

Constraint Weighting Local Search for

Constraint Satisfaction

by

John Thornton
B.Bus, Griffith University, Australia (1993)

B.Sc (Hons), Griffith University, Australia (1995)

A thesis submitted in fulfillment

of the requirements of the degree of

Doctor of Philosophy

School of Computing and Information Technology

Faculty of Engineering and Information Technology

Griffith University, Australia

January 2000

Abstract

One of the challenges for the constraint satisfaction community has been to develop

an automated approach to solving Constraint Satisfaction Problems (CSPs) rather than

creating specific algorithms for specific problems. Much of this work has concen-

trated on the development and improvement of general purpose backtracking tech-

niques. However, the success of relatively simple local search techniques on larger

satisfiability problems [Selman et al. 1992] and CSPs such as the n-queens [Minton et

al. 1992] has caused interest in applying local search to constraint satisfaction. In this

thesis we look at the usefulness of constraint weighting as a local search technique for

constraint satisfaction. The work is based on the clause weighting ideas of Selman

and Kautz [1993] and Morris [1993] and applies, evaluates and extends these ideas

from the satisfiability domain to the more general domain of CSPs. Specifically, the

contributions of the thesis are:

• The introduction of a local search taxonomy. We examine the various better

known local search techniques and recognise four basic strategies: restart, ran-

domness, memory and weighting.

• The extension of the CSP modelling framework. In order to represent and effi-

ciently solve more realistic problems we extend the CSP modelling framework to

include array-based domains and array-based domain use constraints.

• The empirical evaluation of constraint weighting. We compare the performance

of three constraint weighting strategies on a range of CSP and satisfiability prob-

lems and with several other local search techniques. We find that no one tech-

nique dominates in all problem domains.

Abstract ii

• The characterisation of constraint weighting performance. Based on our em-

pirical study we identify the weighting behaviours and problem features that fa-

vour constraint weighting. We conclude weighting does better on structured prob-

lems where the algorithm can recognise a harder sub-group of constraints.

• The extension of constraint weighting. We introduce an efficient arc weighting

algorithm that additionally weights connections between constraints that are simul-

taneously violated at a local minimum. This algorithm is empirically shown to out-

perform standard constraint weighting on a range of CSPs and within a general

constraint solving system. Also we look at combining constraint weighting with

other local search heuristics and find that these hybrid techniques can do well on

problems where the parent algorithms are evenly matched.

• The application of constraint weighting to over constrained domains. Our em-

pirical work suggests constraint weighting does well for problems with distinctions

between constraint groups. This led us to investigate solving real-world over con-

strained problems with hard and soft constraint groups and to introduce two dy-

namic constraint weighting heuristics that maintain a distinction between hard and

soft constraint groups while still adding weights to violated constraints in a local

minimum. In an empirical study, the dynamic schemes are shown to outperform

other fixed weighting and non-weighting systems on a range of real world prob-

lems. In addition, the performance of weighting is shown to degrade less severely

when soft constraints are added to the system, suggesting constraint weighting is

especially applicable to realistic, hard and soft constraint problems.

