 

range of local search techniques can be simply explained as the application and com-

bination of four basic ideas: restart when the search looks unpromising, add some ran-

domness into the selection of moves, avoid visiting previous solutions and add 

weights to constraints that are repeatedly violated. 



 
 
 
Chapter 3 
 

Modelling Realistic Problems 
 
 
In this chapter we examine the issues involved in transforming complex realistic 

problems into a local search CSP framework. To do this we look at two example real 

world scheduling problems: university timetabling and nurse rostering (problems that 

will later be used in the empirical studies). We are specifically interested in develop-

ing a general local search approach that can efficiently solve complex problems with-

out the need of domain dependent heuristics and move operators. This leads us to pro-

pose an array-based domain representation and array-based resource constraints that 

internally represent and count domain value usage. 

 

3.1 Specific and General Solutions 
 
It seems to be an axiom of computer science that a general purpose algorithm will 

solve more problems less efficiently than a problem specific algorithm that employs 

the best heuristics and data structures available for a given situation [Minton, 1996]. 

However, the time and effort involved in developing problem specific solutions 

means a general approach is often more practical. In particular, declarative techniques 

such as Constraint Logic Programming (CLP) offer the promise of simply describing 

a problem and obtaining an answer without specifying an algorithm, heuristic or data 

structure.  

A major issue in constraint satisfaction is exactly how a problem is represented. By 

defining the domain of a queen in the n-queens problem as the whole board we obtain 

a much harder problem than defining the domain as a row (see Chapter 1). As prob-

lems become more complex and realistic the number of possible representations also 
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grows, and the issue of efficiency becomes more important. While a large range of 

problems can be modelled as discrete domain CSPs and solved using simple binary or 

non-binary arithmetic and tree constraints, in many circumstances this can result in 

complex models that are time consuming to solve. This has been recognised by the 

CLP community and has resulted in the development of more efficient specialised 

constraints such as alldifferent and cumulative [Marriott and Stuckey, 

1998]. By developing domains and constraints that exploit specific situations, a gen-

eral CSP approach can also be made more efficient. This chapter explores several ex-

tensions to the standard CSP formulation that proved useful in solving two specific 

scheduling problems. While retaining the basic structure of a CSP algorithm (i.e. vari-

ables instantiated with domain values and checked with constraints), we examine bi-

nary vs. non-binary constraint representations and show how array-based domain val-

ues can make problems easier to solve. In addition we examine complex constraints 

and domain values that can encode more efficient move operators. This leads us to 

propose specialised local search alldifferent, block and gap constraints. 

Firstly, we introduce the problems that are the basis of our further discussion: 

 

3.2  Problem Descriptions 
 
The two problems considered in this chapter are based on actual organisations: the 

timetabling problem models the situation at the Gold Coast Campus of Griffith Uni-

versity and the nurse rostering problem is taken from two wards at the Gold Coast 

Hospital, Southport, Queensland. The constraints defined below either match or ex-

ceed the current standards of the two organisations and are designed to produce realis-

tic working solutions rather than approximate or idealised answers: 

 

University Timetabling: A university timetabling problem consists of a set T of 

teaching staff, {t1, t2, ..., ttmax}, a set R of rooms, {r1, r2, ..., rrmax}, a set G of student 

groups, {g1, g2, ..., ggmax} and a set C of classes, {c1, c2, ..., ccmax}. The objective of the 

problem is to assign to each class ck a staff member ti, a room rj, a subset of student 

groups gC ⊆ G and a time interval startk .. endk such that the following constraints are 

satisfied (∀ck ∈ C): 
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1. staff member ti is qualified to teach class ck 

2. staff member ti is available to teach during interval startk .. endk 

3. all groups in gC are enrolled in class ck  

4. room rj can hold class ck 

5. the duration of class ck = endk - startk  

6. non-elective enrollments for all groups gl ∈ G are satisfied 

7. staff member ti does not teach more than maxweekti hours per week 

8. no ti ∈ T, rj ∈ R or gl ∈ G is assigned two classes with overlapping time intervals  

9. no staff member ti ∈ T teaches more than maxblockti hours of consecutive classes 

10. no group gl ∈ G attends more than maxblockgl hours of consecutive classes 

 

In addition the following ‘soft’ (desirable but not mandatory) constraints are defined: 

1. interval startk .. endk is during a preferred teaching interval for staff member ti 

2. same day gaps between classes for all groups gl ∈ G do not exceed maxgapgl  

3. same day gaps between classes for all staff ti ∈ T do not exceed maxgapti 

4. elective enrollments for all groups gl ∈ G are satisfied 

5. lectures precede tutorials and laboratories in the same subject 

 

Nurse Rostering: A nurse rostering problem consists of a set N of nursing staff, {n1, 

n2, ..., nnmax} and a set W of work shifts, {w1, w2, ..., wwmax}. The objective of the prob-

lem is to assign to each shift wi a nurse nj and a time interval startk .. endk such that 

the following constraints are satisfied:  

1. for each time interval k, for each nurse skill level m, the number nurses nummk with 

skill level m, assigned to interval k, is bounded by:    

MinStaffNeededmk ≤ nummk ≤ MaxStaffAllowedmk

2. ∀wi ∈ W, if shift wi is assigned nurse nj in interval k, nj must be available for in-

terval k 

3. ∀nj ∈ N, nj must work exactly TotalIntervalsnj time intervals per roster 

4. no nurse nj ∈ N works more than TotalNightsnj night time intervals per roster 

5. no nurse nj ∈ N works more than one time interval per day  

6. no nurse nj ∈ N works more than MaxOnBlocknj days without a day off 

7. no nurse nj ∈ N works less than MinOnBlocknj days without a day off 
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8. no nurse nj ∈ N works more than NightBlocksnj consecutive night time intervals  

9. no nurse nj ∈ N has a block of less than MinOffBlocknj consecutive days off 

10. ∀nj ∈ N, nj must have at least NightGapnj hours break after a night shift 

11. ∀nj ∈ N, nj must have at least DayGapnj hours break after a day shift 

 

Again the following ‘soft’ constraints are defined: 

1. days off should be preceded by a shift with interval k such that endk ≤ enddesired 

2. days off should be followed by a shift with interval k such that startk ≥ startdesired 

3. no nurse nj ∈ N works more than DesiredMaxBlocknj days without a day off 

4. no nurse nj ∈ N works less than DesiredMinBlocknj days without a day off 

5. ∀wi ∈ W, if wi is assigned nurse nj and interval k, k should not overlap a requested 

time off interval for nurse nj 

 

Given the problem definitions, we now look at issues arising from modelling these 

problems as CSPs. Firstly we consider the transformation of non-binary constraints 

into equivalent binary representations: 
 

3.3  Binary vs. Non-Binary Representation 
 
Much of the work in constraint satisfaction has concentrated on binary CSPs, i.e. 

problems where constraints only involve two variables. Binary constraints can be 

simply expressed and processed, allowing for concentration on the underlying prob-

lem rather than the details of representing specific constraints. Although it is well 

known that any non-binary problem can be transformed into an equivalent binary rep-

resentation [Rossi et al., 1990], the question as to whether such transformations are 

efficient or desirable has only recently been addressed [Bacchus and van Beek, 1998].  

 

3.3.1 Transforming Non-Binary CSPs 
 
From the original definition of a CSP (Section 2.1) we know that a constraint can be 

represented as a relation where each tuple is a combination of variable values that sat-

isfy the constraint. In the dual graph method for transforming a non-binary CSP into 

an equivalent binary representation [Rossi et al., 1990], each non-binary constraint 
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becomes a variable whose domain is the original constraint relation. Binary equality 

constraints then exist between all transformed variables that share variables from the 

original problem. For example, consider two constraints C1 and C2, such that C1 con-

strains variables x1, x2 and x3 to be equal and C2 constrains variables x3, x4 and x5 to be 

not equal, and where x1 ... x5 share the same domain {0,1,2}. In this case the non-

binary problem can be illustrated in figure 3.1a. 

 

x1 x2 x3 x4 x5

C1 C2
x3 V2V1

 

 
 

              (a)               (b) 

Fig. 3.1. Non-binary and binary constraint graphs 

 

The transformed problem, shown in Figure 3.1b, contains two variables V1 and V2 

connected by a single binary constraint arc labelled with x3. V1 is the result of trans-

forming C1 and has the domain of all the {x1, x2, x3} tuples that satisfy C1 (i.e. 

{0,0,0}, {1,1,1}, {2,2,2}). Similarly V2 is the result of transforming C2 and has 

the domain of all the {x3, x4, x5} tuples that satisfy C2 (i.e. {0,1,2}, {0,2,1}, 

{1,0,2}, {1,2,0}, {2,0,1}, {2,1,0}). Then as V1 and V2 share variable x3 in 

the original problem, a binary constraint is added ensuring the domain elements cor-

responding to x3 are equal (i.e. if V1 = {0,0,0} then the only values from C2 that sat-

isfy the x3 constraint are {0,1,2} and {0,2,1}).  

Other transformation techniques exist, the best known being the hidden variable 

method [Bacchus and van Beek, 1998]. A hidden variable transformation preserves 

the original variables and their domains, but creates additional hidden variables to 

represent each non-binary constraint. A hidden variable has domain values which 

identify tuples in an original non-binary constraint. Hence if H1 is a hidden variable 

representing C1, a value in H1 of 2 would correspond to tuple 2 in C1 (i.e. {1,1,1}). 

H1 then has three binary constraints with x1, x2 and x3 respectively, ensuring the val-

ues of x1, x2 and x3 conform to the tuple indicated in H1 (in this case if H1 = 2 then H1 

is satisfied only when x1 = 1, x2 = 1 and x3 = 1). Alternatively, the hidden variable 

domain can directly represent the satisfying tuples of the original constraint, in the 

same way as a dual variable [Stergiou and Walsh, 1999]. Here the only difference be-
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tween techniques is in the type of binary constraint used (either between dual vari-

ables, or between hidden variables and the corresponding original variables). The 

consequences of non-binary transformations for large and realistic constraints are ex-

amined in the next section: 

 

3.3.2 Domain Size Issues in Non-Binary Transformations  
 
As a practical example of non-binary to binary transformation we consider the first 

constraint in the rostering problem defining the number and level of staff required for 

each shift (an instance of this constraint is that at least 7 and at most 9 registered 

nurses are needed on the first Monday shift between 7.30 am and 3.30 pm). Let us 

assume each possible time interval for each nurse is a variable with a {0,1} domain, 

where 1 means the nurse works the interval and 0 means the nurse does not work the 

interval. In this case, our example constraint would have all Monday 7.30 am to 3.30 

pm time intervals of available registered nurses as variables. The constraint would 

then be satisfied if the sum of all the variables is greater than 6 and less than 10. If we 

assume there are 20 registered nurses available during the interval, the constraint can 

be represented arithmetically as: 

 6 <  x1,1 + x1,2 + ... + x1,20 < 10 

where xij is a {0,1} variable and where i identifies a time interval and j identifies a 

nurse. The non-binary constraint graph for this constraint is also pictured in Figure 

3.2: 

 

 

 

 

 

RNInt1
Con 

x1,17 x1,18 x1,19 x1,20x1,13 x1,14 x1,15 x1,16x1,9 x1,10 x1,11 x1,12x1,5 x1,6 x1,7 x1,8x1,1 x1,2 x1,3 x1,4

  
Fig. 3.2. A non-binary staff requirement constraint 

 

If we perform a dual graph transformation on this non-binary constraint, we obtain a 

variable v1 whose domain is all the possible ways between 7 to 9 of the 20 available 

nurses can be assigned to interval 1. Hence, an example domain value with nurses 4, 

6, 9, 13, 15, 16 and 17 working interval 1 would be: 
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 0,0,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,0,0  

and the total number of domain values for v1 is given by: 

 
20!

7!13!

20!

8!12!

20!

9!11!
371,45+ + = 0 

Given such a large domain, the space requirements for representing the problem be-

come significant. A standard binary CSP algorithm models a binary constraint be-

tween two variables x and y by creating a two-dimensional array such that each ele-

ment eij in the array is 1 if domain value i for x and domain value j for y satisfy the 

constraint (otherwise eij = 0). Such extensional constraint representations are only 

practical for small domain problems. A nurse roster can have over 200 non-binary 

staff requirement constraints, translating into 200 variables each with several thou-

sand (or hundred thousand) domain values. These variables in turn are involved in 

binary constraints with at least 35 other variables, each one of which can again have 

several thousand domain values. Conservative estimates of the space required to rep-

resent the problem with 1 byte array elements soon reach 1,000 Gb.  

The alternative is to represent the problem intensionally, i.e. by using run-time 

functions to construct valid tuples for the original non-binary constraints and calculat-

ing whether these tuples satisfy the binary constraints in the transformed problem  

(for example, ILOG® Solver uses hidden variable encoding to represent binary con-

straints). Clearly, the construction of a valid tuple involves evaluating the original 

non-binary constraint and so is the same as solving the original non-binary problem. 

In fact the transformation of a non-binary problem can be considered as an off-line 

application of non-binary constraints in order to generate satisfying tuples and so 

avoid the need of applying non-binary constraints during the solution process. From 

this it follows that transformations of non-binary constraints that result in very large 

domain sizes are unlikely to be useful. 

 

3.3.3 Partial Non-Binary to Binary Transformation 
 
The issue of problem representation has concentrated on transforming non-binary into 

binary constraints, so that binary CSP techniques can be used [Rossi et al., 1990]. As 

Bacchus and van Beek [1998] show, certain problems can be solved more efficiently 

using binary constraints while others are better represented using non-binary con-
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straints. Our analysis in the previous section shows the transformation of non-binary 

constraints can be impractical due to the size of the resulting domain. However we are 

not required to represent constraints in a system as either all binary or all non-binary – 

a mix of both constraint representations is also possible.  

For instance, consider the remaining non-binary constraints in the nurse rostering 

problem. We have already rejected the transformation of the staffing levels constraint 

(constraint 1) due to the resulting domain size. Now we consider constraints 2 to 11 

from section 3.1: each of these constraints partially defines the allowable combina-

tions of time intervals for each nurse. For example constraint 3 defines the total time 

intervals each nurse can work in a roster. Using our previous notation, each interval 

for each nurse is a {0,1} variable, so we can represent constraint 3 as the sum of all 

time interval variables for each nurse. Assuming nurse 1 must work 8 intervals and 

the roster is 42 intervals long, then the constraint for nurse 1 would be (where xij is a 

variable and where i identifies a time interval and j = identifies a nurse): 

x1,1 + x2,1 + ... + x42,1 = 8 

with a domain size of: 

42!

8!34!
118,030,185=  

Again processing such a large domain would be impractical, but this domain can be 

significantly reduced if we apply the remaining time interval constraints. For instance, 

applying constraint 5 (no nurse should work more than one time interval per day) re-

duces the domain size for nurse 1 to 4,546,773 tuples. If we assume nurse 1 cannot 

work less than 3 or more than 7 consecutive shifts, must have day off periods at least 

2 days long and is scheduled to work at most 3 night shifts in a single block then the 

domain size can be reduced to 32,960 tuples. If we simplify the problem by only al-

lowing two time intervals per day (day and night shift) the domain can be further re-

duced to 376 tuples. To clarify this, the table 3.1 shows an example domain value for 

nurse 1 (the last row represents the actual variable values x1,1, x2,1, ..., x42,1): 

 
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun 

Day Day Day Off Off Off Day Day Night Night Night Off Off Off 

100 100 100 000 000 000 100 100 001 001 001 000 000 000

 
Table 3.1. An example tupled nurse variable domain 
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In effect, we have treated all the time interval constraints as one complex non-binary 

constraint and transformed this constraint into a dual graph binary representation i.e. 

we have generated a tupled variable whose domain is all possible values that satisfy 

the original non-binary constraints. This is an example of a desirable non-binary to 

binary transformation, because: 

1. The new tupled domains are small enough to be represented extensionally. 

2. The dual variable removes all the time interval constraints from the problem, 

meaning both the number of consistency checks and the size of the search space 

are reduced (as infeasible time interval combinations are no longer possible).  

We now have a CSP that has been partially transformed from a non-binary to a binary 

representation, with a set of non-binary staffing level constraints that constrain the 

original {0,1} variables (from section 3.2.2), and a set of tupled variables represent-

ing the allowable permutations of time intervals for each nurse. The question now is 

how to combine these representations into a single problem. 

 

3.3.4 Defining Constraints for Tupled Domains 
 
The combination of binary and non-binary representations for the rostering problem 

can be achieved if we define non-binary constraints between the original {0,1} vari-

ables that are now represented within the tuples of the time interval variables. For ex-

ample, consider a rostering problem consisting of 3 nurses and 4 time intervals with 

each nurse working 3 time intervals in the roster. Figure 3.3 shows each of the 4 pos-

sible time interval combinations for a nurse in such a problem (e.g. domain value 1 

represents a nurse working time intervals 2, 3 and 4): 

 
time interval 
1  2  3  4

 

 

0111

1011

1101

110 11

2

3

4

 
domain value 

 

 
Fig. 3.3. Nurse domain values for simplified problem  
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If we consider each nurse as a variable vi (i = 1..3) with a tupled domain of time in-

tervals, then a problem solution will contain a domain value for each nurse:  
 

 

 

 

 

 
 total nurses on duty          3  1  3  2

v1

v2

v3

nurse variable

time interval 
1  2  3  4

0111

1101

1101

Fig. 3.4. Example solution for simplified problem 

  

Now consider the staffing constraint that at least 2 nurses are required on duty in each 

time interval (in figure 3.4, this constraint is violated in time interval 2). A standard 

mathematical representation of this problem (e.g. [Warner, 1976]) would use aij vec-

tors to represent each tupled domain value, where i is the domain value index and j is 

the variable (nurse) index (i.e. a11 = (0,1,1,1)) and a b vector to represent the 

minimum staffing requirements for each time interval (i.e. b = (2,2,2,2)). The 

problem is then solved using {0,1} decision variables, Xij, such that Xij = 1 if vari-

able j gets domain value i (otherwise Xij = 0), as shown in the following constraint 

definitions: 

ijj
j X=
=∑ 1

3
= 1,  = 1..4i  

ijj
j

i
i

ijXa b=
=

=
= ∑∑ ≥1

3
1
4

 

These constraints can then be transformed into a set of linear inequalities that can be 

solved using standard arithmetic constraints. In this case the Xij constraints for each 

nurse would be (indicating a nurse can only work one schedule): 
X11 + X21 + X31 + X41 = 1  
X12 + X22 + X32 + X42 = 1  
X13 + X23 + X33 + X43 = 1  

and the aijXij constraints for each time interval would be (indicating there must be at 

least two nurses on duty in each interval): 

X21 + X31 + X41 + X22 + X32 + X42 + X23 + X33 + X43 ≥ 2 
X11 + X31 + X41 + X12 + X32 + X42 + X13 + X33 + X43 ≥ 2  
X11 + X21 + X41 + X12 + X22 + X42 + X13 + X23 + X43 ≥ 2  
X11 + X21 + X31 + X12 + X22 + X32 + X13 + X23 + X33 ≥ 2  
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In effect, we have transformed the tupled problem back to an atomic valued problem 

and added back constraints to ensure each nurse only works one schedule (∑Xij = 1). 

If we solve this problem using a standard CSP algorithm (i.e. by instantiating the Xij 

variables and testing the constraints) we will incur the extra cost of evaluating the 

∑Xij = 1 constraints. This cost is not incurred for a tupled domain because a variable 

(nurse) can only have one domain value (schedule) at a time. Therefore a tupled rep-

resentation should perform fewer consistency checks as it will avoid trying multiple 

schedule allocations. However, to evaluate the non-binary staffing constraints using 

tupled variables, we need to specify the atomic value in the tuple to which a constraint 

applies. A general way to approach this problem is to treat the tupled domain as an 

array of ordered atomic values from which a single element can be referenced using 

an index. In this way, the time interval constraints for the tupled representation can be 

expressed in the following inequalities: 

v1[1] + v2[1] + v3[1] ≥ 2 

v1[2] + v2[2] + v3[2] ≥ 2 

v1[3] + v2[3] + v3[3] ≥ 2 

If we compare this system of constraints to the previous atomic valued equivalent we 

can see the problem is captured more simply and so can be solved more efficiently. 

The cost of the tupled representation is that a constraint check must look up an array 

value rather than reading a domain value directly. While this is not a significant cost, 

it does require the development of constraints that can operate on array domains. 

 

3.3.5 Lessons for General Problems 
 
Although the preceding discussion has concentrated on a particular problem, the un-

derlying concepts can be applied more generally. The process of transforming a non-

binary to a binary constraint (using the dual graph method) is equivalent to solving the 

non-binary CSP represented by the original constraint. The domain of the new dual 

variable then becomes the set of all solution tuples for the original non-binary CSP. 

Many complex problems can be more efficiently solved by recognising and solving 

smaller sub-problems and then using these answers to construct a complete answer to 

the original problem [Freuder and Hubbe, 1995]. By definition, a CSP solution is a 

tuple of domain values (one for each variable), and consequently a complete enumera-
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tion of solutions to a sub-CSP can be represented in the main problem as a dual vari-

able with an array-based domain and solved using array processing constraints. 

Our previous discussion has shown a tupled domain can be replaced with atomic 

values using vectors and decision variables. However this always requires additional 

constraints to ensure only one value from each original tuple is instantiated. An array-

based representation avoids the cost of these constraints and is therefore likely (de-

pending on the problem structure) to produce a smaller representation that can be 

solved more efficiently. 

 

3.4 Representing Complex Move Operators 
 
A ‘move’ for a CSP algorithm is achieved either by instantiating an uninstantiated 

variable with a valid domain value or by replacing the existing domain value with an-

other value from the same domain (Chapter 2). Such moves are simple to implement 

and keep the CSP approach general. However, for more complex problems, more so-

phisticated move operators can significantly improve the efficiency of a search (for 

example the 2-OPT and 3-OPT moves in the Travelling Salesman Problem [Glover, 

1989]). To implement a complex move within a general CSP framework we can either 

define a move operator function and embed it within the CSP algorithm, or we can 

define the problem variables and domains in such a way that changing a domain value 

effects the desired move. In looking at the timetabling problem we consider the sec-

ond approach, firstly because an efficient move can be easily defined and secondly 

because this maintains the generality of our implementation. 

 

3.4.1  Making a Move in a Timetabling Problem 
 
When solving or fixing a timetabling problem, a human timetabler usually thinks in 

terms of moving a class from one room/time allocation to another. If rooms, staff and 

student groups are all represented as variables, then moving a class involves defining 

a fairly complex move operator that simultaneously changes the domain values of 

several variables. Alternative moves that change the values of single variables would 

be less efficient, as they would explore many more infeasible solutions and several 

such moves would be required to replace the one more complex move. Given we want 
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to avoid the use of problem specific move operators, the alternative is to look at dif-

ferent ways of modelling the problem:  

 

Decision Variables. One possibility is to again think in terms of zero-one Xijk deci-

sion variables. In this case, Xijk = 1 could represent class i occurring in room j at time 

k and Xijk = 0 would represent class i not occurring in room j at time k. Constraints to 

avoid clashes for student groups can then be defined using a set of n × m vectors 

(where n = number of groups and m = number of time slots) each with pnm elements 

(made up of all the Xijk variables for group n at time m) such that the sum of elements 

for each vector equals one. If we substitute classes for time slots, the model can then 

be used to constrain each group to only attend a particular class once (staff member 

teaching constraints can be defined in the same way). Using decision variables allows 

a complex move (in the original problem) to be effected with a single change of do-

main. However, several disadvantages still remain: 

 

1. Changing the domain value of a decision variable does not move a class from one 

room/time slot to another, instead it turns a room/time slot for a class on or off. 