Contents

1 Introduction 1

1.1 Constraint Weighting for Constraint Satisfaction 1

1.1.1 Constraint Satisfaction 1

1.1.2 Constraint Satisfaction Algorithms 2

1.1.3 Constraint Weighting 3

1.2 Research Problems 4

1.3 Contributions 5

1.4 Outline . 6

2 Constraint Satisfaction Techniques 7

2.1 Definitions 7

2.2 Constructive Techniques 9

2.3 Local Search Techniques 11

2.3.1 Restart Strategies 15

2.3.1.1 Local Minimum Random Restart 15

2.3.1.2 Fixed Iteration Restart 15

2.3.1.3 GSAT 16

2.3.1.4 Value Propagation 17

2.3.2 Stochastic Strategies 18

2.3.2.1 Simulated Annealing 18

2.3.2.2 WSAT 20

2.3.3 Memory Strategies 21

2.3.3.1 Tabu Search 21

2.3.3.2 HSAT, NOVELTY and RNOVELTY 23

2.3.4 Weighting Strategies 25

2.3.4.1 Developments in Constraint Weighting 27

2.3.4.2 Constraint Weighting and Tabu Search 28

2.4 Summary . 29

Contents iv

3 Modelling Realistic Problems 30

3.1 Specific and General Solutions 30

3.2 Problem Descriptions 31

3.3 Binary vs. Non-Binary Representation 33

3.3.1 Transforming Non-Binary CSPs 33

3.3.2 Domain Size Issues in Non-Binary Transformations 35

3.3.3 Partial Non-Binary to Binary Transformation 36

3.3.4 Defining Constraints for Tupled Domains 38

3.3.5 Lessons for General Problems 40

3.4 Representing Complex Move Operators 41

3.4.1 Making a Move in a Timetabling Problem 41

3.4.2 Defining Array-based Local Search Constraints 43

3.5 Summary 49

4 Constraint Weighting 51

4.1 Background and Motivations 51

4.2 Constraint Weighting Algorithms 53

4.3 WSAT and Tabu Search Algorithms 55

4.4 Experimental Results 56

4.4.1 Satisfiability Results 56

4.4.2 CSP Results 60

4.4.3 Constraint Weight Curves 62

4.4.4 Constraint Trajectories 66

4.4.5 Measuring Constancy 70

4.4.6 Measuring Problem Structure 71

4.5 Analysis . 75

4.5.1 Constraint Weighting Behaviour 75

4.5.2 Identifying Hard Constraint Groups 76

4.5.3 Scaling Effects 80

4.5.4 Overall Behaviour 81

4.6 Summary . 84

Contents v

5 Improving Constraint Weighting 85

5.1 Background and Motivations 85

5.2 Hybrid Techniques 86

5.3 Arc Weighting 88

5.3.1 An Efficient Network Representation 89

5.3.2 Modifications to the Weighting Algorithm 91

5.4 Arc Weighting Experimental Results 92

5.4.1 Arc Weighting on Specialised and General Problem Domains 92

5.4.2 Arc Weighting Performance 94

5.5 Analysis of Arc Weighting 95

5.5.1 Distinguishing Moves 95

5.5.2 Arc Weighting Costs 96

5.5.3 Effects of Problem Size 98

5.5.4 Divergence 99

5.5.5 Applicability to Other Domains 99

5.6 Hybrid Experimental Results 100

5.7 Analysis of Hybrid Algorithm Performance 101

5.8 Summary 102

6 Over-Constrained Problems 104

6.1 Background and Motivations 104

6.2 Constraint Weighting for Over-Constrained Problems 106

6.2.1 Weighting with Hard and Soft Constraints 107

6.2.2 Dynamic Constraint Weighting 110

6.3 Experiments 112

6.3.1 Control Algorithms 112

6.3.2 Comparison Algorithms 113

6.3.3 Test Problems 114

6.3.4 Results 116

6.4 Analysis . 117

6.4.1 Nurse Rostering 117

6.4.2 Timetabling 119

6.4.3 RLFAPs 120

Contents vi

6.4.4 Overall Comparison 122

6.5 Summary 126

7 Conclusion 127

7.1 Summary 127

7.2 Future Work 130

Appendix: Zero One Block Constraints 133

Bibliography 135

List of Figures

1.1 An example solution to a four queens chess problem 2

1.2 Constraint weighting four queens example 3

2.1 A backtracking algorithm 9

2.2 Thrashing behaviour in backtracking 10

2.3 A general local search algorithm 12

2.4 Hill-climbing version of GenerateLocalMoves 13

2.5 Hill-climbing version of MakeLocalMove 14

2.6 Example local search topologies [Morris, 1993] 15

2.7 Graphical analysis of optimal restart value 16

2.8 GSAT version of GenerateLocalMoves 17

2.9 SA version of GenerateLocalMoves 18

2.10 SA version of MakeLocalMove 18

2.11 WSAT version of MakeLocalMove 19

2.12 WSAT version of GenerateLocalMoves 20

2.13 Tabu search version of GenerateLocalMoves 21

2.14 RNOVELTY version of GenerateLocalMoves 24

2.15 RNOVELTY version of MakeLocalMove 25

2.16 Using constraint weighting for graph colouring 25

2.17 Constraint weighting version of GenerateLocalMoves 26

3.1 Non-binary and binary constraint graphs 34

3.2 A non-binary staff requirement constraint 35

3.3 Nurse domain values for simplified problem 38

3.4 Example solution for simplified problem 39

3.5 All purpose getCostChange method 44

3.6 testChange method for alldifferent constraint 44

3.7 Array version of testChange method for alldifferent 45

List of Figures viii

3.8 A violated block constraint 46

3.9 A satisfied block constraint 46

3.10 Array version of testChange method for block constraint 47

3.11 getBlockLength method for block constraint 47

3.12 An unsatisfied gap constraint 48

3.13 A satisfied gap constraint 48

3.14 getGapLength method for gap constraint 48

3.15 Array version of testChange method for gap constraint 49

4.1 Three strategies for constraint weighting 54

4.2 Result plot for large DIMACS 3-SAT problems 58

4.3 An example constraint weight curve 62

4.4 Constraint weight curves for various 3-SAT problems 63

4.5 Constraint weight curves for different constraint weight methods . . . 63

4.6 3-SAT and log function comparison 64

4.7 Non-uniform DIMACS constraint weight curves 64

4.8 Uniform DIMACS constraint weight curves 65

4.9 CSP constraint weight curves 65

4.10 Changing weight order for 4 selected constraints 67

4.11 Weight trajectories of the 24 most heavily weighted AIM 1 constraints . 68

4.12 Weight trajectories of the 2nd 10 most heavily weighted AIM 1 constraints 69

4.13 Weight trajectories of the first 17 most heavily weighted r100 constraints 69

4.14 Constancy measure Ct of the top 10% of the heaviest weighted constraints 70

4.15 Neighbour count ranges as a proportion of random neighbour counts . . 74

4.16 Neighbour count std deviations as a proportion of random neighbour counts 74

4.17 Roster and timetabling constraint weight curves 78

4.18 Top 5% of roster and timetabling constraint weight curves 79

5.1 NOVELTYWGT version of GenerateLocalMoves 87

5.2 A simple constraint weighting scenario 88

5.3 Arc weight cost function 90

5.4 Arc weight version of GenerateLocalMoves 91

5.5 Proportion of solved problems by time 96

List of Figures ix

5.6 Proportion of solved problems by iterations 97

5.7 Comparison of hill climbing moves 97

5.8 Number of minima by iterations 98

5.9 Number of solved satisfiability problems by iterations 99

6.1 GenerateLocalMoves for over-constrained constraint weighting . . . 106

6.2 Weighting hard and soft constraints 109

6.3 The Flexible Weight Adjustment algorithm 112

6.4 Nurse rostering anytime curves for weighting algorithms 118

6.5 Nurse rostering anytime curves for comparative algorithms 119

6.6 Timetabling anytime curves for weighting algorithms 120

6.7 Timetabling anytime curves for comparative algorithms 121

6.8 RLFAP anytime curves for weighting algorithms 122

6.9 RLFAP anytime curves for comparative algorithms 122

List of Tables

2.1 A local search taxonomy 28

3.1 An example tupled nurse variable domain 37

4.1 Results for small 3-SAT problems 57

4.2 Results for structured DIMACS problems 59

4.3 Results for CSPs 61

4.4 Averaged small world measures for each problem set 72

4.5 Statistics for variable neighbour counts by problem domain 73

4.6 Parameter settings for WSAT and TABU algorithms 83

5.1 Comparison of mean performance values 94

5.2 Table 5.1 ARCWGT values as a proportion of MINWGT values . . 94

5.3 Comparison of iteration speed 98

5.4 3-SAT results for hybrid weighting algorithms 101

5.5 DIMACS results for hybrid weighting algorithms 101

6.1 Averaged results for 16 nurse rostering problems 117

6.2 Averaged results for 10 random timetabling problems 120

6.3 Averaged results for 4 RLFAPs (1,2,3 and 11) 121

6.4 Comparison of Chapter 4 and Chapter 6 nurse rostering success rates 123

6.5 Comparison of Chapter 4 and Chapter 6 timetabling success rates . . 123

6.6 Comparison of original and adapted GLS performance 125

Definitions of Abbreviations and Terms

AIM refers to satisfiability problems created using an AIM generator (named after

Asahiro, Iwama and Miyano, see [Asahiro et al., 1993]). The special feature of
an AIM generator is that it can build single solution problems.

ARCWGT a local search constraint weighting heuristic that additionally weights con-

straints that are simultaneously violated at a local minimum.

BEST a stochastic local search heuristic that either moves randomly or selects the

best cost move according to a probability or noise level p.

BESTWGT a local search heuristic that combines BEST and MOVEWGT.

bin40 refers to the randomly generated binary CSPs used in the thesis with 30 vari-

ables, each with 10 domain values, a constraint density of 40% and a con-
straint tighness of 32%.

bin80 refers to the randomly generated binary CSPs used in the thesis with 30 vari-

ables, each with 10 domain values, a constraint density of 80% and a con-
straint tighness of 17%.

CNF Conjunctive Normal Form: CNF problems are made up of a conjunction of

clauses of disjunct literals.

CSP Constraint Satisfaction Problem: a CSP is a problem expressed in terms of

variables with domain values and constraints that define the allowable combi-
nations of domain values for the variables. A solution to a CSP is an instantia-
tion of all variables such that all the constraints are satisfied.

Ct Constancy measure that looks at the amount of change in the top 10% of

weighted constraints during a search.

DIMACS benchmark refers to the set of benchmark satisfiability problems available

from the Center for DIscrete MAthematics and Computer Science at
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf.

DWA Downward Weight Adjustment: a dynamic local search constraint weighting

heuristic for hard and soft constraint problems where the hard constraint
weight multiplier is initially set to the total number of soft constraints + 1.
Hard weight is then adjusted downwards during the search to equal the num-
ber of soft constraints violated in the best solution found so far + 1.

Definitions of Abbreviations and Terms xii

EFLOP Escaping From Local Optima by Propagation: a local search heuristic that
uses value propoagation to escape from local minima [Yugami et al., 1994].

FWA Flexible Weight Adjustment: a dynamic local search constraint weighting heu-

ristic for hard and soft constraint problems where the hard constraint weight
multiplier is initially set to the weight of a soft constraint + 1. This weight is
then incremented at a local minimum if any hard constraints are violated, oth-
erwise it is decremented.

GLS Guided Local Search: a local search technique developed by [Voudouris and

Tsang, 1996] that penalises problem features at a local minimum according to
a utility function.

GSAT original local search heuristic proposed by Selman et al. [1992] for solving

satisfiability problems.

HSAT a variant of GSAT proposed by [Gent and Walsh, 1993] that breaks ties on

equal cost moves by considering when a move was last made.

k-SAT refers to satisfiability problems with a fixed number of k literals in each

clause, e.g. 3-SAT problems all have 3 literals per clause.

ii32 refers to the inductive inference problems from the DIMACS challenge set

used in the thesis (namely ii32b3, ii32c3, ii32d3 and ii32e3).

MAX a local search constraint weighting heuristic for hard and soft constraint prob-

lems where the hard constraint weight multiplier is fixed to the total number of
soft constraints + 1.

MAX-SAT refers to over-constrained satisfiability problems where the objective is to

satisfy as many clauses as possible.

MIN a local search constraint weighting heuristic for hard and soft constraint prob-

lems where the hard constraint weight multiplier is fixed to the number of soft
constraints violated in an optimal solution + 1.

MINWGT a local search constraint weighting heuristic that adds weight to violated

constraints at a local minimum.

MOVEWGT a local search constraint weighting heuristic that adds weight to a vio-

lated constraint when an overall cost improving move that also improves the
constraint cannot be found.

NOVELTY a stochastic local search heuristic proposed in [McAllester et al., 1997]

that evaluates moves based on how recently the move was last made.

NOVELTYWGT a local search heuristic that combines NOVELTY and

MOVEWGT.

Definitions of Abbreviations and Terms xiii

par refers to the parity function learning problems from the DIMACS challenge
set used in the thesis (namely par8-2-c and par8-4-c).

PCSP Partial Constraint Satisfaction Problem: a formalism for representing and solv-

ing over-constrained problems by searching for a solution that partially satis-
fies the problem constraints (from [Freuder and Wallace, 1992]).

r100 (also r200 and r400) refers to randomly generated 3-SAT problems (see k-

SAT above) with a clause to variable ratio in the cross-over region of 4.3 : 1.
r100 refers to 100 variable problems, r200 to 200 variable problems, etc.

RLFAP refers to Radio Link Frequency Assignment Problems based on the real prob-

lem of assigning frequencies to radio links (made available by the French Cen-
tre d’Electronique l’Armament at listserver@saturne.cert.fr).

RNOVELTY a stochastic local search heuristic proposed in [McAllester et al., 1997]

that evaluates moves based on how recently the move was last made and the
relative costs of the two most promising moves.

RNOVELTYWGT a local search heuristic that combines RNOVELTY and

MOVEWGT.

SA Simulated Annealing: a stochastic local search heuristic modelled after the

physical cooling process of heated atoms [Abramson, 1992].

ssa refers to the circuit fault diagnosis problems from the DIMACS challenge set

used in the thesis (namely ssa7552-038, ssa7552-158, ssa7552-159 and
ssa7552-160).

TABU a constraint sampling local search heuristic that avoids undoing recently made

moves [Glover, 1989].

TABUWGT a local search heuristic that combines TABU and MOVEWGT.

tt_rand refers to the randomly generated timetabling problem set used in the thesis

where classes are assigned student groups, staff and room requirements on a
random basis.

tt_struct refers to the randomly generated timetabling problem set used in the thesis

that reflects the structure of a realistic problem.

UTILWGT a constraint weighting algorithm based on the utility function proposed

in [Voudouris and Tsang, 1996].

WSAT refers to a family of local search techniques that grew out of the original

WalkSat heuristic [Selman et al., 1994] (includes BEST, NOVELTY and
RNOVELTY).

Acknowledgments

I would like to thank my supervisor Dr. Abdul Sattar for his tireless support and en-

couragement, and for always pointing me in the right direction. I would also like to

thank Dr. Clyde Wild and the Gold Coast Campus of Griffith University for their

generous financial assistance. Finally, I would like to thank Byungki Cha, Paul Mor-

ris, Bart Selman, Peter van Beek and Benjamin Wah for sharing their code, helpful

comments and correspondence during the process of completing this thesis.

Statement of Originality

This work has not previously been submitted for a degree or diploma to any univer-

sity. To the best of my knowledge and belief, the thesis contains no material previ-

ously published or written by another person except where due reference is made in

the thesis itself.

Signed:

January 2000

Chapter 1

Introduction

In this chapter we informally introduce the idea of applying constraint weighting to

constraint satisfaction. We then describe the problems addressed in the thesis and ex-

plain our motivation for solving them. Finally we present a summary of the contribu-

tions of the thesis and an outline of the remaining chapters.

1.1 Constraint Weighting for Constraint Satisfaction

1.1.1 Constraint Satisfaction

Representing and solving problems involving constraints has important applications

in artificial intelligence, including satisfiability testing, scheduling, image interpreta-

tion and planning. The idea of constraint satisfaction is to represent problem knowl-

edge by defining constraints on the allowable values of problem variables. In this way

we can model many different problems within a common framework and so develop

algorithms that exploit this framework (rather than concentrating on solving individ-

ual problems).

As an example, consider the well-known n-queens problem: here the aim is to

place n queens on an n × n chessboard so that no two queens are attacking one an-

other. To transform this into a constraint satisfaction problem (CSP) we need to iden-

tify the variables in the problem (the things that can change, i.e. the queens), the do-

mains of the variables (the values that each variable can assume, i.e. the chessboard

squares) and the constraints between the variables (i.e. the limitation that no two

queens can be on squares that are in the same row, column or diagonal). A CSP is

Chapter 1 Introduction 2

solved by finding an answer where all variables are instantiated (i.e. all queens are on

the board) and all constraints are satisfied (i.e. no queen is attacking another). An ex-

ample solution to the four queens problem is shown in figure 1.1.

Q4

Q3

Q2

Q1

Fig. 1.1. An example solution to a four queens chess problem

1.1.2 Constraint Satisfaction Algorithms

Constraint satisfaction algorithms can be placed in two general categories:

• Constructive (backtracking) algorithms

• Local search (iterative repair) algorithms

A constructive algorithm builds up answers incrementally, checking at each stage that

all constraints are satisfied. In the n-queens example, this means placing queens on

the board one at a time, making sure each new queen is not attacked by a previous

queen, until an answer is found or there are no more unattacked squares. If no unat-

tacked squares are available, the algorithm will backtrack, undo an earlier move, and

continue on again. Such algorithms are systematic (i.e. they are guaranteed to find all

possible solutions to a problem) but on many problems have worst case exponential

time complexity [Mitchell 1998].