Moving a class would involve turning the current class room/time allocation off 

and turning another class room/time allocation on i.e. we still require a special 

move operator. 

 

2. If we leave the problem in it’s current form, then additional constraints are re-

quired to ensure a class is only scheduled once and that staff members and student 

groups only attend a class once - this situation would not arise if we were able to 

represent  a class as a single variable. 

 

3. Finally, the zero-one representation will provide poorer guidance to a local search 

than a representation that moves a class directly from one room/time slot to an-

other. This is because a direct move method evaluates two zero-one moves simul-

taneously (i.e. it looks at the cost of turning off one slot and turning on another).  
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3.4.2  Defining Array-based Local Search Constraints 
 
One answer to the above problems is to represent each class as a variable and make 

the variable domain all available room/time allocations. In this model, changing a 

domain value has the desired effect of moving a class from one room/time slot to an-

other. However, the more complex domain (compared to the zero-one representation) 

means we also require more complex constraints. Before describing these constraints 

we first look at the operation of a constraint within a local search algorithm: 

 

Constraint evaluation in a local search. Local search CSP algorithms operate by 

evaluating the cost change caused by exchanging domain values in the neighbourhood 

of the current solution (see Chapter 2). Some methods permanently store the cost of 

using a domain value against each value (e.g. WSAT) and update the relevant costs 

each time a move is effected. Other techniques calculate the domain value cost ‘on-

the-fly’, i.e. each time the domain value is tested in a solution. The WSAT approach 

is efficient for problems where a move has relatively small side-effects on the costs of 

other domain values, whereas ‘on-the-fly’ testing has a more general application (i.e. 

it is better when there are large side-effects and performs adequately when there are 

small side-effects). In either case we need to find the cost change incurred by ex-

changing the current domain value of a variable with a new value. This can be calcu-

lated by summing the cost change for each constraint in which the variable is in-

volved. The general solver developed in the thesis uses an Object-Oriented approach 

to represent a CSP. Hence we have classes to represent domains, variables and con-

straints and a constraint engine that implements various local search algorithms. 

Within this framework, a variable has a data member that points to the list of con-

straints in which it is involved and a constraint has a method that calculates the cost of 

exchanging domain values. Using this structure, figure 3.5 shows the constraint en-

gine method that calculates the cost change incurred by exchanging domain value Old 

with domain value New in variable V: 
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method getCostChange(V, old, new) 
begin 
 costChange ← 0; 
 C ← V.getConstraintList() 
 for each constraint Cj ∈ C do 
  costChange ← costChange + Cj.testChange(old, new) 
 return costChange 
end 

 

Fig. 3.5. All purpose getCostChange method 

 
Local search alldifferent constraints: In the timetabling problem, if we model 

each class as a variable with a domain of available room/time slots, then the variable 

will be involved in one large alldifferent constraint [Marriott and Stuckey, 

1998] which has all other class variables as members (this constraint enforces that no 

two classes can occur in the same room at the same time). Each class time value will 

also be involved in an alldifferent constraint for each staff member and student 

group assigned to the class (ensuring staff members and students do not attend the 

two classes at the same time). This means a 2-tuple domain value is required of the 

form (x, y) where x identifies the room/time and y identifies the time of a class. Then, 

given a set of classes c1 ... ck, the constraint that no two classes share the same 

room/time can be defined as: alldifferent(c1[1], c2[1], ..., ck[1]). Put-

ting this in the local search structure requires an alldifferent constraint that can 

efficiently find the cost change of exchanging two domain values. One approach is to 

count the number of times the old and new domain values are used by all the variables 

in the constraint, as in figure 3.6: 

 
method testChange(old, new) 
begin  
 oldCount ← 0, newCount ← 0, change ← 0 
 V ← getVariableList() 
 for each variable Vi ∈ V do 
  if Vi[index] = old then oldCount ← oldCount + 1 
  else if Vi[index] = new then newCount ← newCount + 1 
 if oldCount > 1 then change ← -1 
 if newCount > 0 then change ← change + 1  
 return change 
end 

 

Fig. 3.6. testChange method for alldifferent constraint 
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However, testChange in figure 3.6 requires up to 2n + 1 comparisons to evaluate a 

move (where n = number of variables in constraint), and is significantly less efficient 

than processing an equivalent zero-one representation. This is because a zero-one 

problem uses arithmetic sum constraints which can be evaluated in a single compari-

son (by storing and updating the current sum for each constraint). For example, the 

zero-one constraint to test whether switching a class c on at time t causes a clash for 

staff member s requires the simple evaluation:  

if sum(Xijk variables) taught by s where (i = c and k = t) > 0 then costChange ← 1  

else costChange ← 0 

To compete with a zero-one model our alldifferent constraint must find the 

cost of moving a class in two comparisons (one for removing the old value and one 

for adding the new value). This requires a direct look-up of the number of times a par-

ticular value is instantiated in the current solution and again is best solved using ar-

rays. For example, consider the earlier problem of moving a class taught by staff 

member s to time t. An array-based alldifferent constraint for staff member s 

would have an array with elements for each time slot in the timetable, such that each 

element i holds a count of the number of classes taught by s in timeslot i. Given such 

an array (called domainArray) and a procedure to update the array each time a move 

is accepted, the revised code for alldifferent is shown in Figure 3.7: 

 
 
method testChange(old, new) 
begin  
 change ← 0 
 if domainArray[old] > 1 then change ← -1 
 if domainArray[new] > 0 then change ← change + 1  
 return change 
end 

 

Fig. 3.7. Array version of testChange method for alldifferent  

 

Local search block and gap constraints An array-based representation has addi-

tional advantages for expressing the more complex constraints in the timetabling 

problem, i.e. those defining the maximum consecutive block of time slots of classes 

for staff and students (constraints 9 and 10), and those defining the maximum time 

slot gap between classes (‘soft’ constraints 2 and 3). While the block constraints can 
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be partly expressed as a series of arithmetic sum constraints in the zero-one model 

(see Appendix), the gap constraints require a specialised non-linear representation 

(because we have to distinguish between a gap at the beginning of a day and a gap 

between classes).  

Consider the situation for staff member s, who is constrained to work no more than 

maxBlock consecutive time slots. Again we can represent all time slots in the timeta-

ble as an array and set each array element i equal to the number of classes s is teach-

ing in time slot i (time slot values are ordered in time, meaning, for all i, time slot i 

precedes time slot i + 1). Now, if we move a class taught by s from time j to time k, 

we can test the local effect of decrementing the count in array element j and incre-

menting the count in array element k. For instance, consider the situation in figure 3.8, 

where maxBlock = 4: 

 

Timeslot 1 2 3 4 5 6 7 8 

Count 0 1 1 1 1 1 0 0 
 

Fig. 3.8. A violated block constraint 

 

Here the count from slot 2 to 6 means a block of 5 consecutive time slots is sched-

uled and consequently the constraint is in violation. Figure 3.9 shows the result of 

moving a class from slot 4 to 7: 

 
Timeslot 1 2 3 4 5 6 7 8 

Count 0 1 1 0 1 1 1 0 
 

Fig. 3.9. A satisfied block constraint 

 
The block constraint is evaluated by testing for the presence of a block in the neigh-

bourhood of the time slot that is changed. Moving a class from slot 4 causes the slot 4 

count to be decremented to zero, and hence reduces the size of an existing block. The 

size of this block can be found by counting how many consecutive timeslots either 

side of slot 4 have a count value greater than zero (see getBlockLength in figure 

3.11). Similarly, moving a class to slot 7 causes the slot 7 count to be incremented to 

one, hence creating or extending an existing block, the size of which can also be 

calculated by examining the adjacent timeslots.  The full logic of the block 

constraint is shown in figures 3.10 and 3.11: 
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method testChange(old, new) 
begin 
 change ← 0, domainArray[old] ← domainArray[old] - 1   
 if domainArray[old] = 0 then  
 begin 
  getBlockLength(forward, back, old) 
  if forward + back + 1 > maxBlock then 
   change ← change - (forward + back + 1 - maxBlock) 
  if forward > maxBlock then change ← change + (forward- maxBlock) 
  if back > maxBlock then change ← change + (back - maxBlock) 
 end 
 if domainArray[new] = 0 then  
 begin 
  getBlockLength(forward, back, new) 
  if forward + back + 1 > maxBlock then 
   change ← change + (forward + back + 1 - maxBlock) 
  if forward > maxBlock then change ←change - (forward - maxBlock) 
  if back > maxBlock then change ← change - (back - maxBlock) 
 end 
 domainArray[old] ← domainArray[old] + 1   
 return change 
end 
 

Fig. 3.10. Array version of testChange method for block constraint 

 
method getBlockLength(forward, back, start) 
begin 
 forward ← 0, back ← 0 
 while domainArray[start + forward + 1] >  0 do forward ← forward + 1 
 while domainArray[start - back - 1] >  0 do back ← back + 1 
end 
 

Fig. 3.11. getBlockLength method for block constraint 

 

The block constraint requires (old block length + new block length + 8) compari-

sons and is competitive with the (2 × (maxBlock + 1)) comparisons needed for a zero-

one representation (see Appendix).  

A gap constraint poses a more complex problem, as a gap exists between classes, 

hence gaps at the beginning or end of the day should be ignored. For example, Figure 

3.12 shows an array (as with the block constraint) representing a one day schedule 

for a staff member. Here only the empty slots from 4 to 10 represent an inter-class 

gap: 
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TSlot 1 2 3 4 5 6 7 8 9 10 11 12 

Count 0 0 1 0 0 0 0 0 0 1 0 0 
 

Fig. 3.12. An unsatisfied gap constraint 

 
Assuming the maximum gap between classes (maxGap) = 5, the situation in figure 

3.12 is in violation. Figure 3.13 shows the result of moving a class for the staff mem-

ber from time slot 3 to time slot 8 (hence satisfying the constraint): 

 
TSlot 1 2 3 4 5 6 7 8 9 10 11 12 

Count 0 0 0 0 0 0 0 1 0 1 0 0 
 

Fig. 3.13. A satisfied gap constraint 

 

Given classes can start at 8 am and finish at 9 pm we cannot decide if a new day has 

started simply by measuring the gap size (i.e. an 11 hour gap may represent a gap be-

tween classes or an overnight break). Therefore the gap constraint needs to know 

how to divide time slots into days or periods - this is achieved with the period func-

tion used in getGapLength (see figure 3.15). Given the forward and back gap lengths, 

the constraint operates in a similar way to the block constraint, except the special 

gap length of -1 indicates a gap either begins or ends a period. The full gap con-

straint logic is shown in figures 3.14 and 3.15: 

 

method getGapLength(forward, back, start) 
begin 
 forward ← 0, back ← 0 
 while forward ≥ 0 and domainArray[start + forward + 1] =  0 do 
  if period(start + forward + 1) ≠ period(start) then forward ← -1 
  else forward ← forward + 1 
 while back ≥ 0 and domainArray[start - back - 1] =  0 do 
  if period(start - back - 1) ≠ period(start) then back ← -1 
  else back ← back + 1 
end 

 

Fig. 3.14. getGapLength method for gap constraint 
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method testChange(old, new) 
begin 
 change ← 0, domainArray[old] ← domainArray[old] - 1   
 if domainArray[old] = 0 then  
 begin 
  getGapLength(forward, back, old) 
  if forward ≥ 0 and back ≥ 0 and forward + back + 1 > maxGap then 
   change ← change + (forward + back + 1 - maxGap) 
  if forward > maxGap then change ← change - (forward - maxGap) 
  if back > maxGap then change ← change - (back - maxGap) 
 end 
 if domainArray[new] = 0 then  
 begin 
  getGapLength(forward, back, old) 
  if forward ≥ 0 and back ≥ 0 and forward + back + 1 > maxGap then 
   change ← change - (forward + back + 1 - maxGap) 
  if forward > maxGap then change ← change + (forward - maxGap) 
  if back > maxGap then change ← change + (back - maxGap) 
 end 
 domainArray[old] ← domainArray[old] + 1   
 return change 
end 

 

Fig. 3.15. Array version of testChange method for gap constraint 

 

3.5 Summary 
 
The array-based alldifferent, block and gap constraints were developed spe-

cifically to solve a timetabling problem. However, the constraint that a resource can-

not be used more than once in a particular time period (represented in the alldif-

ferent constraint) is common to many other resource allocation and scheduling 

problems, e.g. the allocation of ships to berth time slots, teams to match time slots and 

jobs to machine time slots. In addition, the block and gap constraints are applicable 

to any personnel scheduling problems were the number of consecutive hours, shifts or 

days worked or not worked is important. 

In summary, the chapter shows that complex real-world problems can be modelled 

and solved efficiently as CSPs without the need of domain specific move operators or 

special heuristics. We present an array-based domain representation for the rostering 

problem, that allows sum constraints to efficiently operate between array elements of 

different variables. To represent the timetabling problem, we developed a tupled do-
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main for each class that implements a simple class swapping move. To efficiently 

process these variables we further developed array-based constraints that directly 

store the level of resource usage for each domain value (in this case time and 

room/time utilisation). 

 



 
 
 
Chapter 4 
 

Constraint Weighting 
 
 
In this chapter we examine the behaviour and application of constraint weighting on a 

range of different problems and in comparison to several other local search tech-

niques. Our aim is to characterise the problem domains for which constraint weight-

ing is most applicable and to evaluate three competing constraint weighting strategies. 

We extend previous results from satisfiability testing by applying satisfiability tech-

niques to the broader domain of constraint satisfaction and test for differences in per-

formance using randomly generated problems and problems based on the realistic 

situations described in Chapter 3. 

 

4.1 Background and Motivations 
 
The intensive research into satisfiability testing during the 1990s has produced a 

set of powerful new local search heuristics. As introduced in Chapter 2, starting 

from GSAT [Selman et al., 1992], the latest WSAT techniques have raised the 

ceiling on solving hard 3-SAT problems from several hundred to several thousand 

variables [Selman et al., 1997]. At the same time, a new class of clause or con-

straint weighting algorithms have been developed [Morris, 1993; Selman and 

Kautz, 1993]. These algorithms have proved highly competitive with WSAT (at 

least on smaller and more difficult problems [Cha and Iwama, 1995]), and have 

stimulated the successful application of related techniques in several other do-

mains [Thornton and Sattar, 1998a; Bowen and Dozier, 1996; Davenport et al., 

1994; Voudouris and Tsang, 1996]. However, since the initial development of con-

straint weighting, WSAT has evolved new and more powerful heuristics (such as 



 
Chapter 4  Constraint Weighting     52

NOVELTY and RNOVELTY [McAllester et al., 1997]). The improved perform-

ance of these heuristics (on hard random 3-SAT problems) brings the usefulness of 

constraint weighting into question. Consequently, this chapter re-examines con-

straint weighting in the light of the latest WSAT developments. In order to place 

our results in a broader context, we also report the performance of tabu and sto-

chastic search algorithms for each of our problem domains. In the process we ex-

amine the following questions: 

 

• Are there particular problem domains for which constraint weighting is pre-

ferred? 

• Does constraint weighting do better on more realistic, structured problems? 

• Is there one weighting scheme that is superior on all the domains considered? 

 

The main aim of the chapter is to provide practical guidance as to the relevance 

and applicability of constraint weighting to the broader domain of constraint satis-

faction. Research has already looked at applying WSAT to integer optimization 

problems [Walser et al., 1998], and applying constraint weighting to over-

constrained problems [Thornton and Sattar, 1998b; Voudouris and Tsang, 1996]. 

However, outside the satisfiability domain, there has been little direct comparison 

between WSAT and other techniques. The research addresses this by applying  

WSAT, tabu search and constraint weighting to three CSP formulations: university 

timetabling, nurse rostering (see Chapter 3) and random binary constraint satisfac-

tion. In addition we explore the behavior of constraint weighting on several classes 

of satisfiability problem. 

The next sections introduce the algorithms used in the study, and then the results 

for each problem domain are presented. From an analysis of these results we draw 

general conclusions about the applicability and typical behaviour of constraint 

weighting.  
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4.2  Constraint Weighting Algorithms 
 
As introduced in Chapter 2, constraint weighting schemes solve the problem of lo-

cal minima by adding weights to the cost of violated constraints. These weights 

permanently increase the cost of violating a constraint, changing the shape of the 

cost surface so that minima can be avoided or exceeded [Morris, 1993].  

Several weighting schemes have been proposed. In Morris’s [1993] formula-

tion, constraint weights are initialised to one and violated constraint weights are 

incremented by one each time a local minimum is encountered. Frank [Frank, 

1996; Frank, 1997] adjusts weights after each move and experiments with different 

initial weights and weight increment functions and with allowing weights to decay 

over time. Further work has applied constraint weighting to over-constrained prob-

lems using dynamic weight adjustment [Thornton and Sattar, 1998b] and utility 

functions [Voudouris and Tsang, 1996]. 

In this chapter we are interested in when and what to weight. Therefore we keep 

to Morris’s original incrementing scheme and explore variations of three of the 

published weighting strategies: 

 

1. MINWGT: Incrementing weights at each local minimum (based on [Morris, 1993]). 

2. MOVEWGT: Incrementing weights when no local cost improving move exists 

(based on [Frank, 1996] although Frank increments after all moves). 

3. UTILWGT: Incrementing weights at each local minimum according to a utility 

function (based on [Voudouris and Tsang, 1996]). 

 

Voudouris and Tsang’s [1996] utility function is part of a more sophisticated algo-

rithm (Guided Local Search or GLS) that handles constraints with different abso-

lute violation costs. They penalise features in a local minimum that have the high-

est utility according to the following function: 

utilityi(s*) = Ii(s*) × (ci / (1 + pi)) 

where s* is the current solution, i identifies a feature, ci is the cost of feature i, pi is 

the penalty (or weight) currently applied to feature i and Ii(s*) is a function that 

returns one if feature i is exhibited in solution s* (zero otherwise). In the subse-

quent problems we assume each feature is a constraint with a cost of one. In this 
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case the utility function will only select for weighting the violated constraint(s) in 

a local minimum that have the smallest current weight. Our aim is to test the utility 

function as a weighting strategy in isolation from the GLS algorithm, to see if it is 

useful in a more general weighting approach. 

The three weighting strategies are tested within the weighting algorithm intro-

duced in Chapter 2 (figure 2.17) with the addition of two new weighting points 

(shown in figure 4.1).  

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestCost ← ƒw(s) - δ   
 for each vi ∈ V do if vi in constraint violation then 
 begin    
  dcurr ← current domain value of vi
  CurrentCost ← BestCost 

for each d ∈ Di | d ≠ dcurr do   
  begin 
   m ← {vi, d} 
   if ƒw(s ⊕ m) ≤ BestCost then 
   begin 
    if ƒw(s ⊕ m) < BestCost then 
    begin 
     BestCost ←ƒw(s ⊕ m) 
     M’ ← ∅  
    end 
    M’ ← M’∪ m  
   end 
  end 
  if MOVEWGT and CurrentCost = BestCost  then  

increase weights on all violated constraints containing vi
 end 
 if MINWGT and M’ = ∅ then  

increase weights on all violated constraints 
 if UTILWGT and M’ = ∅ then  

increase weights on all violated constraints with the smallest weight 
 return M’ 
end 

 
Fig. 4.1. Three strategies for constraint weighting 
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4.3  WSAT and Tabu Search Algorithms 
 
The other algorithms considered in this chapter are based on the WSAT and tabu 

search techniques introduced in Chapter 2. As previously discussed, WSAT avoids 

local minima by allowing cost increasing moves. The algorithm proceeds by se-

lecting violated constraints and then choosing a move which will improve or sat-

isfy the constraint, even when this results in an overall cost increase. The various 

WSAT schemes differ according to the move selection heuristic employed, here 

we consider three of the most recently developed variants: 

 

1. BEST: BEST is a stochastic technique which, with probability p, will randomly 

select a move that improves a violated constraint, otherwise it will pick the 

least cost move that improves the constraint (see figure 2.12). 

 

2. RNOVELTY: RNOVELTY [McAllester et al., 1997] considers both the overall 

cost of a move and when the move was last used. If the best cost move is also 

the most recently used move then according to a probability threshold and the 

cost difference between the best and second best moves, the second best cost 

move may be accepted (see figures 2.14 and 2.15).  

 

3. NOVELTY: NOVELTY is a simplified version of RNOVELTY that does not 

consider the cost difference between the best and second best available move. 

Instead we consider choosing the second best move (according to a fixed prob-

ability p) whenever the best move is also the most recent of the available 

moves for a constraint. 

 

Finally we implement a constraint-based tabu search (TABU) that keeps a list of 

the n most recently changed domain values and ensures that any value on the list is 

not reused unless it leads to a new lowest cost solution (i.e. this is the aspiration 

criteria explained in Chapter 2). The algorithm also follows the constraint-based 

neighbourhood selection of WSAT, where GenerateLocalMove (see figure 2.12) 

randomly selects a violated constraint and then tests all domain values of that con-

straint.   
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In the following satisfiability results, the BEST, RNOVELTY, NOVELTY and 

TABU algorithms directly use the source code developed by Selman, Kautz and 

McAllester, available at ftp://ftp.research.att.com/dist/ai. These algorithms were 

then re-coded to solve the other CSP problems with one additional condition: the 

local neighbourhood is restricted to only include moves that improve the originally 

selected violated constraint. This condition mirrors the implicit condition in the 

satisfiability algorithms (i.e. flipping any literal in a violated clause will cause the 

clause to become true).  

 

4.4 Experimental Results 
 
4.4.1 Satisfiability Results  
 
Research has already demonstrated the superiority of constraint weighting over 

GSAT and earlier versions of WSAT for smaller randomly generated 3-SAT prob-

lems (up to 400 variables) and for single solution AIM generated problems [Cha 

and Iwama, 1995]. To see if these results still hold, we updated Cha and Iwama’s 

study by comparing our constraint weighting algorithms with McAllester et al.’s 

[1997] implementation of RNOVELTY, NOVELTY, BEST and TABU. For our 

problem set we randomly generated 100, 200 and 400 variable 3-SAT problems 

with a clause/variable ratio of 4.3. This placed the problems in the accepted phase 

transition area where the probability of satisfiability is approximately 0.5 [Mitchell 

et al., 1992]. From this we selected the first ten satisfiable problems for each prob-

lem size (shown as r100, r200 and r400 in table 4.1). At each problem size we cal-

culated the average of 100 runs. We also used the 4 AIM generated single solution 

100 variable problems available from the DIMACS benchmark set (see 

ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf). Each problem was 

solved 100 times and the averages reported. Table 4.1 shows the results for these 

problems1 and confirms constraint weighting’s superiority for small AIM formula, 

but indicates NOVELTY and RNOVELTY have better random 3-SAT perform-

ance. The results also show there is a growing difference between constraint 

weighting and the other techniques as the problem size increases. For the r400 

                                                           
1All problems were solved on a Sun Creator 3D-2000 
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problems NOVELTY is still solving 100% of instances within 1,000,000 flips 

where the success rate for the best weighting strategy (MOVEWGT) has dropped 

to 61.5%. Also, for the larger problems, BEST starts to outperform the weighting 

algorithms. Of the weighting strategies, each has similar performance, although 

UTILWGT starts to do better and MOVEWGT worse as problem size increases. 