Local search techniques prove useful as problem sizes grow and the performance

of constructive techniques starts to decline. Although not guaranteed to find an an-

swer, and with unpredictable performance, local search techniques have proved the

best practical alternative for many larger CSPs. A local search strategy starts with a

complete but flawed answer to a problem and then tries to find ‘local’ moves that im-

prove the overall cost of the answer. For the n-queens problem, this means starting

with all n queens on the board and searching the domain of each queen for moves that

reduce the total number of attacks. As each move changes the situation for all the

other queens, we can repeatedly find the best move for different queens until a solu-

Chapter 1 Introduction 3

tion is found or there are no moves left that reduce the number of attacks. In this sec-

ond case we have reached a local minimum. The challenge for all non-trivial local

search techniques is to find the best way to avoid or escape local minima and carry on

the search.

1.1.3 Constraint Weighting

In the early 90’s, [Morris, 1993] proposed a new local search heuristic for satisfiabil-

ity testing called Breakout. At the same time, [Selman and Kautz, 1993] proposed a

similar clause weighting algorithm and later [Thornton and Sattar, 1997] introduced a

constraint weighting heuristic for solving general CSPs. All three techniques share the

same basic mechanism for escaping or avoiding local minima: placing weights on un-

satisfied constraints. This makes answers that violate weighted constraints more

costly, changing the structure of the problem so that other answers become more at-

tractive. For example, consider the situation in figure 1.2a: Q1 is attacking Q2, and

there is no single move that can improve the situation. Constraint weighting would

increase the cost of violating the diagonal constraint between Q1 and Q2, making any

position that violates another constraint more attractive. Hence we can move Q2 to the

position in figure 1.2b and from there we can move Q4 and arrive at the solution in

figure 1.1.

Q4

Q2

Q3

Q1

Q2

Q4

Q3

Q1

 (a) (b)

Fig. 1.2. Constraint weighting four queens example

Constraint weighting techniques have proved effective on smaller hard satisfiability

problems [Morris, 1993; Cha and Iwama, 1995], leading to the development of spe-

cialised algorithms for satisfiability [Cha and Iwama, 1996; Castell and Cayrol, 1997;

Frank, 1996] and the application of weighting to over-constrained problems [Cha et

al., 1997], scheduling [Thornton and Sattar, 1997], neural networks [Davenport et al.,

Chapter 1 Introduction 4

1994] and genetic algorithms [Bowen and Dozier, 1996]. In addition, other related

techniques such as Guided Local Search (GLS [Voudouris and Tsang, 1996]) and the

discrete Lagrangian method [Wu and Wah, 1999] use the principle of constraint

weighting but explain and apply it in different ways. Basic constraint weighting (as

proposed by Morris [1993]) does not require the tuning of parameter values to obtain

optimum performance and has no domain dependent features1. This makes it an excel-

lent candidate as a general purpose constraint solving algorithm. As products like

ILOG® have shown, there is significant scope for the practical application of con-

straint technology, and the techniques developed here are directly relevant to solving

larger and/or over-constrained problems within such general purpose systems.

1.2 Research Problems

As we have seen, the constraint satisfaction paradigm models the world using vari-

ables, domains and constraints. In many practical applications, standard CSP repre-

sentations, while capturing the essential problem features, produce models that cannot

be solved efficiently using general purpose CSP algorithms. This typically leads to

the development of problem specific techniques and the abandonment of a general

approach. We address this area by looking at the application of CSP techniques to two

complex, real world scheduling problems, and examine general extensions to the CSP

framework that can be used to produce efficiently solvable models.

Constraint weighting was originally developed as a method for solving satisfiabil-

ity problems. Outside of the satisfiability domain, the relative performance of con-

straint weighting in comparison with other local search techniques is poorly under-

stood. We address this in an empirical study which looks at techniques from satisfi-

ability [McAllester et al., 1997] and tabu search [Glover, 1989], and investigates al-

gorithm performance on a range of different CSPs. In the process, we examine the

behaviour of several constraint weighting schemes and look for problem types for

which weighting is more applicable.

Next, we look at the problem of improving the performance of constraint weight-

ing. Existing enhancements have concentrated on satisfiability testing and produced

heuristics that are not applicable to the broader domain of constraint satisfaction [Cha

1 this is not true for all weighting techniques, for instance GLS does use parameters

Chapter 1 Introduction 5

and Iwama, 1996; Castel and Cayroll, 1997]. To address this, we propose a domain

independent arc weighting algorithm that weights binary connections between con-

straints that are simultaneously violated in a local minimum. In a second empirical

study we compare the performance of arc weighting with a standard constraint

weighting technique introduced earlier in the thesis. In addition we consider several

hybrid algorithms that introduce a weighting component into existing non-weighting

methods and empirically evaluate the benefits of mixing these techniques.

Finally, we extend the application of constraint weighting to over-constrained

problem domains containing hard (mandatory) and soft (desirable) constraints. This

work is motivated by the common appearance of hard and soft constraints in realistic

problems and the lack of a constraint weighting heuristic that can maintain the long-

term distinction between hard and soft constraints. We propose two dynamic con-

straint weighting schemes and evaluate their performance in comparison with two

fixed weighting schemes, and four other non-weighting algorithms.

1.3 Contributions

The main contributions of the thesis are:

• The extension and practical application of the CSP modelling framework to in-

clude array-based domains and array-based domain use constraints.

• The characterisation of the behaviour of constraint weighting using constraint

weight curves and measures of weighting constancy and problem structure.

• The recognition that constraint weighting is best suited to problems where there is

a clear distinction between a difficult constraint group and the remaining easier

constraints.

• The development and evaluation of a range of pure and hybrid constraint weight-

ing schemes.

• The development of an efficient arc weighting algorithm that is shown to out-

perform standard constraint weighting within a general constraint solving system.

• The development of two dynamic constraint weighting heuristics that can solve

problems involving hard and soft constraints and that outperform other fixed

weighting and non-weighting systems.

Chapter 1 Introduction 6

1.4 Outline

In the next Chapter we give a general survey of constraint satisfaction techniques,

concentrating on local search and the specific algorithms used in the remainder of the

thesis. Then, in Chapter 3, we examine the modelling issues involved in efficiently

solving two scheduling problems using CSP techniques. As a result of this, we pro-

pose several extensions to the standard CSP representation. In Chapter 4, we present

an empirical study comparing constraint weighting with several recently proposed

satisfiability techniques and with an implementation of tabu search. We also evaluate

three versions of constraint weighting: move-based, local minimum-based and utility-

based. As part of this study, we graphically analyse the behaviour of constraint

weighting and look for connections between algorithm performance, weighting be-

haviour and problem structure. In Chapter 5, we propose a new domain independent

arc weighting algorithm that uses information about the frequency that constraints are

simultaneously violated. We present an empirical study of arc weighting in compari-

son with a standard weighting scheme using problem domains introduced in Chapter

4. In addition we further experiment with adding weighting schemes into other algo-

rithms. In Chapter 6 we propose two dynamic constraint weighting schemes for solv-

ing over-constrained problems involving hard and soft constraints. The schemes are

evaluated on a range of over-constrained problems adapted from domains introduced

earlier in the thesis, and in comparison to two fixed weighting schemes and an alter-

native dynamic weighting scheme for tabu search. Finally, in Chapter 7, the overall

results and conclusions of the thesis are summarised and avenues for future work are

presented.

Chapter 2

Constraint Satisfaction Techniques

In this chapter we review the areas of constraint satisfaction of relevance to the thesis.

We start with some formal definitions and a brief outline of the constructive approach

to constraint satisfaction. We then present a taxonomy of local search techniques

based on the method used to escape or avoid a local minimum solution.

2.1 Definitions

Constraint Satisfaction Problem (CSP): Formally, a constraint satisfaction problem

(CSP) consists of a set V of n variables, {v1, v2, ..., vn}, with each vi having a domain

Di of possible values. Constraint relations are defined on subsets of V, and consist of

subsets of the Cartesian products of the domains of the variables that participate in the

constraint. Each constraint relation tuple represents a combination of variable values

from the subset of variables over which the constraint is defined, that satisfy the par-

ticular conditions of that constraint. Solving a CSP involves finding an n-tuple of val-

ues for each variable in V such that all constraint relations are satisfied. A CSP may

require the complete set of n-tuple solutions, one member of the set, or to discover

whether the set has any members [Mackworth, 1977].

Partial Constraint Satisfaction Problem (PCSP): The above CSP definition covers

problems where all constraints must be satisfied for an answer to exist. Many realistic

problems are over-constrained, meaning there is no answer that satisfies all con-

straints. In this case we can model the problem as a Partial Constraint Satisfaction

Problem (PCSP). A PCSP is here defined as a CSP, P, with the addition definition of

Chapter 2 Constraint Satisfaction Techniques 8

a solution space S, a cost function ƒ and a maximum solution cost C [Freuder and

Wallace, 1992]. S is the set of all possible n-tuples of values for each variable in V in

P and ƒ measures the distance between elements of S in terms of the number and im-

portance of the constraints violated. By relaxing the constraints of the original prob-

lem P, we can visit each solution s ∈ S. If a solution is found such that ƒ(s) ≤ C, then

a solution to the PCSP is also found (we assume if ƒ(s) > 0 then s violates at least one

constraint, hence a CSP can be defined as a PCSP where C = 0).

Local Search Terminology: Following on from the definition of a PCSP, we can de-

fine a local search space LS ⊆ S, where LS is the set of all solutions that can be

reached from some initial point s0 ∈ S by recursively applying a local neighbourhood

function N. N generates and applies a set of moves M, such that each solution s’∈

N(s) is exactly one move m ∈ M away from s (each s’ is therefore called a neighbour

of s). A local search moves between successive neighbouring solutions s0, s1, .. sn in

LS, by selecting a move m from M, denoted by si + 1 ← si ⊕ m (see Section 2.3).

Conjunctive Normal Form (CNF) Problem: Many of the recent advances in local

search techniques have occurred in solving Boolean Satisfiability problems in con-

junctive-normal form (CNF). A CNF formula consists of a conjunction of clauses,

where each clause is a disjunction of literals and each literal is a propositional vari-

able or its negation [Poole et al., 1998]. For example, consider a CNF formula with

three propositional variables, x, y and z, and the following four clauses:

{¬x ∨ ¬y ∨ ¬z} ∧ {x ∨ y ∨ ¬z} ∧ {¬x ∨ y} ∧ {¬y ∨ z}

 (1) (2) (3) (4)

The formula is satisfiable if values for x, y and z exist, such that all clauses simultane-

ously evaluate to true. For example, x = false satisfies clauses 1 and 3, y = true satis-

fies clauses 2 and 3, and z = true satisfies clause 4. In this case all four clauses are

true and the formula is satisfied. A CNF satisfiability problem can be easily formu-

lated as a non-binary CSP by taking each clause as a constraint and each literal as a

variable with two domain values: {true, false}. Alternative binary CSP encodings are

Chapter 2 Constraint Satisfaction Techniques 9

possible using the dual and hidden variable techniques explained in Section 3.3.1 (for

more detail see [Walsh, 2000]).

2.2 Constructive Techniques

Constructive techniques try to build consistent solutions incrementally. In solving

CSPs, this has meant the use of backtracking, consistency techniques and structure-

driven algorithms [Kumar, 1992]. Analogous constructive techniques have also been

applied to PCSPs using branch and bound [Freuder and Wallace, 1992].

The constructive technique most relevant to the thesis is the backtracking algo-

rithm (see figure 2.1). Backtracking starts by selecting a value for an initial variable

and then tries to extend the solution by selecting a value for a second variable, such

that the two values are consistent (i.e. there are no constraint violations). This partial

solution is then extended to a third variable, and so on, until either all variables are

instantiated with consistent values, or a variable is found with no remaining consistent

domain value. In this case (known as a dead-end), the algorithm will return (or back-

track) to a previously instantiated variable and try another value. If no other consis-

tent value can be found for this variable, the algorithm will backtrack further until a

new consistent value is found for some other variable or no more consistent values are

available.

procedure Backtrack(Vleft, Vdone, S)
begin
 if Vleft ≠ ∅ then
 begin
 vi ← SelectVariable(Vleft)
 for each dij ∈ Di of vi do
 begin
 vi ← dij
 if not InConflict(vi, Vdone) then Backtrack(Vleft - vi, Vdone ∪ vi)
 end
 end
 else if S = ∅ then S ← Vdone
end
begin program
 S = ∅, Backtrack(V, ∅, S)
end program

Fig. 2.1. A backtracking algorithm

Chapter 2 Constraint Satisfaction Techniques 10

Simple backtracking is guaranteed to find all consistent solutions to a CSP, as it visits

all consistent instantiations of a given variable ordering. In addition, backtracking

prunes the search space by ignoring areas of the search tree that exist beyond a dead-

end, and so is more efficient than a simple exhaustive search. However, as the general

task of solving a CSP is NP-complete [Mitchell, 1998], such pruning cannot be guar-

anteed to produce a polynomial time algorithm. The main problem for backtracking is

thrashing [Mackworth, 1987]. Thrashing refers to repeated failure at dead-ends for

the same underlying reasons. For example, figure 2.2 shows part of the search tree for

a three variable (v1, v2, v3), two domain value (di1, di2) CSP. If there is no value for v3

that is consistent with d11 for v1, we will repeatedly rediscover this conflict at differ-

ent parts of the tree and consequently fail for the same underlying reason:

 = consistent path = inconsistent path

v3 d32d31 v3 d32d31 v2 d22d21 v2 d22d21

v2 d22d21 v3 d32d31

v1 d12d11

v3 d32d31 v3 d32d31 v2 d22d21 v2 d22d21

v2 d22d21 v3 d32d31

Fig. 2.2. Thrashing behaviour in backtracking

Three main strategies have been developed to improve the efficiency of backtracking:

1. Consistency-enforcing algorithms: Consistency-enforcing algorithms (e.g. arc-

consistency, path-consistency, etc [Mackworth, 1987]) recognise domain values

that cannot be a part of any complete solution. These values are then either de-

leted from their domains or new constraints are inferred that forbid the inconsis-

tent value combinations (for example in figure 2.2 we could delete d11).