(In table 4.1, Cut-off is the number of flips at which unsuccessful runs were termi-

nated, all Mean, Median, Max, Min and Std Dev statistics are for successful runs, 

and success is the percentage of problems solved before the cut-off number of 

flips). 

 
Flips Time (seconds) Problem 

 
Method 

Mean Cut-off Mean Median Max Min Std Dev 
Success 

r100 NOVELTY 1331 250000 0.029 0.014 0.366 0.0009 0.045 100.0%
(100 vars RNOVELTY 1454 0.032 0.012 0.528 0.0009 0.055 100.0%
 432 cons) TABU 1820 0.035 0.017 0.564 0.0009 0.053 100.0%
 MOVEWGT 1988 0.034 0.011 2.057 0.0007 0.116 100.0%
 MINWGT 2068 0.038 0.012 2.169 0.0007 0.123 100.0%
 UTILWGT 2670 0.042 0.010 3.528 0.0006 0.171 99.7%
 BEST 4072 0.077 0.030 1.120 0.0013 0.121 100.0%
r200 RNOVELTY 25422 500000 0.552 0.125 10.164 0.0022 1.387 96.9%
(200 vars NOVELTY 29014 0.632 0.144 10.614 0.0029 1.379 98.9%
 864 cons) UTILWGT 43959 0.727 0.198 8.053 0.0029 1.295 89.3%

 MINWGT 45087 0.822 0.191 8.955 0.0024 1.545 89.9%
 BEST 46946 0.875 0.277 9.031 0.0047 1.441 98.7%
 MOVEWGT 50554 1.550 0.369 15.124 0.0037 2.739 85.6%
 TABU 57305 1.141 0.267 9.769 0.0053 1.909 91.5%
r400 RNOVELTY 85175 1000000 1.891 0.478 21.696 0.0112 3.294 94.7%
(400 vars NOVELTY 108497 2.374 0.671 21.507 0.0117 3.804 93.9%
 1728 cons) BEST 147933 2.759 1.094 18.178 0.0173 3.823 92.5%

 UTILWGT 160702 2.722 1.108 16.613 0.0126 3.634 60.7%
 MINWGT 164093 3.278 1.305 19.910 0.0136 4.357 57.9%
 MOVEWGT 175473 5.516 2.242 30.917 0.0307 7.042 61.5%
 TABU 264821 4.993 2.793 18.757 0.0578 5.119 44.6%
AIM 100 MOVEWGT 4410 250000 0.084 0.041 3.066 0.0021 0.228 100%
(100 vars MINWGT 4504 0.058 0.046 0.260 0.0034 0.043 100%
 200 cons) UTILWGT 10789 0.138 0.111 0.857 0.0044 0.115 100%
 RNOVELTY - - - - - - 0%
 NOVELTY - - - - - - 0%
 TABU - - - - - - 0%
 BEST - - - - - - 0%
 

Table 4.1. Results for small 3-SAT problems2

 

To investigate the gap between constraint weighting and WSAT for larger prob-

lems, we looked at the relative performance of the weighting algorithms with 

                                                           
2 In this and succeeding result tables techniques have been ordered according to overall performance based on 

both percentage of problems solved and average number of moves (or flips) 
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RNOVELTY for the DIMACS benchmark large 3-SAT problems (800 to 6400 

variables). The graph in figure 4.2 shows the best result obtained for each algo-

rithm (after 10 runs of 4 million flips on each problem) and confirms that con-

straint weighting performance starts to degrade as problem size increases. How-

ever, an interesting effect is that the relative performance of UTILWGT continues 

to improve as the problem size grows until it significantly dominates the other 

weighting methods.  
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Fig. 4.2. Result plot for large DIMACS 3-SAT problems 
 

To test whether the random 3-SAT results are reproduced in more structured do-

mains we looked at a selection of conjunctive normal form (CNF) encodings of 

realistic problems again taken from the DIMACS benchmark. These problems 

comprised of two large graph colouring problems (g125.18 and g250.15), four in-

ductive inference problems (ii32: ii32b3 to ii32e3), four circuit fault diagnosis 

problems (ssa: ssa7552-038 to ssa7552-160) and two parity function learning 

problems (par: par8-2-c and par8-4-c).  

Results averaging 100 runs on each problem in each category are given in table 

4.2, and show constraint weighting performed relatively poorly on the hard graph 

colouring problems but was superior to the WSAT techniques on the other DI-

MACS problems. No one weighting heuristic was superior in all cases: UTILWGT 

was better on inductive inference and graph colouring (supporting the earlier find-

ing that the relative performance of UTILWGT improves as problem sizes be-

comes larger) and MOVEWGT was better on circuit diagnosis and parity learning.  
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However, given the results for the better methods on each problem class are very 

similar (considering the standard deviations in table 4.2), only large differences 

can be considered significant. Bearing this in mind, we cannot clearly distinguish 

between weighting and novelty on the parity problems or between the better 

weighting methods on the ssa and ii32 problems. 

 
Flips Time (seconds) Problem 

(max size) 
Method 

Mean Cut-off Mean Median Max Min Std Dev 
Success 

g125.18 NOVELTY 5915 1000000 1.639 1.494 5.086 0.3181 0.576 100.0%
g250.15 RNOVELTY 6880 1.741 1.598 5.397 0.2738 0.603 99.5%
graph UTILWGT 21921 3.741 2.847 47.883 0.6830 3.026 100.0%
colouring BEST  24566 3.609 3.052 27.352 0.5657 2.416 100.0%
(3750 vars TABU 26025 4.885 4.158 25.091 0.6830 3.002 100.0%
 233965 cons) MINWGT 34240 5.338 4.700 32.315 0.5790 3.045 100.0%
 MOVEWGT 218168 33.037 29.435 145.909 1.5723 16.627 88.0%
ssa (038-160) MOVEWGT 2885 250000 0.052 0.043 0.258 0.0211 0.027 100.0%
circuit MINWGT 3085 0.081 0.070 0.503 0.0340 0.045 100.0%
fault UTILWGT 11532 0.164 0.100 2.117 0.0218 0.199 99.8%
diagnosis NOVELTY 26987 0.672 0.313 6.150 0.0332 0.990 97.3%
(1501 vars RNOVELTY 29541 0.767 0.265 6.166 0.0385 1.259 94.0%
 3575 cons) BEST 29606 0.407 0.290 3.264 0.0461 0.373 99.8%
 TABU 58975 0.715 0.488 3.027 0.0517 0.638 87.0%
par (8-2c,8-4c) MOVEWGT 2542 250000 0.052 0.026 0.867 0.0011 0.088 100.0%
parity RNOVELTY 2760 0.049 0.038 0.242 0.0010 0.043 100.0%
function NOVELTY 2796 0.050 0.034 0.226 0.0008 0.047 100.0%
learning MINWGT 3098 0.046 0.019 0.623 0.0010 0.089 100.0%
(68 vars UTILWGT 7750 0.106 0.020 2.948 0.0006 0.330 99.0%
 270 cons) BEST 25183 0.381 0.201 3.297 0.0016 0.480 100.0%
 TABU 27635 0.417 0.153 3.245 0.0015 0.630 99.5%
ii32 (b3-e3) UTILWGT 916 250000 0.157 0.110 0.706 0.0325 0.128 100.0%
inductive MINWGT 1156 0.219 0.109 2.356 0.0306 0.312 100.0%
inference BEST 1185 0.122 0.076 1.412 0.0205 0.122 100.0%
(824 vars MOVEWGT 2739 0.483 0.150 2.971 0.0272 0.663 100.0%
 19478 cons) TABU 4324 0.391 0.132 2.980 0.0120 0.534 100.0%
 RNOVELTY 18477 2.911 2.445 23.606 0.0325 2.517 100.0%
 NOVELTY 51391 8.054 5.343 37.856 0.0302 8.670 47.0%

 
Table 4.2. Results for structured DIMACS problems 

 

The overall satisfiability results show that the WSAT techniques tend to dominate 

for very large problems and for randomly generated problems. Conversely, the 

constraint weighting algorithms do better on the smaller realistic problems and on 

the artificially generated AIM problems (the AIM problems were built up by start-

ing with a solution and then generating a problem that is only satisfied by that so-

lution [Asahiro et al., 1993]).  

So far the results suggest that weighting performs less well in longer term 

searches: in the domains where constraint weighting dominates, (e.g. AIM, parity 
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learning and circuit fault diagnosis) all solutions are found relatively quickly. In 

the large, randomised and difficult problems (e.g. 3-SAT and graph colouring) the 

constraint weighting heuristics do not seem to provide effective long term guid-

ance.  

 

4.4.2 CSP Results  
 
Satisfiability is a subset of the broader domain of constraint satisfaction. Although 

CNF formulations can model multiple problem domains, they all share the same 

constraint type (i.e. clauses of disjunct literals). For many CSPs there are more 

natural and efficient ways of modelling constraints and variables. It is therefore 

significant to explore the performance of our algorithms on a broader range of 

problems. To this end, we looked at two CSP formulations of real-world problems 

(university timetabling and nurse rostering), both involving complex non-binary 

constraints and large non-standard variable domains (see Chapter 3). In addition 

we ran tests on the well-studied problem of random binary constraint satisfaction 

[Prosser, 1996].  

For the purpose of the research, a university timetable problem generator was 

developed. The generator can be tuned to produce a wide range of realistic prob-

lems, while also having a mode that creates relatively unstructured, randomised 

problems. We were interested in building identical sized problem pairs, one re-

flecting the structure of a realistic timetabling problem (i.e. students doing de-

grees, following predictable lines of study, etc.) and the other using purely random 

allocations. The motivation was to test if a realistic problem structure influences 

the relative performance of the algorithms.  

The nurse rostering experiments were run on a set of benchmark problems, 

taken from a real hospital situation. Each schedule involves up to 30 nurses, over a 

14 day period, with non-trivial constraints defining the actual conditions operating 

in the hospital (for more details, see Chapter 3 and [Thornton 1995]).  

Finally, two sets of hard random binary CSPs were generated, with 30 variables of 

domain size 10, one with a constraint density of 80% and constraint tightness of 17% 

and the other one with a constraint density of 40% and constraint tightness of 32%. 

This placed the problems in the accepted phase transition area [Prosser, 1996] and 

made them large enough to challenge the standard backtracking techniques.  
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Time (seconds) Problem 

(size) 
Method Mean 

Iterations
Cut-off 

Mean Median Max Min Std Dev 
Success 

tt-struct TABU 200174 106 iter 70.24 44.00 407.00 7.00 73.6523 82%
(500 cons) NOVELTY 228503 72.58 48.42 331.04 8.04 75.7549 84%
  RNOVELTY 213110 62.90 47.83 259.79 9.29 51.0738 78%
 MINWGT 239914 85.76 47.04 452.51 12.81 95.3296 74%
 MOVEWGT 250283 105.84 48.00 694.00 11.00 131.1727 70%
 UTILWGT 330810 130.52 74.00 481.00 14.00 125.2034 62%

 BEST 245826 67.91 48.00 289.00 16.00 78.6848 11%
tt-rand NOVELTY 106540 106 iter 28.95 23.36 109.71 12.55 18.5927 100%
(500 cons) RNOVELTY 117566 31.65 23.14 203.78 11.65 29.9896 97%
 MINWGT 111360 29.86 26.86 66.51 16.54 10.2034 95%

 MOVEWGT 112814 33.56 25.00 294.00 15.00 31.5215 97%
 UTILWGT 134489 38.47 31.00 180.00 18.00 22.3877 95%
 TABU 98555 32.35 18.00 352.00 9.00 50.7071 91%
 BEST 409520 105.03 100.00 240.00 21.00 59.8682 36%
roster MINWGT 125738 400 sec 54.10 24.01 395.51 2.24 75.2091 94%
(500 cons) UTILWGT 135010 59.01 23.00 332.00 1.00 82.1876 80%
 MOVEWGT 202222 86.75 42.00 393.00 3.00 89.2773 80%
 BEST 649476 72.07 38.00 362.00 3.00 86.4546 84%
 TABU 501647 43.97 7.00 397.00 1.00 97.4967 67%
 NOVELTY 545464 53.29 12.00 282.00 1.00 72.2156 73%
 RNOVELTY 874954 72.40 18.77 356.78 2.07 101.4248 76%
bin80 TABU 80175 2x106 iter 0.945 0.55 5.78 0.03 1.0874 100%
n=30  RNOVELTY 103155 1.239 0.67 5.42 0.01 1.3382 100%
m=10 BEST 211860 2.786 2.03 11.06 0.07 2.6493 100%
p1=80 MOVEWGT 264698 2.922 0.60 21.55 0.04 4.9709 89%
p2=17 MINWGT 243895 2.950 0.95 23.10 0.07 5.1019 79%
(200 cons) UTILWGT 242285 3.092 0.68 25.31 0.06 4.9914 75%
 NOVELTY 207728 2.391 1.07 16.76 0.02 3.4041 55%
 Backtrack 2.4x109 103 sec 408.600 n/a n/a n/a n/a 80%
bin40 TABU 90124 2x106 iter 0.609 0.37 3.34 0.01 0.6729 100%
n=30  RNOVELTY 198933 1.361 0.58 9.79 0.01 1.8367 100%
m=10 BEST 288590 2.255 1.20 15.00 0.04 2.8831 100%
p1=40 MOVEWGT 134950 0.848 0.15 9.67 0.05 1.7390 79%
p2=32 UTILWGT 209704 1.476 0.31 13.32 0.02 2.5588 57%
(200 cons) MINWGT 221497 1.465 0.31 11.11 0.04 2.3430 55%

 NOVELTY 200067 1.368 0.66 6.32 0.01 1.7171 48%
 Backtrack 33923486 103 sec 16.400 n/a n/a n/a n/a 100%

 
Table 4.3. Results for CSPs (tt-struct = structured timetabling, tt-rand = random timetabling, 

roster = nurse rostering, bin = binary CSP) 

 

Table 4.3 shows the results of running each class of problem against our existing 

algorithms (all results are averages of 100 runs = 10 runs × 10 different problems). 

We also report results for the binary CSPs using Van Beek’s backtracking algo-

rithm (see ftp://ftp.cs.ualberta.ca/pub/vanbeek/software). The table 4.3 results 

show little distinction between the best techniques for both classes of timetable 

problem, but favour TABU for the binary CSPs and MINWGT and UTILWGT for 
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the nurse rostering problems. Adding structure to the timetabling problems does 

slow performance, but does not seem to favour a particular method.  

 
4.4.3 Constraint Weight Curves  
 
To further investigate the behaviour of constraint weighting, we looked at the way 

constraint weights are built up during a search. To do this we developed constraint 

weight curves which plot the constraint weights on the y-axis and order the con-

straints on the x-axis according to their ascending weight values. For example, if at 

the solution point of a problem with 4 constraints a, b, c and d, constraint a has a 

weight of 2, constraint b has a weight of 4, constraint c has a weight of 1 and con-

straint d has a weight of 10, after normalising these weights on a 0-100 scale, we 

would produce the constraint weight graph shown in figure 4.3.  
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Fig. 4.3. An example constraint weight curve 
 

Constraint weight curves provide a picture of the distribution of weights across the 

constraints. For example, Figure 4.4 shows the constraint weight curves for the 

r100 to r400 3-SAT problems using the MOVEWGT heuristic (each curve is the 

average of ten runs on ten different problems again normalised on axes from 0 to 

100):  
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Fig. 4.4. Constraint weight curves for various 3-SAT problems 

 

We also created curves for the larger DIMACS 3-SAT problems (800 to 6400 vari-

ables) and found that after an initial predictable adjustment period, curves very 

similar to those in figure 4.4 are produced. To see if this effect is consistent across 

weighting strategies we plotted the averaged curves for each weighting strategy 

solving a range of 200 to 6400 variable 3-SAT problems (shown in figure 4.5). In 

combination, these curves show a remarkable consistency between methods and 

across problem sizes and indicate that in the longer term, the weighting process 

mainly serves to smooth the curves closer to an underlying distribution.  
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Fig. 4.5. Constraint weight curves for different constraint weight methods  
 



 
Chapter 4  Constraint Weighting     64

We therefore became interested in finding a function that expresses this underlying 

distribution. After some trial and error, we found the best fit occurred with func-

tions of the form y = a – blogn(c – x). For example, figure 4.6 shows the match be-

tween one of the 3-SAT curves and y = 87.5 – 19logn(101 – x). 
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Fig. 4.6. 3-SAT and log function comparison 
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Fig. 4.7. Non-uniform DIMACS constraint weight curves 

 
To further explore this phenomenon we looked at the constraint weight curves for 

the other CSP and DIMACS problems. For clarity, the AIM and parity learning 

curves are shown in figure 4.7, the other DIMACS curves are shown in figure 4.8 

and the CSP curves are shown in figure 4.9. In all graphs the r400 3-SAT curve is 

given to enable comparison.  
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Fig. 4.8. Uniform DIMACS constraint weight curves 
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Fig. 4.9. CSP constraint weight curves 
 
The first feature observed from these curves is that there is a high degree of consis-

tency within problem domains but noticeable differences between domains. The three 

figures also show we obtained three types of constraint weight curve for the problems 

considered: the curves in figures 4.8 are similar (or uniform) in that after an initial 

steeper start all the curves have a steadily increasing gradient. These curves differ 

mainly in the steepness of their ascent and in the point at which the curve reaches the 

constraint axis. The curves in figure 4.7 for the AIM and par problems show different 

behaviour, in that each curve deviates from the steadily increasing gradients of the 

other problems and exhibits some irregularity. For instance, the par problems show a 

‘step’ between 22 and 28 on the constraint axis and the AIM problems show a similar 
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step between 80 and 95. Finally the roster and timetabling CSP curves in figure 4.9, 

although showing a steadily increasing gradient do not show any weight accruing to 

the first 40% of constraints (for the roster and tt_struct curves over 60% of con-

straints are unweighted). The binary CSP curve however shows noticeable similarity 

to the original 3-SAT curve. 

 

4.4.4 Constraint Trajectories  
 
As the constraint weight curves for all problems were found to settle into fairly fixed 

distributions, we became interested in testing whether the individual constraint 

weights also converged to a fixed order. To do this we plotted the relative positions of 

single constraints, within the total order of constraints, at different points during the 

search. Figure 4.10 shows example distributions for 4 constraints (clauses) taken from 

a 6400 variable 3-SAT problem. To understand this graph, consider constraint B (rep-

resented by the single continuous line): this line ends with a value of 94 on the Order 

axis at 8 million iterations, meaning (on a scale of 0 to 100) constraint B was the 94th 

most heavily weighted at 8 million iterations (note, as there are 27648 constraints in 

the problem, 275 other constraints will also be categorised in 94th position). Although 

the graph shows significant variation in the relative positions of each constraint, a 

regular pattern of peaks and troughs does occur. This pattern can be understood as 

representing a constraint changing from true to false and false to true. For example, 

again considering B, this constraint starts in a high position (99) indicating it was ini-

tially false and so was weighted at the beginning of the search. After this B becomes 

true and so does not accrue any more weight. As other constraints are being weighted 

this causes the relative position of B to decline until it reaches such a point (at 

800,000 iterations) that the search decides to make it false (in effect it has insufficient 

weight to remain true). After this B remains false and so accrues weight at each local 

minimum, causing the steep ascent from 800,000 to 900,000 iterations. At this point it 

has accrued enough weight for the search to make it true again and so it starts a sec-

ond decline as other false constraints accrue more weight. Understood in this way, the 

graph in figure 4.9 suggests that behind the peaks and troughs the overall importance 

(or difficulty) of a constraint is best measured by taking the average of the peak val-

ues in the constraint’s trajectory. In effect, the height of a peak shows how hard it is 
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for a constraint to become true in the current local neighbourhood and successive 

peaks measure different neighbourhoods. From this we can conclude that, without 

knowing the trajectory of a constraint, the weight on a constraint at a particular point 

in the search does not tell us much about the importance of that constraint (unless the 

weight is relatively very high or very low).  

 To confirm our results we looked at the trajectories of randomly selected con-

straints from each of our other problem domains. In most cases the same pattern of 

sharp peaks with shallower declines was observed, with the exception of certain con-

straints that accrued very high or very little weight and maintained fairly straight tra-

jectories (this is examined in the next section). We also observed that in the domains 

where problems are solved relatively quickly in relation to the number of constraints 

(e.g. circuit diagnosis and inductive inference) the majority of constraints only 

achieved a single peak before a solution was found (i.e. became true and never be-

came false again).    
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Fig. 4.10. Changing weight order for 4 selected constraints (DIMACS 6400 3-SAT problem) 

 
AIM Trajectories. Of all the problem domains, the constraint weighting algo-

rithms most clearly dominated on the AIM problems. We therefore decided to in-

vestigate the AIM constraint trajectories in more detail to see if there are any gen-

eral features that cause the improved performance. 

In contrast to the random problems, the AIM constraint weight curve exhibits a 

bulge or a step starting around value 85 on the constraint axis (see Figure 4.7). 