2. ‘Intelligent’ backtracking techniques: Intelligent backtracking techniques are

generally divided into look-back and look-ahead schemes. Look-back schemes

avoid unnecessary work by learning from already instantiated variables. For ex-

Chapter 2 Constraint Satisfaction Techniques 11

ample, backmarking [Gaschnig, 1977] avoids repeating previous consistency

checks, while backjumping [Gaschnig, 1978] avoids backtracking to variables that

are not currently in conflict. Look-ahead schemes examine the effects of current

moves on future uninstantiated variables, so that potential dead-ends can be de-

tected earlier (e.g. forward-checking [Haralick and Elliott, 1980] and maintaining

arc-consistency [Sabin and Freuder, 1997]).

3. Variable and value ordering heuristics: Variable ordering heuristics generally

use a ‘fail-first’ principle to reduce the size of the search tree as fast as possible.

This can involve dynamically selecting the variable with the fewest remaining

domain values [Bitner and Reingold, 1975] or selecting the variable involved in

the largest number of constraints [Dechter, 1992]. In addition, value ordering heu-

ristics can help to avoid dead-ends, for instance, by selecting values that least re-

duce the number of values available for future variables [Dechter, 1992].

2.3 Local Search Techniques

On many CSPs, constructive algorithms have exponential time complexity (e.g. all

known NP-complete problems). In these situations, as problem sizes get larger, alter-

native non-systematic local search techniques become more practical. As introduced

in Chapter 1, a local search starts with a complete, but inconsistent solution, and then

attempts to iteratively improve or repair constraint violations. Because a local search

can move in the space of inconsistent solutions, it can be used to solve both CSPs and

PCSPs without significant modification.

Many well-known algorithms can be classified as local search techniques, ranging

from ‘greedy’ hill-climbing algorithms to more specific approaches such as the sim-

plex algorithm in linear programming [Dantzig, 1963]. The connecting principle is

that all the techniques search for improving solutions in the local neighbourhood of an

existing solution. Generally if an improving solution is found then the search tries to

find an improving solution for the new solution, otherwise behaviour depends on the

particular technique that is employed [Papadimitriou and Steiglitz, 1982]. As intro-

duced in Section 2.1, a solution si+1 in the neighbourhood of an existing solution si is

created by selecting a move m ∈ M, generated by a neighbourhood function N. Moves

Chapter 2 Constraint Satisfaction Techniques 12

can simply change the domain value for one variable, or can change several variables

and include heuristics that ensure the generated move satisfies certain constraints. For

instance, in the travelling salesman problem, 2-OPT moves delete two non-adjacent

edges of a tour and then add back the unique two edges that create a new tour

[Glover, 1989]. In addition, various move selection heuristics have been proposed,

some accepting equal cost moves (e.g. GSAT, [Selman et al., 1992]) and others ac-

cepting cost increasing moves (e.g. Simulated Annealing, [Abramson, 1992]). Never-

theless, all techniques share the same basic approach. This is shown in figure 2.3,

which uses the notation introduced in Section 2.1, where s is the current solution rep-

resented as variable value pairs (vi, dij), such that s ∈ LS, vi ∈ V, dij ∈ Di and M’⊆ M,

where M is the set of all local moves for the solution s (for generality the exact proce-

dure for selecting the initial (vi, dij) pairs in s is left undefined).

procedure LocalSearch(MaxCost, MaxMoves)
begin
 for each vi ∈ V do s ← s ∪ {(vi, dij) | dij ∈ Di}
 while ƒ(s) > MaxCost and TotalMoves < MaxMoves do
 begin
 M’ ← GenerateLocalMoves(s, TotalMoves)
 if M’≠ ∅ then MakeLocalMove(s, M’, TotalMoves)
 end
end

Fig. 2.3. A general local search algorithm

Within the structure of figure 2.3 we can characterise different local search strategies

by redefining the GenerateLocalMove and MakeLocalMove functions. Firstly, figures

2.4 and 2.5 define GenerateLocalMoves and MakeLocalMove for a hill-climbing lo-

cal search. The GenerateLocalMoves procedure returns the set of all best cost moves

M’in the neighbourhood of s, where a move m ← {vi, d} consists of instantiating

variable vi with domain value d.

The hill-climbing local search algorithm is the basis of all local search techniques.

Although simple, it has proved robust and effective at solving a wide range of CSPs

and PCSPs [Minton et al., 1992; Glover, 1989; Thornton, 1995]. In comparison to a

constructive approach, local search looks at a complete rather than a partial instantia-

tion of variables, and so knows the exact (rather than probable) cost of a move. For

this reason it can move quickly to a low cost solution [Minton et al., 1992]. Unlike a

Chapter 2 Constraint Satisfaction Techniques 13

constructive algorithm, local search does not systematically cover the search space.

Given a move operator that can connect all solutions and a mechanism to avoid run-

ning out of moves, a local search will eventually visit all solutions in the search space

[Morris, 1993]. However, this involves the assumption of infinite time and the prob-

ability that the search will frequently revisit many of the same solutions. Conse-

quently, worst case local search performance will usually be inferior to a constructive

method, making local search impractical for finding a complete enumeration of ac-

ceptable cost solutions or for discovering that a problem cannot be solved.

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestCost ← ƒ(s) - δ /* best cost slightly less than current cost */
 for each vi ∈ V do if vi in constraint violation then
 begin /* only variables in violation can be in a cost reducing move */
 dcurr ← current domain value of vi
 for each d ∈ Di | d ≠ dcurr do /* ignore current domain value */
 begin
 m ← {vi, d}
 if ƒ(s ⊕ m) ≤ BestCost then
 begin
 if ƒ(s ⊕ m) < BestCost then
 begin
 BestCost ←ƒ(s ⊕ m)
 M’ ← ∅ /* new best move so start again */
 end
 M’ ← M’∪ m /* move accepted as candidate */
 end
 end
 end
 if M’ = ∅ then TotalMoves ← MaxMoves /* local minimum so quit */
 return M’
end

Fig. 2.4. Hill-climbing version of GenerateLocalMoves

The idea of local search is to find a short-cut to an answer by descending quickly to

the nearest minimum cost solution in the search space. It avoids the expense of a sys-

tematic search by exploiting the cost topography of the search space. The average

case performance of a local search therefore depends on the particular cost surface of

the problem being solved. For this reason local search techniques are usually evalu-

ated empirically on a problem by problem basis rather than using formal analysis

Chapter 2 Constraint Satisfaction Techniques 14

techniques (although certain smaller problems have proved amenable to analysis, e.g.

[Papadimitriou, 1994]).

procedure MakeLocalMove(s, M’, TotalMoves)
begin
 randomly select m from M’
 s ← s ⊕ m, TotalMoves ← TotalMoves + 1
end

Fig. 2.5. Hill-climbing version of MakeLocalMove

The main problem with a hill-climbing local search (i.e. one that only accepts cost

improving moves) is that it descends to the nearest minimum cost solution in the

search space. If no single move can improve on a solution, the search becomes stuck,

even though it may not have found the global minimum. Although for certain prob-

lems (e.g. n-queens) a simple local search can be effective, most interesting problems

have a search topography that contains many non-optimal local minima. One way to

move on from a local minimum is to combine local search with a constructive ap-

proach and backtrack through the space of possible cost reducing moves [Minton et

al., 1992]. However, several more sophisticated and powerful local search heuristics

have been developed that escape or avoid local minima. These heuristics can be di-

vided into four areas (according to the method of escape) forming the basis of the lo-

cal search taxonomy used in the remainder of the thesis:

1. Restart strategies that restart the search either at a local minimum, or after a cer-

tain number of moves.

2. Stochastic strategies that allow cost increasing moves (according to a fixed or

dynamically adjusted probability).

3. Memory strategies that remember previous moves or solutions and so avoid

moves that lead back to an already visited solution.

4. Constraint weighting strategies that change the cost topography by dynamically

adjusting the cost of violating selected constraints.

Chapter 2 Constraint Satisfaction Techniques 15

2.3.1 Restart Strategies

2.3.1.1 Local Minimum Random Restart

The simplest restart strategy is to randomly reassign all variable values each time a

local minimum is encountered. By starting the search in a different area, we are likely

to find a different local minimum (depending on the topography) and eventually to

find a global minimum. However, this approach discards any information we could

have learned in a previous search. In cases where a global minimum shares many

common values with other local minima (as in figure 2.6a), restarting means we will

have to relearn these assignments. In contrast, if the search space contains many

evenly distributed local minima and there is no gradient towards a global solution (as

in figure 2.6b) then there is little to learn from each minima and a random restart

strategy becomes more efficient (note that in this situation a systematic search tech-

nique also becomes more competitive).

Global Minima

 (a) (b)
Fig. 2.6. Example local search topologies [Morris, 1993]

2.3.1.2 Fixed Iteration Restart

Fixed iteration restart restarts a problem after a fixed number of moves. The idea ex-

ploits the wide variation in the number of moves observed for local search techniques

solving the same (usually hard) problem instances. For example, figure 2.7a plots the

percentage of 10,000 runs on the same CNF satisfiability problem that are solved at

different numbers of moves. Figure 2.7b uses this information to calculate the opti-

mum number of restarts for the problem. The graphs show (for this problem and algo-

rithm) it is optimal to restart an unsuccessful search after approximately 700 moves

Chapter 2 Constraint Satisfaction Techniques 16

rather than risk a slow search in the tail area. Empirical tests with various hard CNF

satisfiability problems using GSAT have shown that the optimum restart point is

fairly constant for a given problem type and size [Selman and Kautz, 1993].

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of Moves

%
 S

ol
ut

io
ns

 F
ou

nd

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000 14000 16000

Moves before Restart

Ex
pe

ct
ed

 M
ov

es
 b

ef
or

e
S

ol
ut

io
n

 (a) solution level by number of moves (b) using expected moves to estimate opti-
mum

Fig.2.7. Graphical analysis of optimal restart value

2.3.1.3 GSAT

GSAT [Selman et al., 1992] is a fixed iteration restart local search heuristic specifi-

cally developed for solving CNF satisfiability problems. The algorithm tries ‘flipping’

variables in the problem and accepts the best move that does not increase the number

of unsatisfied clauses (breaking ties randomly). Flipping is equivalent to a move

which tries each non-instantiated domain value for each variable, however, as SAT

problem variables only have two values (true or false), a domain test simply changes a

value from true to false or vice versa. Because GSAT accepts ‘sideways’ or equal cost

moves the ‘plateau’ around a local minimum can be explored for another cost reduc-

ing move. If no cost reducing move exists on a plateau then different equal cost

moves will be accepted indefinitely. For this reason, and to avoid the tail area (dis-

cussed in the previous section), the algorithm is artificially terminated after a certain

number of moves (flips) and then restarted. The CSP version of GSAT (shown in fig-

ure 2.8) differs from the hill-climbing approach of Figure 2.4 in three areas:

1. All variables are considered, rather than just those in a constraint violation.

2. Equal or increasing cost moves are allowed

3. Hence GSAT does not recognise local minima (i.e. M’cannot = ∅).

Chapter 2 Constraint Satisfaction Techniques 17

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestCost ← ∞
 for each vi ∈ V do
 begin
 dcurr ← current domain value of vi
 for each d ∈ Di | d ≠ dcurr do
 begin
 m ← {vi, d}
 if ƒ(s ⊕ m) ≤ BestCost then
 begin
 if ƒ(s ⊕ m) < BestCost then
 begin
 BestCost ← ƒ(s ⊕ m), M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 end
 return M’
end

Fig. 2.8. GSAT version of GenerateLocalMoves

Averaging-In: To avoid discarding information learnt in earlier searches, an averag-

ing-in heuristic was proposed for GSAT [Selman and Kautz, 1993]. This heuristic re-

cords the initial and best solutions for the first search (i1 and b1), and generates the

initial state for the second search (i2) leaving variables that have the same assignment

in i1 and b1 unchanged, and randomly assigning values to the variables that differ.

From then on the initial state is generated by averaging in the two best previous solu-

tions.

2.3.1.4 Value Propagation

Following on from Averaging-In, Yugami et al. [1994] proposed a more sophisticated

restart strategy that involves moving from a local minimum using value propagation

(called Escaping From Local Optima by Propagation or EFLOP). This method in-

volves perturbing a local minimum by randomly selecting a variable in conflict, and

changing its value. EFLOP then propagates this change by moving into a loop that

tries to build a consistent sub-problem. This is done by selecting variables in newly

unsatisfied constraints that a) have not been selected before in the current call of

Chapter 2 Constraint Satisfaction Techniques 18

EFLOP procedure b) were consistent in the original local minimum c) have a value

that satisfies the constraint and d) are consistent with all other variables changed in

the current EFLOP call. When no more variables meet these conditions EFLOP ter-

minates and the local search is restarted.

2.3.2 Stochastic Strategies

Stochastic local search techniques escape or avoid local minima by adding a random

element to the move selection heuristic that allows cost increasing moves. This is the

basis of several techniques including simulated annealing (SA) and WSAT. (note

GSAT and hill-climbing also use randomised selection to break ties and set up initial

solutions but not as a method to escape local minima).

procedure GenerateLocalMoves(s, TotalMoves)
begin
 if TotalMoves = 0 then
 begin
 M’← ∅,
 for each vi ∈ V do for each d ∈ Di do M’← M’∪ {vi, d}
 end
 return M’ /* i.e. return entire local neighbourhood */
end

Fig. 2.9. SA version of GenerateLocalMoves

procedure MakeLocalMove(s, M’, TotalMoves)
begin
 randomly select m from M’
 ∆E ← ƒ(s ⊕ m) - ƒ(s)
 if TotalMoves = 0 then T ← Tstart
 else T ← T * R
 if ∆E < 0 or e -∆E/T > (random value between 0 and 1) then s ← s ⊕ m
 TotalMoves ← TotalMoves + 1
end

Fig. 2.10. SA version of MakeLocalMove

2.3.2.1 Simulated Annealing

Simulated annealing is a general purpose optimisation technique modelled after the

physical cooling process of heated atoms [Abramson, 1992]. As with all local search,

Chapter 2 Constraint Satisfaction Techniques 19

a cost function is defined and local or neighbourhood solutions are generated accord-

ing to a move operator. These solutions are automatically accepted if they produce a

reduction in cost, but if a solution causes an increase in cost (also known as energy), it

is accepted or rejected on the basis of an annealing probability function and the cur-

rent system temperature [Connolly, 1992]. As the algorithm executes, the temperature

of the system reduces (according to a cooling function), causing the probability of ac-

cepting an increased cost solution to reduce.