This suggests the constraint weight algorithm has found a group of especially dif-
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ficult constraints, distinct from the rest of the problem, and is able to exploit this 

difference to solve the problem more efficiently. This exploitation would take the 

form of ensuring the constraints in this group are kept simultaneously true (by fre-

quently placing weights on them) and then exploring the search space by violating 

constraints in the easier constraint group. In doing this, constraint weighting will 

fix potential bottlenecks early in the search and quickly move to potential solution 

areas (this is discussed further in section 4.5). In contrast, non-weighting methods 

do not distinguish moves that violate difficult constraint groups and so are more 

likely to move into constraint violations that are harder to repair. 
Fig. 4.11. Weight trajectories of the 24 most heavily weighted AIM 1 constraints 
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To test this hypothesis, we plotted the trajectories of the most heavily weighted 

constraints in each of the AIM and r100 problems. These graphs showed a distinct 

pattern emerging for the AIM problems with groups of constraints having parallel 

trajectories. For example, figure 4.11 shows the trajectories for the first 24 most 

heavily weighted constraints in the DIMACS aim-100-2-0-yes-1.cnf problem, fig-

ure 4.12 shows the trajectories for the next 10 most heavily weighted constraints 

from the same problem and figure 4.13 shows the trajectories for the 24 most heav-

ily weighted constraints in an example r100 problem. The AIM graphs show a 

definite split occurs between the 24th and 25th constraints: the first group quickly 

converge to their relative positions and then maintain a high weight order for the 

rest of the search, while the remaining constraints in figure 4.12 follow the more 

typical ‘peak and trough’ behaviour shown by the r100 graph (figure 4.13) and de-
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scribed in the previous section. The AIM constraint division can be explained by 

the weighting algorithm continually adding weights to the first 24 constraints (be-

cause satisfying one constraint in this group quickly causes another to become 

false) and supports the reasoning that the ‘bulge’ in the AIM constraint weight 

curve is caused by groups of constraints that are difficult to satisfy.  
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Fig. 4.12. Weight trajectories of the second 10 most heavily weighted AIM 1 constraints  
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Fig. 4.13. Weight trajectories of the first 17 most heavily weighted r100 constraints 

 

 



 
Chapter 4  Constraint Weighting     70

4.4.5 Measuring Constancy 
 
The AIM problem results suggest constraint weighting does better when it can rec-

ognise and simultaneously satisfy a group of difficult constraints. The parallel AIM 

trajectories imply that if there is little change in the ordering of the heaviest con-

straints during a search then constraint weighting has recognised such a group of 

difficult constraints and is therefore likely to have some advantage over non-

weighting methods. To test this hypothesis we developed a constancy measure Ct 

that compares the membership of Hhalf (the set of the top 10% of heaviest weighted 

constraints halfway through a search) with Hfull (the set of the top 10% of heaviest 

weighted constraints at the end of the search). Specifically: 

Ct = | Hhalf  ∩ Hfull | ÷ | Hhalf | 

i.e. we measure the proportion of constraints that are in the top 10% at the halfway 

point that are still in the top 10% at the end of the search. Ct therefore varies from 

zero to one, where zero represents no member of Hhalf being in Hfull and one repre-

sents all members of Hhalf being in Hfull. We developed Ct measures for each of our 

problem domains based on an average of at least 100 runs with each run stopping 

at the appropriate median iteration level reported in tables 4.1, 4.2 and 4.3. The 

results are reported in figure 4.14, with the exception of the non-binary CSPs 

(timetabling and rostering). These problems were not considered comparable on 

the Ct measure because only relatively few constraints receive any weight during 

the search (as shown in figure 4.9).  
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Figure 4.14. Constancy measure Ct of the top 10% of the heaviest weighted constraints 
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The figure 4.14 plots correspond well with the performance results of sections 4.4.1 

and 4.4.2 with the problems where weighting does well (ii32, ssa and AIM) also hav-

ing a high Ct measure. This bears out our reasoning that constraint weighting does 

better when it can find and consistently satisfy a group of more difficult constraints.  

 

4.4.6 Measuring Problem Structure 
 
Small World Measures. So far in our discussion we have assumed a problem to be 

structured if it is based on a realistic situation and random if it is constructed using 

some form of random allocation of variables to constraints. Recent studies [Watts and 

Strogatz, 1998; Walsh, 1999] have more formally classified problems as random or 

structured based on the graph topology formed by representing problem variables as 

nodes and problem constraints as edges [Gent et al. 1999]. The relative structure or 

randomness of a graph is then measured using a clustering coefficient C and charac-

teristic path length L. C is defined as the average clustering of all nodes in a graph, 

where the clustering of an individual node n is the proportion of edges existing be-

tween the k neighbours of n in relation to the total number of possible edges (k(k – 

1)/2). L is then defined as the average of the shortest path lengths between all pairs of 

nodes. Walsh [1999] further introduces a proximity ratio µ, defined as the ratio of C/L 

normalised by Crand/Lrand where Crand and Lrand are the clustering coefficient and char-

acteristic path length for a random graph with the same number of nodes and edges as 

the original graph. Using this ratio, Walsh defines a random graph as having a µ of 

one, a structured graph as having a µ of less than one and a “small world” graph as 

having a µ of greater than one. The assumption here is that a random graph will have 

little clustering with relatively short paths between nodes and that a structured graph 

(e.g. a lattice) will have high clustering with relatively long paths between nodes. The 

small world graph sits in the middle with high clustering and short path lengths. 

Walsh argues that many realistic problems exhibit some underlying structure but also 

have an element of randomness and so would be expected to have a small world to-

pology.  
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Problem L Lrand C Crand µ
r100 1.7788 1.7740 0.2711 0.2297 1.1767 
r200 1.9397 1.9232 0.1656 0.1218 1.3479 
r400 2.1536 2.1341 0.1069 0.0626 1.6923 
AIM 100 2.4226 2.3100 0.2565 0.0930 2.6301 
graph colouring 2.4295 1.9963 0.3824 0.0362 8.6908 
ssa 7.3983 5.5553 0.5883 0.1142 3.8689 
par 2.7512 2.7279 0.3496 0.1023 3.3885 
ii32 2.3625 1.8286 0.7862 0.1726 3.5261 
tt_struct 1.5778 1.5808 0.7522 0.4191 1.7985 
tt_rand 1.1596 1.1665 0.8493 0.8342 1.0241 
roster 1.8907 1.9238 0.5044 0.1184 4.3344 
bin80 (80,17) 1.2000 1.2000 0.8014 0.8000 1.0051 
bin40 (40,32) 1.6043 1.6000 0.4077 0.4000 1.0165 

 
Table 4.4. Averaged small world measures for each problem set 

 
One of the concerns of the current study is to examine whether randomness or struc-

ture in a problem has any effect on the relative performance of the constraint weight-

ing algorithms. We therefore calculated C, L, Crand, Lrand and µ for various problems 

used in the study (averages of these measures are shown for each problem class in ta-

ble 4.4). These results show that all problems either exhibit a random topology (bi-

nary CSPs, and random timetable problems) or some degree of small world topology. 

Interestingly, the small random 3-SAT problems have a nearly random topology but 

as problem size increases a stronger and stronger small world topology emerges (due 

to greater than random clustering). In addition, adding realistic assumptions to the 

timetabling problems does produce a small world structure (again due to greater than 

random clustering). However, µ does not seem to be an obvious predictor of con-

straint weighting performance: those problems where weighting does well (ssa, ii32, 

AIM and rostering) cannot be clearly distinguished from the other problems on the 

basis of µ alone. There is some indication that weighting benefits from a greater than 

random path length. For instance, the two problems where L most exceeds Lrand (ssa 

and ii32) are also problems that weighting found easy to solve. However this is less 

clear for the AIM results, where weighting does well but L and Lrand are similar, or for 

graph colouring, where weighting does poorly but L significantly exceeds Lrand. The 

clearest observation that can be made from the small world results is that constraint 

weighting does less well on purely random problems. This suggests that weighting 

relies on finding some structure within a problem to obtain leverage over the other 

methods, but it does not appear that this structure can be clearly identified using the 
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small world measures. For this reason we decided to look more carefully at the differ-

ent ways variables are connected in the various problem domains. 
 

Neighbour count measures. Given the small world measures categorised our prob-

lem set as either small world or random, we became interested in measuring the de-

gree of structure within our small world problems. The idea was to recognise structure 

by looking for neighbour relationships that are distinctly different from a randomly 

generated problem. To do this we looked at the distribution of neighbour relationships 

between variables.  Firstly, for each of our problems we generated at least 100 ran-

dom graphs with the same number of variables and edges as the corresponding origi-

nal problem. We then counted the number of neighbours for each node and measured 

(for each graph) the maximum, minimum, mean, median, standard deviation, skew-

ness and kurtosis of the neighbour counts. We repeated the procedure for the graphs 

representing the original problems and calculated the average measures for each prob-

lem class (these results are summarised in table 4.5).   

 
Problem Max-Min 

Range 
Mean Median Std Dev Skewness Kurtosis 

r100 28.20 22.74 24.10 5.5779 0.0896 -0.0408
random 20.74 23.40 4.1533 0.1221 -0.0041
r200 34.50 24.25 26.00 6.4354 0.2267 -0.0425
random 25.06 25.01 4.5957 0.1539 0.0062
r400 41.50 24.96 26.60 6.6239 0.1853 0.1048
random 28.47 25.89 4.8298 0.1788 0.0264
AIM 100 5.50 9.10 9.00 1.1787 -0.0702 0.1890
random 14.10 9.90 2.8507 0.2650 0.0410
graph colouring 36.00 108.95 108.50 6.4994 0.2655 -0.1555
random 71.90 109.75 10.1620 0.0917 -0.0120
ssa 135.00 3.79 5.00 4.9305 19.1745 472.8120
random 10.73 4.42 1.9063 0.6157 0.2432
par 17.00 5.10 4.00 3.4003 3.0011 8.1012
random 9.65 5.95 2.1370 0.3850 0.0439
ii32 82.00 64.57 94.25 30.1816 -0.0493 -1.5454
random 43.30 65.30 7.2918 0.0844 0.0039
tt_struct 234.70 138.85 180.80 57.8651 -0.5566 -0.7396
random 51.31 139.42 8.8190 0.0200 -0.0023
tt_rand 50.00 277.00 277.90 10.1426 -0.4297 -0.2305
random 31.48 277.37 5.4869 -0.1944 0.0340
roster 4.70 14.72 15.10 1.3417 -0.5542 -0.0875
random 20.27 15.48 3.6889 0.2277 0.0412
bin80 (80,17) 8.50 23.20 23.20 2.1540 -0.4061 -0.0567
random 8.49 23.50 2.1540 -0.2315 -0.0111
bin40 (40,32) 10.20 11.60 11.40 2.5733 0.2835 -0.1178
random 10.47 12.13 2.5720 0.0604 -0.0463

 
Table 4.5. Statistics for variable neighbour counts by problem domain 
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As expected, we found the random graphs to have a roughly normal distribution of 

neighbour counts (the normal distribution having a zero skewness and kurtosis [Ta-

bachnick and Fidell, 1989]). However, of our problem set, only ssa and par showed a 

distinctly non-normal distribution. A further examination of these problems showed 

that the non-normality was caused by certain regular structures of clauses that created 

a large set of variables in each problem with identical neighbour counts. We therefore 

looked further at the max-min range and standard deviation of neighbour counts to 

find more evidence of structure within the other problems. The graphs in figures 4.15 

and 4.16 show the difference between original problem and random problem max-min 

ranges and standard deviations as a proportion of the random values. Here a negative 

value indicates the original value was less than the random value and vice versa.  
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Figure 4.15. Neighbour count ranges as a proportion of random neighbour counts 
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Figure 4.16. Neighbour count standard deviations as a proportion of random neighbour counts 
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As would be expected, the binary CSPs conform closely to their random counterparts, 

but all other problems (including random 3-SAT) show some degree of deviation 

from pure randomness. Given that the 3-SAT problems are randomly generated, we 

assume that the small increase in range and standard deviation over random for these 

problems is caused by the method of constraint representation (i.e. disjunct clauses of 

3 literals). However the more significant positive deviations (for ssa, tt_struct and 

ii32) do seem to indicate problem structure, as do the negative deviations for graph 

colouring, AIM and roster. Taken together, the neighbour count measures reflect the 

level of structure in each problem that we would expect from our original knowledge 

of the problem domains. In addition they show the graph colouring, AIM and roster 

problems to be related in having less neighbours than would be expected and ssa, 

tt_struct and ii32 to be related in having more neighbours than expected. Comparing 

the neighbour count results to the performance results for constraint weighting further 

supports the finding that weighting does better on more structured problems (or con-

versely, problems where weighting does worse (3-SAT, graph colouring and binary 

CSP) are also those problems with the closest to random neighbour distributions).  

 

4.5 Analysis 
 
4.5.1 Constraint Weighting Behaviour 
 
When examining the behaviour of constraint weighting it is tempting to think in terms 

of ‘difficult’ and ‘easy’ constraints. However, in isolation (assuming a problem is not 

over-constrained) any constraint is easy to satisfy. It is the effect that satisfying a con-

straint has on the other constraints in a system that is significant. An easy constraint is 

one whose satisfaction has little effect on the rest of the problem, whereas a difficult 

constraint is one whose satisfaction tends to cause other constraints to become unsat-

isfied. However, difficult and easy constraints may together form a difficult constraint 

group (i.e. one that is difficult to satisfy entirely). A standard local search will tend to 

satisfy difficult individual constraints through cost guidance alone but is unable to 

recognise situations where the same constraints are interacting with each other and 

repeatedly becoming unsatisfied. In problems where such difficult sub-groups of con-

straints exist we would expect constraint weighting to do well, because it can recog-

nise and penalise frequently violated constraints. In this way the whole group of con-
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nected constraints will accrue weight, increasing the chances that the group is satis-

fied and moving the search to areas where there is more freedom of movement. 

The existence of difficult constraint groups is a common feature in realistic 

problem solving. For instance, in nurse rostering areas of difficulty tend to focus 

on particular days where there is a staff shortage and so only involve constraints 

that are connected to that day. Similarly, timetabling problems generally have dif-

ficulty in scheduling classes in rooms where there is a high demand (e.g. computer 

labs and larger lecture theatres). Both these problems have examples of resource 

bottlenecks that only involve a limited set of constraints. Human problem solvers 

intuitively understand bottlenecks and tend to fix them first and then go on to solve 

the rest of the problem where allocations are less constrained. However, a local 

search without guidance will tend to keep revisiting a bottleneck because it is un-

able to recognise all the constraints involved. It is in this situation that constraint 

weighting is likely to outperform other non-weighting methods. 

 

4.5.2 Identifying Hard Constraint Groups 
 
Random problems. Our previous analysis of randomly generated problems has 

shown that we expect an approximately normal distribution of connections via 

constraints between variables. In such problems difficult constraint groups have to 

be generated by chance alone and are not part of the underlying problem structure. 

The 3-SAT and binary CSP constraint curves in figure 4.9 show that on these hard 

random problems, weights become spread across nearly all the problem con-

straints. The curves are also very similar in shape, exhibiting (after an initially 

steeper start) a constantly increasing gradient. In addition the random problems 

exhibit the lowest Ct measures (see figure 4.14), meaning there is a greater fluctua-

tion in the membership of the heaviest weighted constraints. Combining this in-

formation suggests that although some constraints consistently accrue more weight 

than others, there is no separation point where a weighting algorithm can recog-

nise that one constraint group is significantly different from another (reflected in 

the smoothly increasing slope of the 3-SAT and binary CSP constraint weight 

curves). This lack of distinction between constraint groups seems inherent in our 
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randomly generated problems and provides an explanation for constraint weight-

ing’s poorer performance on these domains.  

 

Structured satisfiability problems. In contrast, for those problems where con-

straint weighting does well we have several indications that the weighting process 

has identified some non-random structure which it is able to exploit. For instance, 

the ssa and ii32 constraint curves both exhibit a sharp turn near the end of their 

plots in figure 4.9. Taken in conjunction with the high Ct levels for these problems 

(between 0.74 and 0.85 in figure 4.14), a separate hard constraint group is indi-

cated. Although the graph colouring plot also exhibits a sharp turn in figure 4.9, 

the Ct level for these problems is lower (0.47) meaning there is more fluctuation in 

membership in the peak group of constraints. Additionally the poorer performance 

of constraint weighting on graph colouring may be explained by the size of the 

problems (they were the largest in the set) rather than a lack of structure (both the 

constraint curves and the neighbour counts indicate some structure is present).  

In the other satisfiability problems where constraint weighting does well (AIM 

and par) we again see the constraint curves deviate from the smoothly increasing 

random plots (see figure 4.7). In this case the AIM curve has the stronger indica-

tion of a separate hard constraint group (in the bulge at the top of the plot) which is 

further confirmed by the higher AIM Ct measure (0.65 versus 0.43 for par) and the 

superior performance of AIM (for par weighting is roughly equivalent to RNOV-

ELTY). In fact, for the par problems, although there is an indication of structure 

from the neighbour count skewness and kurtosis measures, the constraint curve 

only shows a deviation from random in the early part of the plot (in figure 4.7), 

and the Ct and other neighbourhood measures are similar to the random results. 

Overall, this suggests that although there is some structure in the par problems this 

has not resulted in the delineation of a separate hard constraint group.  

 

Structured CSPs. The realistic CSPs (rostering and timetabling) present a differ-

ent interpretation problem. Here the weight becomes concentrated on a small 

group of constraints, with zero weight accruing on the remainder (the roster and 

timetable curves from figure 4.9 are reproduced in more detail in figure 4.17). For 

this reason the Ct measures were not interesting as membership of the top 10% of 
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constraints was fairly constant. Zero weight constraints are unlikely to provide 

leverage to a constraint weighting algorithm, because such constraints are hard to 

violate (instead of hard to satisfy). This means both weighting and non-weighting 

algorithms will tend to search in the space where these constraints are satisfied, 

although it is still possible for weighting to obtain leverage by finding a harder 

sub-group within the weighted constraints.  
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Fig. 4.17. Roster and timetabling constraint weight curves 

 
Looking at the curves in figure 4.17, the weighted ranges for timetabling and ros-

tering have smoothly increasing gradients and show no obvious separation of con-

straint groups. However the rostering curve is noticeably wider for the top 8% of 

constraints providing a possible alternative indication of a harder constraint group. 

It is significant to note that a similar effect also appears in the ‘bulge’ of the AIM 

curve of figure 4.7, where AIM initially follows the 3-SAT trajectory and then be-

comes wider at the end. The AIM and rostering problem structure measures are 

also similar, with both having less than random neighbour count ranges and stan-

dard deviations (see figures 4.15 and 4.16). Given that, of all problem domains 

considered, constraint weighting has the strongest performance advantage for the 

rostering and AIM problems (see tables 4.1 and 4.3) the similarities in constraint 

weight curves for these problems may be indicators of a hard constraint group. 

However, there is little qualitative difference between the roster and timetable 

curves and the tt_rand curve also diverges and is fatter than the tt_struct curve (at 

least until the top 2-3% of constraints) without a corresponding improvement in 
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weighting performance. We therefore looked in more detail at the weight distribu-

tions for higher end of the timetabling and rostering constraint weight curves. This 

is shown in figure 4.18 where we plot the top 5% most heavily weighted con-

straints for each problem. 
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Fig. 4.18. Top 5% of roster and timetabling constraint weight curves 

 
The figure 4.18 curves accentuate the differences between the timetabling and ros-

ter curves and show the roster curve maintains a greater width throughout the up-

per part of the graph. Given that roster problems tend to have bottlenecks on cer-

tain shifts which only involve 3 or 4 constraints, the greater top end width of the 

roster curve suggests weighting is penalising these relatively small hard constraint 

groups. As previously discussed (in section 4.5.1) recognising and simultaneously 

satisfying the constraints for a difficult shift would give weighting an advantage 

over non-weighting methods that tend cycle through violations of the same con-

straints.  

In contrast, the timetabling curves start to meet and have a steeper gradient at 

the top end of the graph. This suggests weighting’s ability to distinguish hard con-

straint groups is roughly equivalent for the structured and random timetabling 

problems and worse than for rostering (findings that correspond to the performance 

results of table 4.3).   

Overall, the roster and timetable analysis suggests that the behaviour of con-

straint weight curves for the final 5-10% of constraints can be equally as signifi-
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cant as the overall shape of the curve, as it is here that relatively small hard con-

straint groups can be recognised. It is of further interest to note that the UTILWGT 

curve in figure 4.5 is also slightly wider than the other weighting methods at the 

top end of the graph. This suggests UTILWGT is better able to distinguish rela-

tively small hard constraint groups for the larger 3-SAT problems and provides an 

additional explanation of UTILWGT’s superior performance on these problems. 

Finally it should be noted that the curve width arguments do not apply to the 3-

SAT and binary CSP curves (in figure 4.9) because these curves, while being 

wider at the top end, remain wider throughout their length because of an overall 

lack of distinction between constraints.  

 

4.5.3 Scaling Effects 
 
Given that constraint weighting does better when it can find distinctions between 

groups of constraints, we would expect the probability of randomly generating hard 

constraint groups to decline (causing the performance of constraint weighting to also 

decline) as 3-SAT problem size increases. This is because the number of constraints 

in a random 3-SAT problem grows at the rate of 4.3n (where n is the number of vari-

ables) whereas the number of possible constraints grows at a faster rate of 2n(n-1)(n-

2). Hence the probability of obtaining a particular pattern of constraint connections 

should decline as n increases. This reasoning is confirmed by looking at the mean 

neighbour count statistics in table 4.5 and the average neighbour clustering statistics 

(C) in table 4.4. Here the mean number of neighbours remains fairly static from n = 

100 to n = 400 (moving from 22.74 to 24.96) but the average clustering starts to de-

cline significantly (from 27.1% to 10.7%). Also the Ct measure starts to decline as 

random 3-SAT problem size increases (from 0.5275 to 0.3040 in figure 4.14) indicat-

ing there is less and less consistency in the top 10% of weighted constraints.   

 In addition there may be a granularity effect in constraint weighting, i.e. as the 

number of problem constraints increase, the effect of weighting a single constraint 

necessarily decreases, and constraints start to become weighted and violated in larger 

and larger groups. In this way the weight guidance becomes more general and less 

detailed, which could then cause promising search areas to be ignored. This is further 

backed up by the relative improvement in the performance of UTILWGT for longer 
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searches – as UTILWGT increments weights less frequently than the other methods 

we would expect it’s performance to deteriorate more slowly. 

 

4.5.4 Overall Behaviour 
 
Performance. Overall, constraint weighting has done better on the AIM, par, ssa, 

ii32 and nurse rostering problems. For each of these domains the constraint weight 

curves have deviated in some way from the smoothly increasing curves of the ran-

dom 3-SAT and binary CSP problems (idealised in the log function of figure 4.6), 

indicating weighting has gained an advantage through being able to distinguish 

between constraint groups. Results for larger random 3-SAT and graph colouring 

problems further indicate that weighting gives poorer guidance as problem sizes 

grow. Of the non-weighting techniques, NOVELTY and RNOVELTY performed 

best on the 3-SAT, graph colouring and timetabling problems, while TABU domi-

nated the binary CSP problems.  

A comparison of weighting strategies does not favour one strategy in all situa-

tions. MOVEWGT performs better on the ssa, par, AIM and binary CSPs, where as 

MINWGT does better on the realistic CSP problems (timetabling and nurse roster-

ing). In addition, UTILWGT works better on ii32 and longer term searches (larger 

3-SAT and graph colouring problems), as it adds weight more slowly and so ap-

pears to maintain an effective search for longer. This result ties in with Frank’s 

work [Frank, 1997] on causing weights to decay during the search, and it may 

prove useful to investigate a combination of these strategies for larger problems. 

In terms of updating previous results, [Cha and Iwama, 1996] considered the 

performance of constraint weighting on AIM problems as evidence that weighting 

is good for especially difficult satisfiability problems. We qualify that result by 

showing that AIM problems have a recognisable structure that constraint weighting 

can exploit.  

 

Randomness and Structure. In general, our findings suggest constraint weighting 

is better for structured problems (by structured we mean problems that exhibit no-

ticeably different neighbour count distributions in comparison to equivalent ran-

dom problems). The random problem generators used for the 3-SAT, binary CSP 
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and timetabling problems produce problems that are associated with smoothly in-

creasing constraint weight graphs. These curves show a corresponding evenly in-

creasing distribution of difficulty across constraints (from easy to hard), and so 

reflect the kind of problem we would expect from a purely random generator (i.e. 

continuous and without obvious structure). It is these problems that we would term 

as unstructured and for which constraint weighting has done relatively poorly. Our 

effort to add structure to the timetabling problem by making the domains and con-

straints more realistic did not produce any significant change in the performance of 

the various algorithms or in the shape of the constraint weight curves. However 

our neighbour count and small world measures did indicate we had increased the 

structure of the timetabling problems over the equivalent random problems. This 

shows that the addition of structure into a problem does not necessarily favour 

constraint weighting. Similarly, although the par problems exhibited significant 

structure according to our measures, constraint weighting performance for these 

problems was only roughly equivalent to the other methods. 

  

Matching Problems and Algorithms. Finally, the study shows the usefulness of 

investigating constraint weight behaviour and problem structure when evaluating 

whether constraint weighting is a useful technique for a new problem domain. The 

presence of deviations from random neighbour count distributions, high Ct meas-

ures or unusual changes in the slope of a constraint weight curve, all indicate con-

straint weighting is at least a promising technique for a problem.  

 

Noise Parameters. As a postscript, when considering constraint weighting as a 

general CSP technique it should be noted that all the weighting algorithms used in 

this study were parameter free (i.e. they did not have to be ‘tuned’ to solve a prob-

lem). In contrast (and as shown in Chapter 2), the WSAT techniques all have a 

noise parameter, the setting of which can significantly affect the performance of 

the algorithms. Similarly tabu search algorithms require the tuning of the tabu list 

length. Although there are various schemes for setting 3-SAT noise parameters 

(e.g. [McAllester et al. 1997; Mazure et al, 1997]), we found these methods were 

not applicable across the full range of our problem domains. Therefore consider-

able effort was taken to get the best performance from the WSAT and TABU algo-
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rithms – effort that was not required for constraint weighting (note, there are other 

formulations of constraint weighting that do require parameters, for instance see 

[Voudouris and Tsang, 1996]). 

 More specifically, the WSAT noise parameters were set for this and subsequent 

chapters by taking a problem from each class reported and solving that problem 

over a range of parameter values for each algorithm. The noise value p was ini-

tially set at 50% and then varied in steps of ±10% (i.e. 50, 40, 60, 30, 80, etc). As 

soon as a value for p was found which had superior performance to both (p + 10)% 

and (p – 10)% then it was accepted as the parameter setting for that algorithm and 

problem class. The number of runs on a particular problem for a particular value of 

p was decided on a trial and error basis (depending on how clear the distinction 

between different p levels appeared). The tabu list length was set in a similar way 

but with a more variable granularity: the initial list length was set at 8 and then 

varied by ±1, then for list lengths > 12 we started moving in steps of 2 (14, 16, 18 

etc). To allow for  reproduction of our results, table 4.6 shows the various parame-

ter settings used in the current chapter. 

 
Problem RNOVELTY 

p 
NOVELTY 

p 
BEST 

p 
TABU 

list length 
tt-struct 20 40 50 20 

tt-rand 20 40 50 20 

roster 40 40 50 8 

bin80 40 40 50 20 

bin40 40 40 50 20 

g125.18 30 50 10 10 

g250.15 40 10 0 20 

ssa038-160 95 90 80 20 

par8-2-c 90 70 40 7 

par8-4-c 90 70 50 7 

ii32b3 70 50 50 10 

ii32c3 70 50 50 8 

ii32d3 70 50 50 18 

ii32e3 70 50 50 9 

r100 60 60 50 5 

r200 60 60 50 7 

r400 60 60 50 12 

AIM 100 not solved not solved not solved not solved 

 
Table 4.6. Parameter settings for WSAT and TABU algorithms 
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4.6 Summary 
 
The main conclusions of the chapter are: 

 
• Constraint weighting is best suited to problems where the weighting process is 

able to distinguish harder sub-groups of constraints that have a distinctly dif-

ferent weight profile from the remaining problem constraints.  

 
• Constraint weighting is more likely to find these harder sub-groups of con-

straints within structured problems.  

 
To recognise when constraint weighting is more appropriate we have introduced 

two approaches: firstly the analysis of constraint weighting behaviour using con-

straint weight curves and the trajectory constancy measure Ct and secondly the 

analysis of problem structure using neighbour count distributions. Finally, we 

found constraint weighting performance tends to degrade as problem size grows, 

due to a combination of larger randomised problems having less structure and a 

hypothesised weighting granularity effect.  



 
 
 
Chapter 5 
 

Improving Constraint Weighting 
 
 
The empirical study in Chapter 4 shows constraint weighting to be competitive, and in 

some cases superior, to the latest WSAT local search heuristics. Our next question is 

whether constraint weighting can be improved as a general (domain independent) 

search technique. To address this we have developed two approaches: firstly we add a 

weighting capability into the WSAT and tabu search heuristics, and secondly we de-

velop a more sophisticated weighting algorithm that places weights between con-

straints that are simultaneously violated at a local minimum. This new arc weighting 

algorithm builds on the insights of the previous chapter by recognising sub-groups of 

constraints that tend to become violated at the same time.  

 

5.1 Background and Motivations 
 
While research has been conducted into different implementations of weighting 

strategies [Frank 1996, 1997; Voudouris and Tsang 1996], the basic concept of 

constraint weighting has mainly been extended for solving satisfiability problems 

[Cha and Iwama 1996, Castell and Cayrol 1997]. [Frank, 1996; Frank, 1997] sug-

gested several performance enhancing modifications to the weighting algorithm, 

including updating weights after each move, only changing variables that are in-

volved in a violation, using different functions to increase weights and allowing 

weights to decay over the duration of the search (some of which we have tested in 

Chapter 4). While Frank’s ideas have produced benefits in certain domains, his 

work can be viewed as a fine tuning of constraint weighting rather than the devel-

opment of a new approach. [Voudouris and Tsang, 1996]’s work on Guided Local 
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Search (GLS) can also be viewed as a generalisation of constraint weighting, 

where constraints are ‘features’ and a utility function decides the weight penalties 

that are then translated using a paramatised cost function.  

Other research has looked at new formulations of the weighting strategy. For 

example, [Cha and Iwama, 1996] produced significant performance improvements 

with their Adding New Clauses (ANC) heuristic, which instead of adding weights 

at a local minimum, adds a new clause for each violated clause (the new clause be-

ing the resolvent of the violated clause and one of it’s neighbours). Castell and 

Cayrol [1997] also suggest an extended weighting algorithm called Mirror which, 

in addition to weighting, has a scheme for ‘flipping’ variable values at each local 

minimum. However, both ANC and Mirror are domain dependent techniques, 

ANC relying on constraints being represented as clauses of disjunct literals and 

Mirror requiring Boolean variables. In addition the Mirror algorithm only appears 

useful for a small class of problem.  

In this thesis we are interested in constraint weighting as a general (domain in-

dependent) technique for solving CSPs, and in this chapter we are interested in ex-

tending or evolving the basic constraint weighting algorithm. Therefore we have 

not considered modifying the weighting algorithm for specific situations or the 

fine tuning of the weighting process. Instead we have worked to introduce some-

thing new into the basic algorithm. Firstly, we look at mixing the WSAT, TABU 

and weight techniques (introduced in Chapter 4) using weighted cost guidance 

(explained in Section 5.2). Secondly, we add another level of weighting to con-

straint weighting, which operates when two or more constraints become simulta-

neously violated in a local minimum (explained in Section 5.3). Finally we present 

and discuss the results of an empirical study designed to evaluate the new tech-

niques. 

 

5.2 Hybrid Techniques 
 
After the promising results of Chapter 4, our next step was to see if the joining of ex-

isting techniques would produce a better overall algorithm. To do this we modified 

the RNOVELTY, NOVELTY, BEST and TABU algorithms introduced in Chapter 4 

to use the weighted cost of a move when evaluating their respective neighbourhoods. 
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By adapting the MOVEWGT heuristic, we cause each of the hybrid algorithms to in-

crement the weight of a constraint if the best move for that constraint cannot reduce 

the overall weighted cost. As an example, figure 5.1 shows the new GenerateLocal-

Moves function for the weighting version of NOVELTY, known as NOVELTYWGT 

(the same modifications were applied to other algorithms to produce 

RNOVELTYWGT, BESTWGT and TABUWGT). 

 
procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 randomly select a violated constraint c 

BestCost ← ∞, SecCost ← ∞ 
 for each vnext ∈ c do 
 begin 
  dcurr ← current domain value of vnext
  for each d ∈ Dnext | d ≠ dcurr do 
  begin 
    m ← {v , d} next
   if (ƒw(s ⊕ m) = BestCost and LastUse(m) < LastUse(mbest))     
   or ƒw(s ⊕ m) < BestCost then 
   begin 
    SecCost ← BestCost  
     m ← m best 
    BestCost ← ƒ(s ⊕ m) 
   end 
   elseif (ƒw(s ⊕ m) = SecCost and LastUse(m) < LastUse(msec))     
  or ƒw(s ⊕ m) < SecCost then 
   begin  
    m  ← m sec
    SecCost ← ƒw(s ⊕ m) 
   end 
  end 
 end 
 if BestCost ≥ fw(s) then increase weight of c 
 if mbest does not undo most recent change of all vnext ∈ c then msec ← ∅  
 return mbest ∪ msec
end 
 

Fig. 5.1. NOVELTYWGT version of GenerateLocalMoves 
 
Figure 5.1 differs from the original NOVELTY algorithm only in respect of using a 

weighted cost function (fw) to evaluate moves and in adding weight to a constraint 

when no move can improve on the current overall weighted cost (i.e. if BestCost ≥ 

fw(s) then increase weight of c).  

 

 
 



 
Chapter 5  Improving Constraint Weighting     88

5.3  Arc Weighting 
 
The Arc Weighting algorithm extends the concept of a weighting algorithm to in-

clude weighting the connections or arcs that exist between constraints. A simple 

weighting algorithm builds up weights on individual constraints each time a con-

straint is violated, either at a local minimum [Morris, 1993] or each time a new 

variable value is chosen [Frank, 1996]. In either case the weights build up a picture 

of how hard a constraint is to satisfy and so represent knowledge or learning about 

the search space [Frank, 1997]. Within this framework, weighting the arcs between 

violated constraints represents learning about which combinations of constraints 

are harder to satisfy. For instance, consider the example in figure 5.2:  
 
 

(0)

(1)

(2)

B(3)C(4)

A(3)
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.2. A simple constraint weighting scenario 
 

The nodes A, B and C are three constraints in a hypothetical CSP. The values asso-

ciated with A, B and C represent the current weights on each constraint. A con-

straint weight equals (1 + v) where v is the number of times the constraint has al-

ready been violated in a local minima and 1 is the initial weight of the constraint. 

(ie A(3) means constraint A has already been violated in 2 earlier local minima, 

plus 1 representing it’s initial weight). The values on the arcs between constraints 

represent the number of times the two connected constraints have been simultane-

ously violated (i.e. the value 1 against arc BC represents that constraints B and C 

were once both violated in the same local minimum). Now consider the choice be-

tween two moves m1 and m2, such that m1 violates constraints A and B and m2 vio-

lates constraints A and C. The cost of m1 for a simple weighting algorithm would 

be the sum of the weights on A and B (3 + 3 = 6) and the cost of m2 would be the 

sum of the weights on A and C (3 + 4 = 7). Therefore m1 would be preferred. How-

ever, an arc weighting algorithm would also consider that A and B have already 
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been violated together in two previous minima, so the cost of m1 includes the arc 

weight AB (3 + 3 + 2 = 8). The cost of m2 still equals 7 as the arc weight AC = 0. 

Therefore, unlike simple weighting, arc weighting would prefer m2. In accepting 

m2 the search will move to the previously unexplored area where both A and C are 

violated, rather than re-exploring an AB violation. In this way, arc weighting can 

produce a more diverse search that is less likely to revisit previous solutions.  

Looked at more formally, arc weighting operates on a  graph G = (V, E) where 

each vertex vi represents a constraint (or clause) and each edge ek represents a con-

nection between two constraints vi and vj. The graph is complete in order to cap-

ture all information about violated constraint groups, hence an initial set of n con-

straints results in a set of n(n - 1)/2 edges. This means a CNF satisfiability problem 

with 400 clauses will require 79,800 arcs! Typically an iterative repair algorithm 

calculates the cost of all candidate variable values before making a move. Clearly 

an arc weighting algorithm that checks all arcs for each variable value would be 

impractical with a significant number of constraints. Therefore the main challenge 

is to develop an efficient implementation of arc weighting without loss of arc in-

formation. 

 
5.3.1  An Efficient Network Representation 
 
The first step in representing the network graph is to recognise that the only rele-

vant arcs at a particular point in the search space are those existing between cur-

rently violated constraints that have also already been weighted. (in the proposed 

algorithm, weighted constraints are those constraints that have been previously 

violated in a local minimum solution). Therefore the initial requirement is to build 

and maintain a list of currently violated, weighted constraints. This list (called 

CList) is generally short, but changes according to the type of problem and the 

state of the search. Next we need to represent and update the arc weights. This is 

done by first constructing an n x n array (called ArcArray) where element i,j repre-

sents the number of times constraints i and j have been violated together. The 

CList is then maintained in the following way: Each time a move is tested, all the 

newly violated and newly satisfied weighted constraints are added to a temporary 

list (TList). If the move appears promising (i.e. it satisfies at least one constraint 

that was previously violated) then the constraints in TList are merged with CList: 
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Firstly CList is copied (as the move may still be rejected) then each newly satisfied 

constraint is removed from CList and the arc weights between the satisfied con-

straint and each remaining CList constraint are calculated from ArcArray and sub-

tracted from the total cost for the current move. Then each newly violated con-

straint is added to CList and all the arc weights between it and the existing CList 

constraints are added to the total cost. According to the new total cost, the move is 

either accepted or rejected. If rejected, CList reverts to its original state. This algo-

rithm is shown in figure 5.3 (which shows the arc weighting cost function fw-arc) 

and figure 5.4 (which shows the arc weighting version of GenerateLocalMoves). 
 
function fw-arc(CList, OldValue, NewValue) 
begin 
 Improve ← False, Counter ← 0, Diff ← 0, TList ← ∅   
 for each constraint ci | OldValue ∈ domain of v and v constrained by ci do 
 begin 
  CChange ←  weighted cost of changing OldValue to NewValue for v 
  if CChange < 0 then Improve ← True 
  if ci already weighted and CChange ≠ 0 then add ci to TList 
  Diff ← Diff + CChange 
 end 
 if Improve = True and TList ≠ ∅ then for each constraint ci ∈ TList do 
 begin 
  if ci violated with OldValue then 
   if ci satisfied with NewValue then 
   begin 
    delete ci from CList 
    for each constraint cj ∈ CList do Diff ← Diff - ArcArray[i][j] 
   end 
  else 
  begin 
   for each constraint cj ∈ CList do Diff ← Diff + ArcArray[i][j] 
   insert ci into CList 
  end 
 end 
 return Diff 
end 
 

Fig. 5.3. Arc weight cost function 
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procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, Vviol = ∅   
 for each vi ∈ V do if vi in constraint violation then Vviol ← Vviol + vi
 while M’= ∅ and Vviol ≠ ∅ do 

begin  
 select and delete vi from Vviol  

  dcurr ← current domain value of vi
  CurrentCost ← BestCost 

for each d ∈ Di | d ≠ dcurr and M’= ∅ do   
  begin 
   m ← {vi, d} 

CopyList ← CList 
   TestCost = fw-arc(CList, dcurr, d) 
   if  TestCost < BestCost  

or (TestCost = BestCost and random number < p) then 
   begin 
    BestCost ←TestCost 
    M’ ← M’∪ m 
   end 
   else CList ← CopyList 
  end 
 end 
 if M’ = ∅ then  

begin 
 MoveSideways() 

increase weights on all violated constraints and arcs 
BestCost ← BestCost + cost change due to weight increase 

end 
return M’ 

end 
 

Fig. 5.4. Arc weight version of GenerateLocalMoves 
 

5.3.2  Modifications to the Weighting Algorithm 
 
As there is no ‘standard’ weighting approach, certain choices were made in the 

construction of the algorithm used in the study. [Frank, 1996] experimented with 

only testing moves for variables that are currently involved in a constraint viola-

tion. This eliminates the possibility of many ‘sideways’ moves but significantly 

reduces the number of values tested before each move. Tests with this approach 

showed a significant speed up in search times for smaller problem instances, but a 

tendency for the algorithm to become ‘lost’ in larger problems and fail to find a 

solution. A compromise approach was developed that forces a move which 
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changes the value of a variable not involved in a constraint violation each time a 

local minimum is encountered (represented by MoveSideways() in figure 5.4). For 

the test problems considered, this compromise performed better than either origi-

nal approach.  

Observation of the behaviour of the arc weighting algorithm indicated that it 

strongly favours solutions with only one constraint violation, and tends to cycle 

between these solutions (because there is zero arc weight for a single constraint 

violation). To remedy this behaviour an alternative weight allocation strategy was 

developed. Previously each constraint starts with a weight of one and is incre-

mented by one each time it is violated at a local minimum. The new scheme dis-

tributes a fixed weight equal to the total number of constraints. If only one con-

straint is violated at a local minimum then it gets the full fixed weight, otherwise 

the weight is proportionally divided between all violated constraints. This ‘propor-

tional weighting’ scheme significantly improves the performance of the arc 

weighting algorithm while causing the standard weighting algorithm to deteriorate.  

 

5.4 Arc Weighting Experimental Results 
 
5.4.1 Arc Weighting on Specialised and General Problem Domains 
 
In a preliminary investigation we found that arc weighting generally does not per-

form well when embedded in an algorithm designed to exploit a specific problem 

structure. For instance, the fastest CNF satisfiability algorithms [e.g. McAllester et 

al. 1997] permanently store the cost of flipping each variable during the search. 

Each time a move is executed, the cost of flipping all connected variables is ad-

justed. This approach is efficient because all variables have a binary domain (true 

or false) and the effect of flipping a variable is easily computed by keeping a count 

of the number of true literals in a clause. If we add arc weighting to such an algo-

rithm it performs badly because of the extra cost of recalculating the arc weight for 

all weighted variables after each move.  

Similarly, a binary CSP algorithm can do a table look-up to discover whether a 

domain value violates a constraint (see Section 3.3.2) and consequently the cost of 

calculating arc-weights greatly exceeds the cost of simple constraint evaluation. 

Both CNF satisfiability and binary CSP algorithms exploit a binary problem struc-
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ture which does not exist in realistic non-binary problems (such as nurse rostering 

and timetabling). Although realistic problems can be transformed into binary CSP 

or CNF format this can lead to large problem representations that are inefficient to 

solve (for example see Chapter 3 or [Cha et al., 1997]).  

Consequently, we have evaluated arc-weighting within a general purpose con-

straint satisfaction algorithm that does not assume fixed domain sizes or binary 

constraints (this is the same constraint engine that was used to solve the nurse ros-

tering and timetabling problems in Chapter 4). To specifically measure the effect 

of arc-weighting, we developed an algorithm where the arc-weighting features can 

be turned off and the algorithm reverts to the MINWGT heuristic used in Chapter 

4. Using these two methods (ARCWGT and MINWGT) we experimented on a lar-

ger sample of nurse rostering problems (16 problems) and transformed a selection 

of smaller satisfiability problems into a CSP format using the following method: a 

clause becomes a constraint between 3 variables, {x1,x2,x3}, each with a domain of 

{0,1} and corresponding coefficients {a1,a2,a3}. These variables then form a con-

straint a1x1 + a2x2 + a3x3 > b where aixi corresponds to the ith literal in the clause 

such that ai = -1 if the literal is negative, otherwise ai = 1, and b = -(total number 

of negative literals in clause). Two classes of CNF problem were used:  

 

• randomly generated 3 SAT problems with a clause/variable ratio in the cross-

over region of 4.3. These problems are prefixed with an r followed by the 

number of variables, ie r100 represents a randomly generated, satisfiable for-

mula with 100 variables and 430 clauses. 

• single solution SAT problems with a clause/variable ratio of 2.0 created using 

an AIM generator (see [Asahiro, 1993]). These problems are prefixed AIM fol-

lowed by the number of variables (as above).  

 

As in Chapter 4 the nurse rostering CSPs are based on real data used to roster 

nurses in a public hospital. The model has a variable for each staff member, with a 

domain of allowable schedules. Typically there are 25-35 variables each with a 

domain size of up to 5000 values. Therefore the structure of the problem differs 

significantly from the 2 value domain of the CNF problems. In addition, approxi-

mately 400 non-binary constraints are defined between variables expressing allow-
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able levels of staff for each shift, and preferred shift combinations. Although the 

general problem is over-constrained, optimal solutions have been found using an 

integer programming (IP) approach [Thornton and Sattar, 1997]. The IP solutions 

allow the  problem to be formulated as a CSP, by defining each constraint to be 

satisfied when it reaches level attained in the optimum solution.  
 

Problem Method RunTime (secs) Loops Hills Minima 
  Mean Median Std Dev Max Min    

 r100  MINWGT 7.43 3.42 10.39 51 0.11 3955 3035 1398
 ARCWGT 6.04 3.72 7.90 48 0.30 2354 4218 637
 r200 MINWGT 56.27 18.32 97.57 641 0.23 17171 9723 6614
 ARCWGT 20.91 9.21 27.02 121 0.93 4654 10839 1198
 r400 MINWGT 342.23 292.57 202.10 1203 3.68 61534 47383 22566
 ARCWGT 79.34 59.47 69.42 602 6.31 10779 31879 2684
 AIM 100  MINWGT 9.89 9.30 4.59 29 1.25 13322 5797 5101
 ARCWGT 6.41 5.62 3.49 21 1.39 7908 5796 2531
 AIM 200  MINWGT 88.25 79.78 45.25 261 19.80 66072 23557 26274
 ARCWGT 56.74 48.07 38.32 268 9.40 40618 27879 13316
 roster   MINWGT 144.35 29.23 250.38 1574 1.83 207 390 69
 ARCWGT 74.02 27.85 97.68 575 2.36 136 475 38

 
Table 5.1. Comparison of mean performance values 

 
 

Problem Time Std Dev Loops Hills Minima 
 r100  .81 .76 .60 1.39 .46 
 r200 .37 .28 .27 1.11 .18 
 r400 .23 .34 .18 .67 .12 
 AIM 100  .65 .76 .59 1.00 .50 
 AIM 200 .64 .85 .62 1.18 .51 
roster .51 .39 .66 1.22 .55 

 
Table 5.2. Table 5.1 ARCWGT values as a proportion of MINWGT values 

 

5.4.2  Arc Weighting Performance 
 
For each category of problem, between 100 and 200 solutions were generated by 

each algorithm. The mean performance values for these solutions are reported in 

table 5.1. The Time column represents the mean execution time in seconds on a 

Sun Creator 3D-2000 and Std Dev is the standard deviation of the time. Loops is 

the mean number of iterations through the main program loop (the while loop in 

figure 5.4), Hills is the mean number of improving moves made by the algorithm 

and Minima is the mean number of local minima encountered.  

The study uses multiple performance measures to capture precise differences be-

tween the two algorithms. While previous research has concentrated on counting 

the number of ‘flips’ or moves (e.g. [Cha and Iwama 1996; Frank 1996]), this 
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measure was found to be inadequate for comparing ARCWGT and MINWGT. As 

table 5.1 shows, for several problems the number of hill climbing moves made by 

ARCWGT exceeds MINWGT, while the ARCWGT execution time and number of 

iterations are actually less. This shows the number of moves is only a partial 

measure of the amount of ‘work’ done by the algorithms. The other dimension is 

the number of domain values tried (and hence the number of constraints tested) 

before a weighted cost improving move is found. This is analogous to the count of 

instantiations and consistency checks used in evaluating backtracking (e.g. see 

Haralick and Elliott [1980]). The amount of ‘work’ done by each algorithm is 

therefore better captured in counting the main program iterations (Loops in table 

5.1). However, the Loops measure does not capture the extra work done by 

ARCWGT in maintaining CList (see figure 5.3). For this reason, execution times 

are also recorded.  

 

5.5 Analysis of Arc Weighting 
 
The results show that the average solution times and the average number of itera-

tions performed by the arc weighting algorithm are significantly less than for stan-

dard weighting. This supports the earlier hypothesis that arc weighting provides 

additional useful information about the search space. The time results also indicate 

that the benefits of arc weighting outweigh the costs of maintaining the constraint 

list (see figures 5.5 and 5.6).  

 
5.5.1  Distinguishing Moves 
 
Table 5.2 re-expresses the results from table 5.1, giving the ARCWGT values as a 

proportion of the MINWGT values, and more clearly shows the relative differ-

ences between the algorithms. In all cases the ARCWGT results are less than the 

MINWGT results, except for the number of hill-climbing or improving moves. The 

hill climb counts are shown in more detail in figure 5.7, which plots the average 

number of hill climbs performed, firstly for all problems completed in less than 

10,000 iterations, then for problems completed between 10,000 and 20,000 itera-

tions, and so on. As discussed earlier, the arc weighting information should incline 

the search to avoid visiting previously violated groups of constraints and hence to 
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perform a more diverse search. The greater number of hill climbing moves com-

bined with a reduced number of local minima for ARCWGT (see figure 5.8) indi-

cate a more diverse search is occurring. More precisely, the hill climbing behav-

iour shows that, for a given number of iterations, ARCWGT is more likely to find 

a hill climbing move than MINWGT, because arc weighting is able to distinguish 

between moves that simple weighting would evaluate as having the same cost. Of 

course, the ability to distinguish between moves is only useful if the result, as in 

the present case, is a faster overall search.   
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Fig. 5.5. Proportion of solved problems by time 

 

5.5.2  Arc Weighting Costs 
 
As would be expected, there is a greater proportional reduction in the number of 

program iterations than in the execution time for ARCWGT (compare figures 5.5 

and 5.6). This reflects the cost to ARCWGT of using arc weights and is further 

analysed in table 5.3. Here the average number of iterations per second are calcu-

lated for each algorithm and problem class. The table shows the ARCWGT main 

loop is running at approximately 74% of the speed of MINWGT for the random 

CNF problems, increasing to 94% for the AIM problems. The probable explanation 

for this difference is the greater clause or constraint density for the random prob-

lems (4.3 in comparison to 2.0 for the AIM problems). The greater density would 

increase the average length of CList (figure 5.3) and hence add to ARCWGT’s 
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overhead. However, a larger CList indicates that arc weights are also giving more 

guidance to the search, and so a counterbalancing improvement in search effi-

ciency would be expected (as the results demonstrate). 
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Fig. 5.6. Proportion of solved problems by iterations 
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Fig. 5.7. Comparison of hill climbing moves 
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Fig. 5.8. Number of minima by iterations 

 
 

Problem Method Loops/Time ARCWGT/ 
MINWGT 

 r100  MINWGT 532.30 73.22% 
 ARCWGT 389.74  
 r200 MINWGT 305.15 72.94% 
 ARCWGT 222.57  
 r400 MINWGT 179.80 75.56% 
 ARCWGT 135.86  
 AIM 100  MINWGT 1347.02 91.59% 
 ARCWGT 1233.70  
 AIM 200  MINWGT 748.69 95.61% 
 ARCWGT 715.86  
 roster   MINWGT 1.43 92.03% 
 ARCWGT 1.32  

 
Table 5.3. Comparison of iteration speed 

 

5.5.3  Effects of Problem Size 
 
The results do not support any firm conclusions as to whether ARCWGT performs 

proportionally better as problem size increases. While ARCWGT tends to do better 

with larger random CNF problems (r200 and r400), there was little size effect be-

tween the single solution AIM problems (AIM 100 and AIM 200). However, as fig-

ures 5.5 and 5.6 indicate, the two algorithms do have similar performance when 

solving easier problems. This is to be expected, as in the early stages of a search, 

relatively few constraints are weighted. As the search continues, the number of 

weighted constraints grows and hence the effect of arc weighting becomes more 

pronounced.  
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5.5.4  Divergence 
 
A further property of ARCWGT is that solution times tend to be more predictable 

or less divergent than for MINWGT. This is shown in the execution time standard 

deviations and in the graph of figure 5.9, which plots the number of solutions 

found at various iteration ranges. As [Cha and Iwama, 1996] point out, reduced 

divergence is useful when using an iterative repair technique to indicate unsatisfi-

ability.   
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Fig. 5.9. Number of solved satisfiability problems by iterations 
 

5.5.5  Applicability to Other Domains 
 
As previously discussed (in Section 5.4.1), ARCWGT does not perform well in 

comparison to specialised weighting algorithms that exploit the binary domains of 

satisfiability problems and the binary constaints of binary CSPs. The current em-

pirical study shows ARCWGT can produce performance improvements when em-

bedded in a more general constraint solving approach using non-binary domains 

and constraints. The crucial questions for the arc-weighting approach are (a) 

whether the arc-weight information is useful to improve a search and (b) whether 

the gains obtained from arc-weighting can outweigh its cost. Using our results we 

can only conclude that arc-weighting has the better absolute performance for the 

nurse rostering problems. Although the arc-weighting information does improve 
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the search for satisfiability, the cost of maintaining the arc weights makes it un-

competitive with the specialised satisfiability algorithms used in Chapter 4.  

We also looked at solving the structured timetabling problems from Chapter 4 

using arc-weighting. Here we found the average execution times for ARCWGT 

and MINWGT to be virtually the same (100.8 seconds for ARCWGT versus 101.3 

seconds for MINWGT). Again ARCWGT had a smaller Loops score (231 to 444) 

and a higher Hills score (3263 to 3023). More significantly ARCWGT was able to 

solve a greater proportion of the problems within 1 million iterations (86% versus 

74%) and performed significantly better on the problems that MINWGT found 

hardest. In contrast MINWGT had the better performance on the easier randomly 

generated timetabling problems (with an average execution time of 30.2 seconds in 

comparison to ARCWGT’s 46.5 seconds). These additional results back up similar 

observations from the nurse rostering problems, where ARCWGT performed better 

on the problems that MINWGT found relatively more difficult. This suggests that 

arc-weighting information is best employed in the later stages of a search after an 

simple weighting algorithm has failed to find an answer. Such an approach would 

avoid the overhead of calculating the arc-weight costs in the early part of the 

search (only ArcArray need be updated) but could help improve longer term 

searches. The issue then arises as to the exact point in a search where arc-

weighting should be invoked – although this could be resolved by trial and error, 

further investigation may reveal that an optimum point can be calculated (based on 

existing weight levels in the search).  

 

5.6 Hybrid Experimental Results 
 
We tested our hybrid constraint weighting algorithms by directly embedding the 

weighting features described in Section 5.2 into the code developed by [McAllester et 

al., 1997] for solving satisfiability problems. We then re-ran the satisfiability experi-

ments reported in Chapter 4. Results for NOVELTYWGT, RNOVELTYWGT and 

BESTWGT are shown in tables 5.4 (3-SAT) and 5.5 (DIMACS). Each table also re-

produces the Chapter 4 unweighted results (in brackets) for each algorithm and the 

MOVEWGT results for each problem type. The TABUWGT results are not presented 
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because the weighted algorithm was unable to match or exceed the performance of 

TABU on any of the problem types.  
 

Flips Time (seconds) Problem Method 
Mean  Cut-off Mean Median Max Min Std Dev 

Success 

r100 NOVELTYWGT 1698 (1331) 250000 0.039 0.016 0.543 0.001 0.0573 100% (100)
 RNOVELTYWGT 2175 (1454) 0.052 0.018 1.204 0.001 0.0976 100% (100)
 BESTWGT 4154 (4072) 0.078 0.042 0.861 0.001 0.0956 100% (100)
 MOVEWGT 1988 0.037 0.011 2.057 0.001 0.1158 100%
r200 NOVELTYWGT 27673 (29014) 500000 0.625 0.257 10.973 0.004 0.9604 100% (99)
 RNOVELTYWGT 48833 (25422) 1.081 0.290 10.933 0.003 1.8638 96% (97)
 BESTWGT 74998 (46946) 1.360 0.605 8.681 0.006 1.6813 98% (99)
 MOVEWGT 50554 1.550 0.369 15.124 0.004 2.7387 86%
r400 NOVELTYWGT 183276 (108497) 1000000 4.437 2.302 24.127 0.012 5.2357 92% (94)
 RNOVELTYWGT 227159  (85175) 5.605 2.815 24.564 0.027 6.4395 69% (95)
 BESTWGT 304512 (147933) 5.665 3.827 18.588 0.131 5.0172 76% (93)
 MOVEWGT 175473 5.516 2.242 30.917 0.031 7.0424 62%
AIM 100 RNOVELTYWGT 6109 (-) 250000 0.085 0.045 2.112 0.004 0.1569 100% (0)
 BESTWGT 10295 (-) 0.107 0.071 1.111 0.006 0.1213 100% (0)
 NOVELTYWGT 19264 (-) 0.261 0.101 3.289 0.008 0.4407 100% (0)
 MOVEWGT 4410 0.085 0.041 3.066 0.002 0.2283 100%

 
Table 5.4. 3-SAT results for hybrid weighting algorithms 

 
Flips Time (seconds) Problem Method 

Mean  Cut-off Mean Median Max Min Std Dev 
Success 

g125.18 NOVELTYWGT 60613   (5915) 1000000 9.26 7.85 51.97 1.350 5.8319 100% (100)
g250.15 RNOVELTYWGT 108644   (6880) 16.36 13.15 117.32 1.590 12.2995 100%   (99)
graph BESTWGT 449189 (24566) 60.35 60.31 126.33 1.527 4.4695 52% (100)
colouring MOVEWGT 218168 33.04 29.44 145.91 1.572 16.6267 88%
ssa BESTWGT  5937 (29606) 500000 0.07 0.06 0.42 0.022 0.0484 100% (99)
circuit RNOVELTYWGT 8792 (29541) 0.20 0.11 4.26 0.024 0.3070 100% (94)
fault NOVELTYWGT 9340 (26987) 0.21 0.12 1.77 0.025 0.2364 100% (97)
diagnosis MOVEWGT 2885 0.05 0.04 0.26 0.021 0.0270 100%
par8 NOVELTYWGT  1663   (2796) 250000 0.03 0.02 0.19 0.001 0.0300 100% (100)
parity RNOVELTYWGT 1944   (2760) 0.04 0.02 0.20 0.001 0.0347 100% (100)
function BESTWGT 17172 (25183) 0.25 0.13 3.06 0.001 0.3792 100% (100)
learning MOVEWGT 2542 0.05 0.03 0.87 0.001 0.0883 100%
ii32 BESTWGT  641   (1185) 500000 0.07 0.05 0.31 0.019 0.0596 100% (100)
inductive RNOVELTYWGT 1207 (18477) 0.17 0.13 0.60 0.028 0.1183 100% (100)
inference NOVELTYWGT 1227 (51391) 0.18 0.12 0.83 0.029 0.1354 100%   (47)
 MOVEWGT 2739 0.48 0.15 2.97 0.027 0.6633 100%

 
Table 5.5 DIMACS results for hybrid weighting algorithms 

 

5.7 Analysis of Hybrid Algorithm Performance 
 
Tables 5.4 and 5.5 show that a weighting feature in the WSAT algorithms produces 

varying results. Starting with the randomly generated 3-SAT problems (r100, r200 

and r400), weighting causes performance to deteriorate for all three hybrid techniques 

(NOVELTYWGT, RNOVELTYWGT and BESTWGT) in comparison to the corre-

sponding unweighted algorithms reported in Chapter 4. Conversely, hybrid perform-
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ance did improve for the AIM problems, where previously the unweighted algorithms 

were unable to find a solution. However, the hybrid WSAT algorithms could not 

match the performance of the pure weighting algorithm (MOVEWGT) on the AIM 

problems. As far as the 3-SAT results are concerned, the hybrid WSAT algorithms 

did worse on the problems the unweighted algorithms were relatively good at and bet-

ter on the problems that the unweighted algorithms were relatively poor at, but were 

unable to produce a new best result on any of the 3-SAT problems considered. 

The DIMACS results in table 5.5 produce a similar picture for the graph colouring 

and circuit fault diagnosis (ssa) problems (i.e. unweighted WSAT was good on graph 

colouring, now hybrid weighting causes a deterioration, and unweighted WSAT was 

poor on ssa and hybrid weighting causes an improvement, but not sufficient to outper-

form the pure weighting algorithm). The interesting results occur for the parity func-

tion learning problems where the hybrid NOVELTYWGT has the best overall per-

formance of all Chapter 4 and 5 algorithms, and similarly for the inductive inference 

problems where the hybrid BESTWGT algorithm dominates. In both these problem 

domains there was little distinction between pure weighting and the best WSAT alter-

native reported in Chapter 4. The Chapter 5 results therefore suggest that in such cir-

cumstances (i.e. pure weighting and WSAT perform equally as well) then a hybrid 

technique may be applicable. However, given the limited scope of our study, this ob-

servation requires with further testing. 
 

5.8 Summary 
 
The main conclusions of the chapter are: 

 
• arc weighting can lead to improved performance in solving general CSPs but is 

uncompetitive with techniques that exploit the binary structure of variable do-

mains and constraints in binary CSPs and satisfiability problems. 

 
• adding a weighting capability to the various WSAT techniques can also im-

prove performance, most noticeably on problems where standard weighting and 

WSAT techniques are evenly matched. 

 



 
Chapter 5  Improving Constraint Weighting     103

Although the improvements we have suggested for constraint weighting can pro-

duce performance benefits, we cannot claim to have produced a better weighting 

algorithm in any absolute sense. The issue therefore arises as to when the various 

enhancements are applicable. Again the study cannot give an absolute answer to 

this question, but the results do suggest certain guidelines: firstly ARCWGT is ap-

plicable to more general CSP formulations that do not exhibit special problem 

characteristics (such as exclusively binary domains or constraints). Also 

ARCWGT appears to do better on harder than average problems that MINWGT 

has difficulty solving. As previously discussed, this suggests that arc-weighting is 

best employed as an ‘add-on’ to constraint weighting, which is invoked in the later 

stages of a search within a standard constraint weighting algorithm.  

The second class of techniques considered in this chapter were the hybrid 

weighting algorithms. We firstly rejected the idea of adding weights to a tabu 

search as this consistently caused performance to decline. However, for the WSAT 

techniques (BESTWGT, NOVELTYWGT and RNOVELTYWGT) a weighting 

component did improve the performance of the original unweighted techniques re-

ported in Chapter 4 on several problem domains. Further, for the parity function 

learning and inductive inference problems one of the new hybrid algorithms was 

able to outperform all the algorithms considered so far in the study. Interestingly, 

it was in these two domains that the original pure weighting and WSAT algorithms 

from Chapter 4 were fairly evenly matched. This led us to conclude that hybrid 

weighting is probably best suited to problems where neither WSAT nor pure 

weighting has a clear advantage. 

 



 
 
 
Chapter 6 
 

Over Constrained Problems 
 
 
Real-world constraint satisfaction problems (CSPs) are often over constrained while 

containing a set of mandatory or hard constraints that have to be satisfied for a solu-

tion to be acceptable. Our earlier work (in Chapter 4) indicates constraint weighting 

performs well on problems where there is a distinction between constraint groups. 

Over constrained problems with hard constraints provide a ready made distinction be-

tween constraints, suggesting constraint weighting may be suitable for such problems. 

However, little work has been done in applying constraint weighting to over con-

strained problems with hard constraints. The difficulty has been finding a weighting 

scheme that can weight unsatisfied constraints and still maintain the distinction be-

tween the mandatory and non-mandatory constraints. This chapter presents a new 

weighting strategy that simulates the transformation of an over constrained problem 

with mandatory constraints into an equivalent problem where all constraints have 

equal importance, using hard constraint repetition. In addition, two dynamic con-

straint weighting schemes are introduced that alter the number of simulated hard con-

straint repetitions according to feedback received during the search.  

 

6.1 Background and Motivations 
 
An over constrained problem is defined as a standard CSP (i.e. as a set of variables, 

each with a set of domain values and a set of constraints defining the allowable com-

binations of domain values for the variables) with the additional proviso that no com-

bination of variable instantiations can simultaneously satisfy all the constraints. The 

objective therefore becomes to satisfy as many as possible of the constraints [Freuder 
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and Wallace, 1992]. Given all constraints are of equal importance, a standard weight-

ing algorithm can be applied to an over constrained problem with minimal modifica-

tion (see section 6.2). However, most realistic over constrained problems involve con-

straints of varying levels of importance. Typically there is a set of hard constraints 

that have to be satisfied (otherwise the solution is not acceptable) and a set of soft 

constraints whose satisfaction is desirable but not mandatory. The simplest way to 

represent the relative importance of a constraint is to give it a weight. However, a 

weighting algorithm already applies weights to constraints during the search to escape 

local minima. The question then arises, how can a weighting algorithm add weights to 

constraints without distorting the original weights that indicate the relative impor-

tance of the constraints?  

[Cha et al., 1997] proposed an initial answer to this question by calculating fixed 

hard constraint weights based on an analysis of the problem domain. The present 

study describes two algorithms that dynamically calculate the relative weights of hard 

and soft constraints during program execution. This means the approach is independ-

ent of specific domain knowledge and produces a more extensive search of the prob-

lem space. By analysing a set of over constrained problems, for which there are 

known optimal answers, the study shows the two dynamic weighting schemes per-

form at least as well as an ideal weight incrementing scheme that relies on foreknowl-

edge of an optimal answer (a situation not usually found in practice). 

The motivation of the chapter is to investigate the implementation of local search 

weighting techniques developed in the domain of CNF satisfiability to the more com-

plex ‘real-world’ of constraint satisfaction. The chapter also introduces implementa-

tions of TABU [Glover 1989], NOVELTY and RNOVELTY [McAllester et al. 1997] 

and Guided Local Search [Voudouris and Tsang 1996] adapted to solve over con-

strained problems. These algorithms (plus two non-dynamic constraint weighting 

techniques) are compared to dynamic constraint weighting using over constrained 

versions of our existing nurse rostering and timetabling problems. In addition we look 

at a set of over constrained radio frequency allocation problems 
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procedure GenerateLocalMoves(s, TotalMoves) 
begin  
 M’← ∅, BestWeightedCost ← ƒw(s) - δ   
 for each vi ∈ V do if vi in constraint violation then 
 begin    
  dcurr ← current domain value of vi
  for each d ∈ Di | d ≠ dcurr do   
  begin 
   m ← {vi, d} 
   if ƒ(s ⊕ m) < BestUnWeightedCost and ƒh(s ⊕ m) = 0 then 
   begin 
    BestUnWeightedCost ←ƒ(s ⊕ m) 
    BestSolution ← s ⊕ m 
   end 
   if ƒw(s ⊕ m) ≤ BestWeightedCost then 
   begin 
    if ƒw(s ⊕ m) < BestWeightedCost then 
    begin 
     BestWeightedCost ←ƒw(s ⊕ m) 
     M’ ← ∅  
    end 
    M’ ← M’∪ m  
   end  
  end 
 end 
 if M’ = ∅ then IncreaseViolatedConstraintWeights() 
 return M’ 
end 

 
Fig. 6.1. GenerateLocalMoves for over constrained constraint weighting 

 

6.2 Constraint Weighting for Over Constrained Problems 
 
Figure 6.1 gives the pseudocode for the basic constraint weighting strategy used in the 

chapter. As the algorithm solves over constrained problems with hard constraints, it 

needs to keep track of the best solution currently found in the search (here the best 

solution minimises the soft constraint cost while satisfying all hard constraints). Con-

sequently we need an additional cost function fh(s) that returns the number of hard 

constraint violations in solution s. This is not required for standard CSPs because a 

clear stopping condition exists (i.e. when all the constraints are satisfied). Also for 

over constrained problems, it is generally not known when an optimal solution is 

found (unless some other complete method has initially solved the problem). Instead, 

the search terminates when it has continued for sufficiently long without finding an 
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improving move. This means the terminating solution cannot be the best solution, and 

requires the storage of each successive best solution as it is found. Further, a con-

straint weighting algorithm may discover an optimum solution during the search, but 

fail to recognise it because the current constraint weights make another move more 

attractive. Therefore the algorithm must also calculate the unweighted cost of each 

move (f(s)) and use this measure to evaluate the best solution: 

 

6.2.1  Weighting with Hard and Soft Constraints 
 
As we have already shown, constraint weighting can be an effective technique for 

solving hard CSP problems. As yet however, there has been little work in applying 

constraint weighting to more realistic over constrained problems involving hard and 

soft constraints. A pioneering work in this area was Cha et al.’s paper on university 

timetabling [1997]. They converted a small graduate student timetabling problem into 

CNF format, dividing the clauses into hard and soft constraints. The hard constraint 

clauses were limited to being either all positive or all negative literals, reflecting the 

restriction that the problem of satisfying the hard constraints must be relatively easy. 

The greater importance of the hard constraints was then represented by adding a fixed 

weight to each hard constraint clause.  

Thornton and Sattar [1997] also looked at solving a set of realistic over constrained 

nurse rostering problems using constraint weighting. In their approach only violated 

hard constraint weights are incremented at a local minimum. A soft constraint heuris-

tic is then used to bias the search towards solutions that satisfy a greater number of 

soft constraints. However, empirical tests showed the soft constraint heuristic, al-

though causing some improvement, was rarely able to find the (already known) opti-

mal solutions. 

Both Cha et al. and Thornton and Sattar’s methods attempt to satisfy as many soft 

constraints as possible while looking for a solution that satisfies all hard constraints. 

Once such a solution is found, a limited search is made for the best soft constraint cost 

and then the algorithms are either terminated or reset. Cha et al. reset their constraint 

weights because, in further searching, the distinction between hard and soft con-

straints weights is lost (due to the weighting action of the algorithm) and the search is 

no longer able to find acceptable solutions. In Thornton and Sattar’s approach the 

algorithm terminates because there is no mechanism that allows the soft constraint 
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gorithm terminates because there is no mechanism that allows the soft constraint 

weights to increase, so the search is unable to move out of it’s local area. 

 

Maintaining the Hard Constraint Differential. One of the contributions of this 

chapter is the extension of Cha et al.’s concept of repeating hard constraints [1997]. If 

each hard constraint is actually repeated in a problem (say n times) then, when a hard 

constraint is violated in a local minimum, all n copies of the constraint would receive 

a weight increment of w, causing a total increase in cost of n × w. This can be simu-

lated, as with Cha et al., by giving each hard constraint an initial weight of n. The 

new step is to increment each hard constraint violated at a local minimum with a 

weight of n × w instead of w (soft constraint violations are still incremented by w). 

Such a system behaves identically to a system where all constraints have equal 

weight, with each hard constraint repeated n times. Previous studies have already 

demonstrated that simple constraint weighting is an effective search strategy. There-

fore we should expect the new hard constraint weighting strategy to be equally effec-

tive.  

In order to adequately explore the search space, a constraint weighting algorithm 

must be able to move from one area to another where all hard constraints are satisfied, 

via intermediate solutions where some hard constraints are violated. Unlike the pre-

viously discussed algorithms, the new hard constraint weighting strategy is able to do 

this systematically rather than accidentally: 

  

Example. Consider the situation in figure 6.2: A, B, c and d represent four constraints 

in an unspecified over constrained problem, where A and B are hard constraints, c and 

d are soft constraints, and wA, wB, wc and wd represent the constraint weights of A, B, c 

and d respectively. Let the number of hard constraint repetitions n = 3 and the weight 

increment w = 1. Hence, the soft constraints are given initial weights wc = wd = w = 1, 

and the hard constraints are given initial weights wA = wB = n × w = 3. Figure 3(a), 

represents the first local minimum found in the search, where all hard constraints are 

satisfied and both soft constraints are violated. As yet no weights have been added by 

the search so the cost of the solution = wc + wd = 2. A constraint weighting algorithm 

will now add weight w to c and d, making wc = 2 and wd = 2, and a new solution cost 

= 4. If we assume there is no move available that does not violate both hard con-
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straints, then we are still at a local minimum (as wA + wB > wc + wd) and the soft con-

straints will be incremented twice more until wc = wd = 4. In this case the cost of vio-

lating both hard constraints (6) is less than the cost of violating both soft constraints 

(8), so the move which violates both hard constraints will be accepted (shown in fig-

ure 6.2(b)). Assuming this solution is another local minimum, the weights of a and b 

are now incremented. In Cha et al.’s scheme, wA and wB will be incremented by w to 4 

(figure 6.2(c)), whereas in the new constraint weighting scheme wA and wB will each 

be incremented by n × w to 6 (figure 6.2(d)). Here the crucial difference between the 

two approaches is evident. In Cha et al.’s solution all constraints now have the same 

weight and there is no way to further distinguish between the hard and soft con-

straints. This means the search has no guidance towards solutions which satisfy the 

hard constraints. In the new constraint weighting strategy, the soft constraints have 

been allowed to overpower the hard constraints, but as soon as a hard constraint is 

violated the dominance of the hard constraints is reasserted and the search will now 

concentrate on finding another solution where all hard constraints are satisfied.  
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Fig. 6.2. Weighting hard and soft constraints 

 

Deciding the Initial Hard Constraint Weights. [Cha et al., 1997] recognised the 

crucial question for their research was to find the best number of repetitions of the 

hard constraint clauses. In the extreme case, the weight on each hard constraint can be 

set to equal the total initial cost of violating all soft constraints plus one (as in the pre-

vious example). However, such a scheme when applied to their timetabling problem 

places very large initial weights on the hard clauses. In practice they found the hard 

constraint clauses are quickly satisfied with such weights, but high levels of soft con-

straint violation remain. At the other extreme, giving insufficient weight to the hard 
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constraints results in a search that is unlikely to find any solution where all hard con-

straints are satisfied (although soft constraint satisfaction would be very high).  

The issue of the number of repetitions is equally important to the new constraint 

weighting scheme. The greater the difference between the initial hard and soft con-

straint weights the slower the search will be, as it will take longer to build up weights 

on the soft constraints. However, setting the initial hard and soft constraint weights 

too close together will cause the search to excessively explore areas of hard constraint 

violation where (by definition) no acceptable solution can exist. Worse still, the 

search may approach an optimum solution but fail to converge on it because of the 

over-valuing of the soft constraints. The question therefore arises, how much weight 

is too much and how much is too little? Cha et al.’s answer was to look at their par-

ticular problem and calculate the average number of soft constraint violations that 

would be caused by satisfying a currently violated hard constraint (they assume that 

most constraints are already satisfied). They then use this value to set the initial hard 

constraint weights. Clearly there are problems with this approach. Firstly, the number 

of soft violations caused by the satisfaction of a hard constraint will vary within the 

search space and secondly, the method requires a detailed analysis of the search 

space. 

 
6.2.2  Dynamic Constraint Weighting 
 
A useful property for a hard and soft constraint weighting algorithm would be the 

ability to learn the correct ratio of hard to soft constraint weights during the search 

itself. Consequently, the second contribution of the chapter is the development and 

empirical evaluation of two such dynamic constraint weighting strategies.  

 

Downward Weight Adjustment (DWA). The first strategy, Downward Weight Ad-

justment, involves starting the search with the number of repetitions, n, set to the total 

number of soft constraints + 1 (i.e. the maximum value). Then, as soon as a solution is 

found where all hard constraints are satisfied (i.e. an acceptable solution), the value of 

n is adjusted downwards to be one more than the number of soft constraints currently 

violated (scur + 1). Each time a new acceptable solution is found such that scur < n, 

then n is set to scur + 1 (the new best level of soft constraint violation), i.e. the number 
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of hard constraint repetitions is dynamically adjusted according to the best solution 

found so far in the search. 

This approach is based on the insight that number of hard constraint repetitions, n, 

should not be set to less than the optimum number of soft constraint violations, sopt. If 

n is less than sopt then the search will tend to prefer a solution where a hard constraint 

is violated over an optimal solution. If n is close to but greater than sopt then the 

search may prefer a single hard constraint violation over many non-optimal accept-

able solutions, but will still prefer an optimal solution. However the value of sopt is 

generally unknown (unless a complete method has already solved the problem). 

Therefore, Downward Adjustment Weighting keeps making a closer and closer esti-

mate of sopt by resetting the value of n each time a new unweighted cost reducing 

solution is found. However, the definition of unweighted cost has become more com-

plex due to introduction of constraint repetition. Now the unweighted cost equals the 

number of violated constraints including repetitions and the weighted cost equals the 

sum of the weights of all violated constraints including repetitions. Put more formally, 

consider an over constrained problem with a set of hard constraints H = {h1, h2, h3, ... 

hk} and a set of soft constraints S = {s1, s2, s3, ... sj}. Each hard constraint has a weight 

whi, i = 1... k, and each soft constraint has a weight wsi, i = 1 ... j, where the weight i 

equals the number of times constraint i has been violated in a local minimum. Letting 

n be the number of hard constraint repetitions, CH be a vector with elements chi, 

where i = 1... k, such that element chi = 0 if hi is satisfied and chi = 1 otherwise, and 

CS be a vector with elements csi, where i = 1 ... j, such that element csi = 0 if si is sat-

isfied and csi = 1 otherwise, then we have the following definitions: 
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The analysis so far assumes a weight increment of one and that constraints have only 

two states: satisfied or violated. However, the approach can be easily extended to in-

clude different additive or multiplicative weight increments and varying levels of con-

straint violation. 
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Flexible Weight Adjustment (FWA). The second dynamic constraint weighting 

strategy involves adjusting the value of n according to the current state of the search. 

We start with the smallest differential that distinguishes hard and soft constraints (i.e. 

n = 2) and then proceed to increase the value of n by 1 each time a non-acceptable 

local minimum is encountered. n is therefore increased to a level sufficient to cause 

all hard constraints to be satisfied. Each acceptable local minimum encountered, 

causes n to be reduced by 1, making it easier for hard constraints to be violated and so 

encouraging the search to diversify out of the current local area. In effect, in non-

acceptable areas the search becomes increasingly attracted to acceptable areas and in 

acceptable areas the attraction moves to the non-acceptable. Using the earlier defini-

tions of n, hi, si, whi and wsi, figure 6.3 gives the pseudocode necessary to implement 

FWA (Note IncreaseViolatedConstraintWeights() is called from the main constraint 

weighting algorithm in figure 6.1). 
 
procedure IncreaseViolatedConstraintWeights() 
begin 
 TotalHardViolations ← 0 
 for each violated hard constraint hi do 
 begin 
  whi ← whi + 1 
  TotalHardViolations ←  TotalHardViolations + 1 
 end 
 for each violated soft constraint si do wsi ← wsi + 1 
 if TotalHardViolations > 0 then n ← n + 1 
 else if n > MinRepetitions then n ← n − 1 
end 

 
Fig. 6.3. The Flexible Weight Adjustment algorithm 

 

6.3 Experiments 
 
6.3.1  Control Algorithms 
 
The two dynamic weighting strategies were compared to two forms of fixed weight-

ing called MaxIncrement (MAX) and MinIncrement (MIN). MaxIncrement sets the 

weights of all hard constraints to the total number of soft constraints plus one, and 

increments all hard constraints by this amount in a local minimum. This is the largest 

realistic setting for the constraint increment and favours solutions where all hard con-

straints are satisfied at the expense of satisfying the soft constraints. MinIncrement 
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sets the weights of all hard constraints to the number of soft constraints left unsatis-

fied in an optimal solution (plus one) and again increments by this value. The opti-

mum level of constraint violation is the smallest realistic setting for an increment, 

otherwise the search is likely to ignore an optimum solution (see section 6.2). An im-

plementation of [Cha et al., 1997]’s reset algorithm was also tried on our test prob-

lems, but in most cases the algorithm was unable to find an acceptable solution. Cha 

et al.’s approach assumes the initial problem of finding an acceptable solution is rela-

tively easy. In our test problems this was not the case. 

 

6.3.2  Comparison Algorithms 
 
We further developed versions of the BEST, TABU, NOVELTY, and RNOVELTY 

algorithms (introduced in Chapter 4) for over constrained problems. For each of these 

techniques (as in MinIncrement) the cost of violating a hard constraint is set to be n + 

1 times as great as violating a soft constraint, where n is the least number of soft con-

straint violations found by any of the weighting techniques. This extends earlier work 

by [Jiang et al., 1995] on using WSAT to solve weighted MAX-SAT problems. We 

also tested the dynamic weighting scheme used by [Schaerf, 1996] for tabu search. In 

this method, the weight on a class of constraints is incremented if any of the con-

straints are violated after a fixed cycle of moves, otherwise the weights are decre-

mented.  Applying this scheme to the hard constraints in our test problems produced 

poor results because (in most cases) the problem of satisfying the hard constraints was 

difficult in itself. Consequently, continually increasing weights tended to build up on 

the hard constraints, producing poor sensitivity to changes in soft constraint costs.  

For this reason further investigation of the scheme was rejected. Adaptations of DWA 

and FWA for TABU, NOVELTY and RNOVELTY were also tried but did not per-

form as well as the fixed weight method. Consequently only the fixed weight versions 

of TABU, NOVELTY and RNOVELTY are reported. Additionally, the performance 

of BEST was significantly inferior on all problem domains, so for brevity we have 

removed BEST from the results and discussion. 

Finally we developed a version of [Voudouris and Tsang, 1996]’s Guided Local 

Search (GLS). This extends the UTIL algorithm of Chapter 4 to include consideration 

of the differential cost of hard and soft constraints, and introduces a new cost function 
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that uses both the unweighted and penalty cost of a solution. Previously UTIL penal-

ised (or weighted) constraints in a local minimum with the greatest utility, as meas-

ured by: 

utilityi(s*) = Ii(s*) × (ci / (1 + pi)) 

where s* is the current solution, i identifies a feature, ci is the cost of feature i, pi is 

the penalty (or weight) currently applied to feature i and Ii(s*) is a function that re-

turns one if feature i is exhibited in solution s* (zero otherwise). For CSPs we as-

sumed all constraints to be features with a cost of 1. Now with hard and soft con-

straints we can define a greater cost (ci) for the hard constraints and so further bias the 

search to satisfy these constraints (as these constraints will also attract greater penal-

ties). Further, we use the GLS cost function of the form: 

cost(s*) = g(s*) + λ Σ pi Ii(s*) 

where pi, Ii and s* are defined as before, g(s*) is the unpenalised cost of s* and λ is a 

parameter defined within the GLS algorithm. To maintain consistency between algo-

rithms we embedded GLS within our standard local search neighbourhood function 

which randomly selects variables involved in constraint violations (this differs from 

[Voudouris and Tsang, 1996]’s Fast Local Search selection method). Also we incre-

ment penalties on constraints by one in a local minimum whereas GLS uses a more 

sophisticated scheme based on the maximum or minimum cost difference in the local 

neighbourhood of moves. 

 

6.3.3  Test Problems 
 
The algorithms were tested on the set of 16 real-world nurse rostering problems and 

10 randomly generated timetabling problems introduced in Chapter 4 and also on a 

selection of the Radio Link Frequency Assignment Problems (RLFAP) used by [Vou-

douris and Tsang, 1996] to evaluate GLS.  

The nurse rostering problems involve allocating a set of pre-generated legal sched-

ules to each nurse in a roster, such that all hard constraints involving levels of staff for 

each shift are satisfied. Soft constraints are introduced by attaching a score to each 

schedule indicating how unattractive a schedule is for a nurse (where the best sched-

ule gets a zero score). Therefore each nurse is associated with one soft constraint 
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which is satisfied if the nurse is allocated a zero cost schedule. Further details of the 

problems are described elsewhere [Thornton, 1995]. One attractive feature of the do-

main is that, although the problems are difficult for a local search algorithm to solve, 

we have optimal answers for each problem obtained from an integer programming 

application [Thornton, 1995].  

The over constrained timetabling problems were generated by adding additional 

soft constraints for each staff member defining which time slots the staff member 

would prefer to teach (existing hard constraints already define which time slots the 

staff member is unavailable to teach). These soft constraints were added to the ran-

domly generated timetabling problems (tt_rand) already reported in Chapter 4.  

Finally we used a selection of the over constrained RLFAPs reported by [Vou-

douris and Tsang, 1996] in their evaluation of GLS. The chosen problems (1, 2, 3 and 

11) involve assigning frequencies to radio links subject to a set of hard binary con-

straints defining the minimum or exact difference in frequencies between radio link 

pairs. Additionally the problems have an optimisation criteria that a solution should 

use the least possible number of frequencies. If we think of this criteria as a con-

straint, we want the total number of frequencies assigned in a solution to equal m, 

where m is the (unknown) optimum frequency use. This constraint involves a dynamic 

assignment cost and so cannot be modelled as a simple relationship between variables 

or by assigning a fixed cost to a domain value (as in the nurse rostering problem). In-

stead we have to consider the number of times a particular frequency (domain value) 

is assigned for each move. [Voudouris and Tsang, 1996] take the cost of using domain 

value v to be NVar – NVarv where NVar is the total number of variables and NVarv is 

the number of variables using value v. This cost is then included in the overall move 

evaluation cost. Additionally, penalties are associated with each v and may be in-

creased at a local minimum according to the utility function defined earlier. The prob-

lem with Voudouris and Tsang’s approach for our neighbourhood selection heuristic 

is that there is no criteria to decide whether a variable is in violation of an assignment 

cost (in effect the constraint is to make all assignment costs equal zero hence all vari-

ables are in violation). For this reason we added the definition that a variable is only 

in violation of an assignment cost constraint if it is currently assigned the least used 

frequency. Similarly, only the least used frequency is weighted at a local minimum. 
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6.3.4  Results 
 
All problems were solved on a Sun Creator 3D-2000. For the nurse rostering prob-

lems, runs were either terminated on finding an optimum solution, or after 1 million 

domain value changes had been tested. The timetable problems, having no known op-

timal solution, were also terminated after 1 million domain value tests. The RLFAPs 

were solved using an adapted binary CSP algorithm and were terminated on finding 

an optimal solution (as reported by [Voudouris and Tsang, 1996]) or after 200,000 

variable tests (approximately 3 million domain value tests). 

Tables 6.1 to 6.3 show the average scores, times, values tested and proportion of 

problems solved for each algorithm. The nurse rostering results show the average of 

160 runs (10 × 16 problems), the timetabling results show the average of 100 runs (10 

× 10 problems) and the RLFAP results show the average of 400 runs (100 × 4 prob-

lems) for each algorithm. For each problem instance the mean, median and standard 

deviations were calculated over all runs for a particular algorithm. The results then 

show the averaged statistics over all problems in a class for each algorithm (Note, the 

proportion of optimal solutions is not reported for the timetabling problems because 

the optimum solution score is unknown). The result tables also report statistics on all 

runs and for successful runs. By successful we mean those runs that found a solution 

satisfying all hard constraints. Those runs which failed to find such a solution were 

given a cost or score of 100. Otherwise scores refer to the best level of soft constraint 

violation found within a hard constraint satisfying solution. 

Generally, the results for over constrained problems with unknown optimum solu-

tions are best interpreted using anytime curves [Freuder and Wallace, 1992]. These 

curves plot the cost of the best solution found in the search against execution time, 

and represent the quality of solution that would be found if an algorithm were termi-

nated at a particular point. Anytime performance is significant for problems where 

there is insufficient time to find an optimal solution, or the optimum is unknown, and 

so are relevant to over constrained problems. Consequently we have also generated 

anytime curves for each problem domain, firstly comparing the performance of our 

weighting and control algorithms (FWA, DWA, MAX and MIN) and then comparing 

the best of the weighting strategies with our other techniques (NOVELTY, 

RNOVELTY, TABU and GLS). These curves are shown in figures 6.4 to 6.9. In each 
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graph, the y-axis represents the averaged sum of all soft constraint costs of the best 

solutions found at a given time for each run of an algorithm (as before, a solution that 

violates a hard constraint is given a fixed cost of 100). 
 

Rostering FWA DWA MAX MIN GLS NOV RNOV TABU 
% solved 95.63 100.00 99.38 98.13 96.88 67.50 66.88 56.25

% optimal 70.00 70.63 44.38 76.25 30.63 21.25 21.88 9.38
All Runs    

best score 21.69 21.81 22.31 21.94 23.38 36.50 35.50 45.19
median score 23.12 22.53 23.53 23.54 25.91 42.84 46.53 54.66

mean score 25.17 22.78 24.40 24.19 27.83 47.02 47.29 54.67
std deviation 4.13 1.02 2.77 2.06 6.15 12.44 9.74 8.44

Successful Runs    
Score:    

best 21.69 21.81 22.31 21.94 23.38 21.85 20.62 20.27
median 22.31 22.53 23.50 23.28 25.84 24.81 25.46 23.95

mean 22.79 22.78 24.09 23.26 26.16 25.38 25.36 24.13
std deviation 2.08 1.49 2.24 1.74 2.68 3.22 3.62 4.17

Time (secs):    
median 111.28 134.81 177.03 111.78 82.75 167.73 148.96 97.41

mean 126.05 142.49 185.89 125.61 107.24 168.72 166.47 101.90
std deviation 301.71 292.95 288.99 280.93 260.27 289.22 282.25 174.25

Values tested:    
median 260545 323393 425935 269591 203049 1697130 1557874 1017677

mean 294565 342642 449777 303266 266163 1708292 1725057 1096642
std deviation 243287 232773 235305 219788 219145 1060563 1049648 740826

 
Table 6.1. Averaged results for 16 nurse rostering problems 

 
6.4 Analysis 
 
6.4.1 Nurse Rostering 
 
Starting with the nurse rostering problems, table 6.1 shows all the weighting algo-

rithms (FWA, DWA, MAX, MIN and GLS) performing well in terms of finding solu-

tions (with success rates ranging from 95.63% to 100%) where as the non-weighting 

techniques (TABU, NOVELTY and RNOVELTY) have trouble finding any hard con-

straint satisfying solutions (with success rates ranging from 67.5% to 56.25%). If we 

further consider the % optimal measure we see only FWA, DWA and MIN are con-

sistently able to find optimal answers (with success rates ranging from to 70% to 

76.25%). The score (solution cost) statistics do little to separate the better algorithms 

(FWA, DWA and MIN), except DWA does have a slightly lower mean and standard 

deviation. Also, although TABU has the lowest average best score for successful runs 

(20.27), this does not indicate superior performance, as TABU is only able to find so-

lutions slightly more than half the time (56.25%) and had the worst rate for finding 
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optimal solutions (9.38%). Similarly, a reading of the time and values tested statistics 

suggests that TABU is doing better because it is faster. However, these measures in-

dicate the point at which an algorithm stops finding improving solutions, showing 

only that TABU is more effective in the earlier stages of the search. The best picture 

of the relationship between time and score is given by the anytime curves in figures 

6.4 and 6.5. Here (in figure 6.4) we see the initial weighting techniques (FWA, DWA, 

MAX and MIN) having fairly similar performance, but with DWA doing slightly bet-

ter in the longer term (as suggested by the score statistics). Figure 6.5 plots DWA 

against the other techniques (GLS, TABU, NOVELTY and RNOVELTY) and shows 

the weighting strategies (DWA and GLS) are doing significantly better than the other 

techniques, with DWA again dominating. Interestingly, the curves show the non-

weighting techniques (TABU, NOVELTY and RNOVELTY) are clustered together 

with similar shaped curves, indicating a clear distinction between the weighting and 

non-weighting techniques for this domain.  
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Figure 6.4. Nurse rostering anytime curves for weighting algorithms 
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Figure 6.5. Nurse rostering anytime curves for comparative algorithms 

 

6.4.2 Timetabling  
 
The timetabling statistics in table 6.2 again show the weighting strategies are doing 

better in terms of the percentage of solutions found, although GLS is doing less well 

than the other weighting strategies (66% versus 85-96%). More generally, 

NOVELTY and RNOVELTY are doing noticeably worse than any of the other tech-

niques with a 21-30% success rate. The score statistics for all runs start to separate 

FWA and MIN as the better techniques, with TABU appearing the next most promis-

ing (again the low scores for NOVELTY and RNOVELTY on successful runs are ex-

plained by the low success rate for these algorithms). The time and values tested sta-

tistics do little to distinguish between techniques except to indicate that NOVELTY 

and RNOVELTY tend to stop finding improving solutions earlier in the search. Again 

the anytime curves in figures 6.6 and 6.7 give the clearest picture. Figure 6.6 distin-

guishes FWA as the better weighting technique, and (in comparison to the nurse ros-

tering curves of figure 6.4) we see a greater separation between weighting strategies. 

In looking at the broader category of techniques in figure 6.7, FWA again strongly 

dominates the other methods. However, in comparison to the nurse rostering curves 

(figure 6.5) GLS performs quite poorly and TABU proves to be the better of the non-

weighting techniques. 
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Timetabling FWA DWA MAX MIN GLS NOV RNOV TABU 

% solved 92 91 96 85 66 21 30 59
All Runs    

best score 35.70 58.90 71.30 41.80 61.80 65.90 52.80 49.10
median score 48.85 76.25 85.50 59.05 81.20 89.20 86.95 69.30

mean score 50.56 77.18 85.46 60.43 81.71 87.63 82.58 69.41
std deviation 11.36 13.56 8.46 14.87 14.12 13.25 15.95 18.63

Successful Runs    
Score:    

best 35.70 58.90 71.30 41.80 57.56 31.80 32.57 43.44
median 47.60 76.65 85.60 57.00 73.94 37.50 39.29 49.56

mean 47.64 77.23 85.53 57.49 73.47 37.83 39.20 49.88
std deviation 7.96 14.20 8.56 13.19 11.34 5.72 7.77 5.05

Time (secs):    
median 237.45 216.10 225.65 229.05 216.72 184.64 173.03 222.38

mean 232.55 211.23 212.79 222.56 211.50 185.88 168.77 207.84
std deviation 79.49 98.78 140.99 106.26 105.22 83.42 104.77 131.00

Values tested:    
median 922419 828301 840790 854674 812718 715688 648981 795806

mean 889094 815197 786014 825519 789885 721987 634235 739870
std deviation 105495 139212 176849 139223 157820 141324 148944 200714

 
Table 6.2. Averaged results for 10 random timetabling problems 
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Figure 6.6. Timetabling anytime curves for weighting algorithms 

 
6.4.3 RLFAPs 
 
Unlike the other problem domains, the % solved and % optimal values for RLFAP in 

table 6.3 do not strongly distinguish between techniques. DWA has the highest suc-

cess rate (97%) in a range of 84.5 to 97 and GLS finds more optimal solutions 

(40.75%) in a range of 32.5 to 40.75. Additionally the score statistics show a roughly 

equivalent performance between algorithms (for instance, the mean score for all runs 
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ranges from 25.96 to 32.24). Similar time and values tested statistics are also ob-

served, although TABU does tend to continue improving for longer than the other 

techniques. The anytime curves in figure 6.8 show FWA to have the better initial per-

formance although MIN and DWA do approach and meet FWA in the later stages of 

the searches. Figure 6.9 shows a greater separation with FWA performing better than 

GLS and the other non-weighting techniques (TABU, NOVELTY and RNOVELTY).  
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Figure 6.7. Timetabling anytime curves for comparative algorithms 

 

 
RLFAPs FWA DWA MAX MIN GLS NOV RNOV TABU 

% solved 95.75 97.00 95.50 95.5 88.00 92.50 92.50 84.50
% optimal 36.25 37.00 33.25 37.5 40.75 32.50 34.50 34.00

All Runs    
best score 20.00 20.00 20.50 19.5 20.50 19.00 19.00 18.50

median score 23.00 24.00 24.50 23 23.50 22.25 21.75 38.00
mean score 26.24 25.96 27.74 26.42 30.80 27.08 27.23 32.42

std deviation 8.12 7.51 8.17 8.28 9.79 9.29 9.60 10.76
Successful Runs    
Score:    

best 20.00 20.00 20.50 19.5 20.50 19.00 19.00 18.50
median 23.00 24.00 24.50 23 23.50 22.25 21.75 21.00

mean 23.76 24.21 25.12 23.79 23.99 22.31 22.27 22.31
std deviation 4.20 4.47 4.10 4.32 4.01 3.14 3.29 5.19

Time (secs):    
median 4.93 6.70 7.18 4.75 4.33 7.95 8.12 13.10

mean 8.36 10.56 11.31 9.22 7.93 14.27 16.63 19.61
std deviation 123.97 123.60 129.29 125.47 101.31 193.61 224.37 221.40

Values tested:    
median 825071 1012192 1075649 716451 672930 958040 958170 1484668

mean 1241642 1413781 1527254 1182376 1126668 1703293 1940451 2126074
std deviation 1673644 1460627 1537160 1463000 1542761 2502318 2854597 2831966

 
Table 6.3. Averaged results for 4 RLFAPs (1,2,3 and 11) 
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Figure 6.8. RLFAP anytime curves for weighting algorithms 
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Figure 6.9. RLFAP anytime curves for comparative algorithms 

 
6.4.4 Overall Comparison 
 
The results, summarised by the anytime curves, show that the two dynamic weighting 

strategies (FWA and DWA) dominate in all three problem domains. FWA is better on 

timetabling and RLFAP and DWA is better on the nurse rostering problems. These 

results should be compared to the results in Chapter 4 (table 4.3) which are based on 

the same nurse rostering and timetabling problems formulated as CSPs. In the Chapter 
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4 nurse rostering CSP formulation the schedule cost is modelled as a hard constraint 

which is satisfied when the (already known) optimum solution cost is reached. There-

fore the Chapter 4 and Chapter 6 versions of these problems are equivalent in that a 

solution to one problem is the solution to the other. The situation is different for the 

over constrained timetabling problems, which have been made more difficult by add-

ing additional soft constraints and so cannot be considered exactly equivalent to their 

CSP counterparts. Bearing this in mind, the Chapter 4 results for the nurse rostering 

problems show a similar algorithm ordering in that NOVELTY, RNOVELTY and 

TABU perform relatively worse than the weighting strategies. However if we com-

pare the percentage of optimal solutions found in table 6.1 to the equivalent success 

rate in table 4.3 we find a proportionally greater deterioration in performance of the 

non-weighting algorithms. This is illustrated in table 6.4. 

 
Rostering MIN GLS/UTIL NOVELTY RNOVELTY TABU 
CSP success rate 94.00 80.00 73.00 76.00 67.00
Over constrained optimal rate 76.25 30.63 21.25 21.88 9.38
Proportional change  1 : 1.23 1 : 2.61 1 : 3.44 1 : 3.47 1 : 7.14

 

Table 6.4. Comparison of Chapter 4 and Chapter 6 nurse rostering success rates 

 

Similarly, comparing the timetabling success rates from Chapter 4 (tt_rand in table 

4.3) to the over constrained success rates in table 6.2 shows another proportionally 

greater deterioration for the non-weighting algorithms (see table 6.5). In this case 

NOVELTY and RNOVELTY, which dominated the CSP timetable formulations, be-

come clearly uncompetitive for the over constrained problems.   

 
Timetabling MIN GLS/UTIL NOVELTY RNOVELTY TABU 
CSP success rate 95.00 95.00 100.00 97.00 91.00
Over constrained optimal rate 85.00 66.00 21.00 30.00 59.00
Proportional change  1 : 1.12 1 : 1.44 1 : 4.76 1 : 3.23 1 : 1.54

 

Table 6.5. Comparison of Chapter 4 and Chapter 6 timetabling success rates 

 

In conjunction, the timetabling and nurse rostering results indicate that adding a two-

tier weighting scheme (for hard and soft constraints) into a NOVELTY or TABU 

based algorithm causes a greater deterioration in performance than adding the equiva-
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lent weighting scheme into our constraint weighting algorithm (note MIN uses the 

same fixed weight scheme as NOVELTY, RNOVELTY and TABU). This conclusion 

is supported by an intuitive understanding of the operation of the different algorithms: 

for TABU, NOVELTY and RNOVELTY adding weights to hard constraints will 

make the search topography more rugged, meaning the algorithms will have to search 

more extensively to escape from a local minimum, especially one that satisfies all 

hard constraints. The same situation is true of a weighting algorithm, except that 

weights will tend to build up on soft constraints that are difficult to satisfy, reducing 

the distinction between easy hard and difficult soft constraints, and so making the es-

cape from a hard constraint satisfying minimum easier.   

 

FWA versus DWA. In looking at the two dynamic constraint weighting schemes 

(FWA and DWA), FWA strongly dominates the timetabling problems, has a small 

advantage on the RLFAPs and is slightly worse than DWA for the nurse rostering 

problems. A likely explanation for these results is that FWA is better for longer term 

searches (the mean values tested for FWA were 889094 for timetabling, 1241642 for 

RLFAP and 294565 for nurse rostering). This better long term performance of FWA 

can be explained by FWA being able to make upward revisions to the overall weight 

of hard constraints in response to local conditions. DWA initially places greater im-

portance on the hard constraints and only slowly reduces these weights. Therefore we 

would expect DWA to quickly find hard constraint satisfying solutions and, for easier 

problems, to drive more quickly to the optimal solution. However, if DWA is in-

volved in a more protracted search it is likely to encounter new regions where the 

hard constraints are difficult to satisfy. Because it has no means to increase the overall 

importance of the hard constraints it must escape these regions by weighting hard 

constraints individually. In contrast, FWA, when encountering a region of difficult 

hard constraints, can easily shift the focus from the soft constraints by incrementing 

the overall weight of all hard constraints. In this way FWA can move more quickly to 

another hard constraint satisfying region and so should spend a greater proportion of 

the later stages of a search in promising (hard constraint satisfying) regions (in com-

parison to DWA).  
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Flexible versus Fixed Weighting. An interesting result of the study is that the dy-

namic weighting strategies have  performed slightly better than the MinIncrement 

(MIN) algorithm. MinIncrement uses what is probably the best fixed increment (i.e. 

the optimal solution cost), a value that would typically be estimated from an analysis 

of the problem domain (as in Cha et al.’s study). In contrast, the dynamic weighting 

strategies do not rely on domain knowledge, and so avoid the effort and possible er-

rors in using fixed increments, while delivering at least comparable performance. 

 

GLS. It should be noted that the version of GLS developed in this study differs from 

the original proposed by [Voudouris and Tsang, 1996]. Not only do we not incorpo-

rate the Fast Local Search heuristic, we also use a fixed penalty increment and model 

the RLFAPs assignment costs differently. For comparison purposes we report in table 

6.6 the published results for GLS [Voudouris and Tsang, 1995] with our results for 

the 4 RLFAP problems used in the study. 

 
RLFAP 
Instance 

Method Best 
Solution 

Average Cost 
(Std. Dev) 

Average Time 
(CPU sec.) 

scen01 GLS original 16 18.6 (2.3) 8.77
 GLS adapted 16 20.9 (4.8) 9.38
scen02 GLS original 14 14 (0.0) 0.59
 GLS adapted 14 14 (0.0) 0.97
scen03 GLS original 16 15.4 (1.3) 5.62
 GLS adapted 16 17.8 (5.9) 10.39
scen11 GLS original 28 n/a 98.97
 GLS adapted 38 43.2 (1.4) 10.96

 
Table 6.6. Comparison of original and adapted GLS performance 

 

Table 6.6 shows the original GLS algorithm has generally better performance than our 

adaptation both in terms of average cost and standard deviation (note CPU time is not 

directly comparable as the experiments were performed on different machines). This 

indicates that Voudouris and Tsang’s specialised modelling in conjunction with the 

Fast Local Search heuristic does produce better results on the RLFAPs. Therefore we 

should not conclude that FWA or DWA are better than GLS in any absolute sense. 

However we can say that within the common algorithmic and modelling framework 

chosen for our study, the GLS move selection heuristic did not do as well as FWA or 
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DWA. To investigate this further would require testing the FWA and DWA heuristics 

within the original GLS framework. We leave this for future research. 

 

6.5 Summary 
 
The main contributions of the Chapter are as follows: 

  
• The development of a constraint weighting strategy that simulates the transforma-

tion of an over constrained problem with hard and soft constraints into an equiva-

lent problem with a single constraint type, where the importance of each hard con-

straint is represented by repetition.  

 
• The development of two dynamic constraint weighting strategies that adjust the 

number of repetitions of each hard constraint through dynamic feedback with the 

search space. 

• The empirical evaluation of the new weighting strategies. 

 
The main finding of the study is that for all the problem domains considered, one or 

other of the dynamic weighting strategies outperforms both the fixed weighting strate-

gies and the alternative non-weighting strategies considered. Using comparisons with  

results in Chapter 4 we observe that constraint weighting performance is less 

degraded by the introduction of hard constraint weights than the alternative 

NOVELTY and TABU algorithms.   

In Chapter 4 we concluded that (within our empirical study) constraint weighting 

performs better on problems where weighting can distinguish between groups of con-

straints. This led us to develop arc-weighting in Chapter 5 and then to investigate the 

distinction between hard and soft constraints in the current chapter. The superior per-

formance of constraint weighting on over constrained problems therefore supports our 

original findings and further suggests constraint weighting is particularly suited to the 

over constrained problem domain. 



 
 
 
Chapter 7 
 

Conclusion 
 
 
In this chapter we summarise the findings and contributions of the thesis and discuss 

future research directions.  

 

7.1 Summary 
 
The overall aim of the thesis has been to investigate the use of constraint weighting as 

a general purpose heuristic for constraint satisfaction. Addressing this aim, the broad 

conclusion of the thesis is that constraint weighting is a useful technique for con-

straint satisfaction, specifically for problems where constraint groups can be distin-

guished by the weighting process. Through the investigation we have also developed 

and empirically tested various improvements to constraint weighting, including arc 

weighting, hybrid weighting and dynamic constraint weighting techniques for hard 

and soft constraint problems.  

 
In more detail, Chapter 2 started by placing constraint weighting in the context of the 

other major constraint satisfaction techniques and introduced a taxonomy of local 

search methods. Then in Chapter 3 we looked at modelling realistic problems within a 

general CSP framework. This led us to investigate the transformation of non-binary 

constraints to a dual graph binary representation and to propose a partial transforma-

tion model. In addition we looked at representing complex move operators and went 

on to develop an array-based domain representation and array-based resource con-

straints that internally represent and count domain value usage. 
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Chapter 4 introduced the empirical section of the thesis with an examination of the 

behaviour and application of constraint weighting in comparison with several other 

local search techniques and in relation to a range of CSPs and satisfiability problems. 

Through this analysis we developed a set of measures that describe problem structure 

and constraint weighting behaviour. These included constraint weight curves, which 

give a graphical picture of the distribution of weight across constraints and a con-

stancy measure Ct that quantifies the amount of movement in the top 10% of 

weighted constraints. To further measure problem structure we examined the distribu-

tion of neighbour counts across variables. In conjunction and within our problem set, 

these measures indicated that constraint weighting does better on structured (as op-

posed to random) problems where it is able to distinguish between harder and easier 

groups of constraints. The empirical study also showed that constraint weighting is 

competitive with some of the best heuristics developed in the satisfiability domain 

(specifically NOVELTY and RNOVELTY) and that of three weighting heuristics ex-

amined none was a clear winner on all the domains considered. It was also observed 

that constraint weighting performance tends to decline faster on random problems as 

problem size grows (relative to the other techniques). This decline was explained by 

the falling rate of clustering between variables causing a corresponding fall in the 

probability of generating hard constraint groups. It was further observed that weight-

ing techniques that add weight more infrequently tend to do better on larger problems. 

This led us to propose a weighting granularity effect, that causes the guidance of 

weighting to decline as the amount of weight and number of problem constraints 

grows (the work in Chapter 4 extends already published work in [Thornton and Sattar, 

1999]). 

 
Chapter 5 investigated whether constraint weighting can be improved as a general 

purpose CSP solving technique and introduced two main approaches: firstly the 

development of hybrid algorithms that combine weighting with the other local 

search heuristics introduced in Chapter 4, and secondly the introduction of an arc 

weighting algorithm that additionally weights the connections between constraints 

that are simultaneously violated at a local minimum. The arc weighting method 

built on the results of Chapter 4 by recognising and reinforcing the presence of 

harder sub-groups of constraints. Empirical results for the new methods indicated 
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that hybrid weighting algorithms are more likely to outperform their parent algo-

rithms when solving problems for which the parent algorithms are fairly evenly 

matched. The arc weighting algorithm was shown to outperform a standard weight-

ing algorithm on a range of CSPs and especially on problems the standard method 

found more difficult. However, arc weighting was found to be uncompetitive with 

the specialised algorithms developed for binary CSPs and satisfiability because it 

is unable to efficiently exploit the binary nature of these problems. We therefore 

concluded that arc weighting is best used as a general purpose technique for solv-

ing non-binary problems and as an ‘add-on’ to constraint weighting that is invoked 

in the later stages of a search (the work in Chapter 5 is based on ideas already pro-

posed in [Thornton and Sattar, 1998a] and [Thornton and Sattar, 1999]).  

 
Finally Chapter 6 looked at the application of constraint weighting to the domain 

of over-constrained problems with hard and soft constraints. This work again built 

on the findings of Chapter 4 which suggest that distinctions between constraint 

groups (such as hard and soft constraints) will favour a constraint weighting heu-

ristic. Chapter 6 was specifically interested in developing a weighting scheme that 

can penalise frequently violated constraints without losing the original weight dis-

tinction between the hard and soft constraints in the system. To this end we pro-

posed and empirically evaluated two constraint weighting heuristics that dynami-

cally change the relative importance of the hard and soft constraint groups during 

the search by means of simulated hard constraint repetition. Our results indicated 

that the dynamic constraint weighting methods have a clear advantage over fixed 

weighting schemes and other selected local search techniques when solving hard 

and soft constraint systems. Given the underpinning of these results with the re-

sults from Chapter 4, we concluded that constraint weighting appears especially 

suited to the over-constrained problem domain where different groups of con-

straints have different levels of importance (Chapter 6 extends and updates work 

originally published in [Thornton and Sattar, 1998b]. 
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7.2 Future Work 
 
As previously discussed, the main aim of the thesis has been to investigate con-

straint weighting as a general purpose method for constraint satisfaction. This 

places the work within the broader context of developing automated ways of solv-

ing CSPs (i.e. without the human intervention required to choose or develop an 

appropriate heuristic). To this end the thesis has shown (not surprisingly) that none 

of the local search methods we have considered is superior in all situations. How-

ever, we have also shown that there are certain features of problem structure and 

weighting behaviour that indicate where constraint weighting may perform better 

than our other techniques. This further suggests that through an automated analysis 

of problem structure we may be able to decide in advance which algorithm is best 

suited for a particular problem. We have started the work in this area for constraint 

weighting, but equally we could have considered those conditions for which a tabu 

or stochastic method is better suited. The systemmatic categorisation of such in-

formation on a broad range of problem domains and the development of accurate 

and reliable measures would go a long way towards developing fully automated 

and efficient problem solving techniques. In relation to this area there has already 

been relevant work in categorising search space topology [Frank et al., 1997], 

measuring randomness using ‘approximate entropy’ [Hogg, 1998], categorising 

problems according to their cost distributions [Gomes et al., 1998] and also 

[Kwan, 1997]’s work on mapping CSPs to solution methods. 

 
Another area related to our work is the development of algorithms that can dy-

namically change their search heuristic through feedback about performance dur-

ing the search. This is connected to earlier work by [Minton, 1996] on MULTI-

TAC and more recently to [Boyan and Moore, 1998]’s work on STAGE. Our 

method of measuring the consistency of membership of the top 10% of weighted 

constraints already suggests that if this consistency measure is low then constraint 

weighting is unlikely to do well. A next step would be to develop an algorithm that 

tracks consistency and is able to change heuristics if the consistency falls below a 

certain level. Another simple approach suggested by our work is to abandon the 

use of weights if a solution is not found relatively early during a search in relation 
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to the size of the problem (the definition of when ‘early’ would be for a particular 

problem is another research issue).  

 
Following on from the WSAT approach of solving CSPs by selecting a violated 

constraint and trying to improve that constraint according to a given heuristic, we 

envisage building systems where different constraints use different heuristics on 

the same problem. Further, through a process of feedback during the search a con-

straint would be able to change or adapt its heuristic to suit local conditions. This 

idea is part of a larger plan to develop local search strategies that are controlled by 

the local decisions of autonomous constraint ‘agents’ (joining together the ideas of 

[Hogg and Williams, 1993] and [Lui and Sycara, 1995]). Here each agent would be 

able to identify and appropriately respond to the prevailing conditions in its imme-

diate environment. There seems to be a close connection between the concept of an 

agent and the idea of an autonomous constraint. Such a constraint would have 

plans in the form of heuristics and rules for their application, beliefs about the en-

vironment (e.g. the instantiation of variables and the state of other constraints in 

the system) and a range of possible actions (e.g. changing the instantiation of the 

variables under its control). Seen this way a local search can already be understood 

as an emergent behaviour (i.e. solving the problem) based on a series of local deci-

sions. Our idea is to extend the range of behaviours available to individual con-

straints with the objective of developing self-adapting systems that can learn the 

best way to solve a particular problem. 

 
On a more immediate level there are several avenues to extend our existing work 

on constraint weighting. Firstly, we have concentrated on the average performance 

of the algorithms considered. Recent work [Hoos and Stutzle, 1999] has looked at 

categorising the run length distributions (RLDs) for various local search algo-

rithms on individual problem instances. This work has shown that reporting the 

averaged mean and standard deviation over a number of problem instances does 

not necessarily present a complete picture of algorithm performance. Recognising 

the type of RLD and whether the RLDs of different algorithms cross gives further 

insight into whether one algorithm strictly dominates another and whether a restart 

strategy will benefit a particular approach. Extending this work to examine con-

straint weighting would both clarify the differences observed between techniques 
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in the thesis and provide guidance in the use of constraint weighting restart strate-

gies. Also, we have only briefly looked at the area of hybrid local search tech-

niques. Other work [Wu and Wah, 1999] has successfully applied a more sophisti-

cated tabu and weighting algorithm to the larger parity learning and tower of hanoi 

problems from the DIMACS benchmark. Further investigation into constraint 

weighting hybrids has therefore already proved useful. As previously suggested, 

[Frank, 1997]’s weight decay scheme and [Voudouris and Tsang, 1996]’s GLS 

method both appear promising for larger problems and suggest a more detailed in-

vestigation of this area is required. Of all our results, the strong performance of the 

dynamic weighting schemes on over-constrained hard and soft constraint problems 

appears the most promising. It would therefore be worthwhile to extend our em-

pirical study to see if the encouraging results are replicated in other domains. Fi-

nally, our work has already shown different weight heuristics perform differently 

on different problems. However, beyond recognising that UTILWGT does better 

on longer term searches (because it applies less weight) an explanation for the 

variations in weighting heuristic performance has not been proposed. A more de-

tailed investigation into this question therefore also seems called for. 

 

  



 
 
 

Appendix 
 

Zero-One Block Constraints 
 
 
Block constraints apply to staff members and student groups in the timetabling prob-

lem and specify that each staff member/student group should not be scheduled more 

than b consecutive class timeslots. These constraints can be modelled in a zero-one 

variable framework (introduced in Chapter 3) by building vectors to represent all b + 

1 consecutive time slots for a group or staff member and constraining the total sum of 

these elements to be ≤ b. For example, for staff member s, if b = 4 we would have 

constraints for all Xijk taught by s where k ≥ 1 and k ≤ 5, Σ Xijk ≤ 4, and for k ≥ 2 and 

k ≤ 6, Σ Xijk ≤ 4, and so on for all valid time slot sequences. Then, if a particular Xijk is 

changed we would require at most b + 1 vector sum evaluations to check the block 

for a particular staff member or student group, as shown in the following example: 

 

Consider changing X1,1,8 from 0 to 1 (which represents putting class 1 in room 1 at 

timeslot 8). Assuming staff member s who teaches class 1 must not be scheduled 

more than b = 4 consecutive timeslots, we must check 4 timeslots before and after 

timeslot 8 to verify the block constraint. Converting this into our vector representa-

tion, we must check all sequences of 5 timeslots that contain timeslot 8, i.e. k ≥ 4 to k 

≤ 8, k ≥ 5 to k ≤ 9, k ≥ 6 to k ≤ 10, k ≥ 7 to k ≤ 11 and k ≥ 8 to k ≤ 12. Hence we 

make at most b + 1 = 5 evaluations. 

 

The zero-one block constraint only partly represents a true block constraint because a 

local search of the zero-one representation allows the same class to be scheduled 
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more than once. Hence the block sum could be violated because a class is scheduled 

twice and not because the block length has been exceeded. This will not affect the 

correctness of a final solution (because other constraints will ensure a class is only 

scheduled once) but it will affect the guidance of a local search through non-feasible 

space.  
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