Various annealing probability and cooling functions have been proposed. As an

example, classical annealing [Lo and Bavarian, 1992] uses a version of the Boltzman

distribution to generate the probability of acceptance:

P(accept) = e -∆E/T

where T = temperature and ∆E = change in cost caused by accepting the new solution.

The temperature is then reduced using a geometric cooling schedule:

Tn = Tn-1 * R

where R is the cooling rate 0 ≤ R ≤ 1 and T is a positive real number [Abramson,

1992]. An example CSP simulated annealing algorithm is shown in figures 2.9 and

2.10. Here we allow the local neighbourhood to include all possible moves, rather

than restricting selection to variables that are in conflict (as in hill-climbing). This is

in line with the standard SA approach, although empirical tests on various CSPs sug-

gest SA does better with a more selective choice of moves [Selman and Kautz, 1993;

Thornton, 1995].

procedure MakeLocalMove(s, M’, TotalMoves)
begin
 randomly select m from M’
 if ƒ(s ⊕ m) ≤ ƒ(s) or p > (random number between 0 and 1) then s ← s ⊕ m
 TotalMoves ← TotalMoves + 1
end

Fig. 2.11. WSAT version of MakeLocalMove

Chapter 2 Constraint Satisfaction Techniques 20

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestCost ← ∞

randomly select a violated constraint c
if p > (random number between 0 and 1) then while M’= ∅ do
begin

randomly select move m from domain of variables in c
if m improves c then M’ ← M’∪ m

end
 else for each vnext ∈ c do
 begin
 dcurr ← current domain value of vnext
 for each d ∈ Dnext | d ≠ dcurr do
 begin
 m ← {vnext, d}
 if ƒ(s ⊕ m) ≤ BestCost and m improves c then
 begin
 if ƒ(s ⊕ m) < BestCost then
 begin
 BestCost ← ƒ(s ⊕ m)
 M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 end
 return M’
end

Fig. 2.12. WSAT version of GenerateLocalMoves

2.3.2.2 WSAT

WSAT [Selman et al., 1994] is an extension of GSAT, again specifically developed to

solve satisfiability problems. The version of WSAT we consider here is available

from http://www.research.att.com/~kautz/walksat/ and differs from GSAT in restrict-

ing the move neighbourhood by randomly selecting a constraint in violation and then

only considering the domain values of those variables in the constraint that cause the

constraint to be satisfied (or improved). Then with probability p, a variable is selected

at random from the constraint and its value is flipped, otherwise the best cost move is

selected from the domain of the constraint. This allows the acceptance of cost increas-

ing moves based on a probability threshold and so is similar to simulated annealing.

However, in WSAT only variables involved in constraint violations are considered for

Chapter 2 Constraint Satisfaction Techniques 21

flipping, and the value of p is fixed during the search (i.e. is not sensitive to the size

of cost increase and does not decay over time). Additionally the WSAT cost function

selects moves on the basis of minimising the number of constraints a move will vio-

late, ignoring the constraints that become satisfied. A version of WSAT for solving

general CSPs is shown in figures 2.11 and 2.12 (more recently developed WSAT heu-

ristics are discussed in section 2.3.3.2).

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅

BestCost ← ∞ /* setting best cost to ∞ allows cost increasing moves */
 for each vi ∈ V do
 begin
 dcurr ← current domain value of vi
 for each d ∈ Di | d ≠ dcurr do
 begin
 m ← {vi, d}
 if TotalMoves - LastUse(m) ≤ MaxListLength and ƒ(s ⊕ m) ≤ BestCost then
 begin
 if ƒ(s ⊕ m) < BestCost then
 begin
 BestCost ← ƒ(s ⊕ m)
 M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 end
 return M’
end

Fig. 2.13. Tabu search version of GenerateLocalMoves

2.3.3 Memory Strategies

2.3.3.1 Tabu Search

The strategy of a tabu search is to keep a list of previously visited solutions to ensure

the search does not visit the same solution twice (i.e. the solutions on the list become

tabu or forbidden). When a local minimum is encountered, the search will escape by

selecting the best alternative solution to the minimum [Glover, 1989]. However, it is

usually impractical to store all visited solutions, as the list can become large and diffi-

Chapter 2 Constraint Satisfaction Techniques 22

cult to search. Instead a list is usually kept of the most recent moves made in the

search. By forbidding the undoing of an existing move, a search can still avoid revisit-

ing the same solution. Generally lists of forbidden moves have a fixed length, mean-

ing that after a certain number of iterations a move is dropped from the list and be-

comes allowable again (otherwise all possible moves can become tabu, and the search

will become stuck). However, a fixed-length list can lead to the possibility of cycling

(i.e. the same series of moves are repeated). Therefore the choice of list length is im-

portant - long enough to avoid cycles, but short enough to avoid running out of possi-

ble moves. Empirical studies have shown the optimum list length to differ between

problems but to remain fairly stable for the same problem type and size [Glover,

1989]. An example CSP tabu search algorithm is shown in figure 2.13. Here the tabu

list is implemented using the LastUse(m) function which returns the iteration in which

move m was last used, hence if TotalMoves - LastUse(m) > MaxListLength then m is

tabu (MakeLocalMove for tabu search follows figure 2.5, i.e. a move is randomly se-

lected from M’):

Within the literature, a number of more complex tabu search techniques have been

developed, a selection of which are introduced in the following subsections:

Aspiration Level Conditions: The inclusion of a move on a tabu list can mean that

many possible solutions become tabu, not just the solution created by the move. Later

in the search, the same move may be considered and rejected, even though (because

other variable values have changed) it could lead to a new and better solution. The

inclusion of an aspiration level is designed to remedy this situation and allow the

repetition of a tabu move if it results in a better than previously possible solution. This

can be implemented by comparing the cost of the solution produced by the tabu move

with the least cost solution found so far in the search - if the move results in a lower

cost then it is accepted [Hertz et al., 1995]. More complex aspiration level schemes

have been developed (e.g. see [Glover, 1989]), but the basic principle remains the

same: tabu moves can be accepted so long as they aspire to produce solutions that

improve upon a defined cost threshold.

Reactive Search: Battiti extended the idea of a fixed length tabu list, by proposing

the length of the tabu list should vary according to the current state of the search [Bat-

Chapter 2 Constraint Satisfaction Techniques 23

titi, 1995]. This reflects the idea that a search should concentrate in promising areas,

but also be able to diversify once an area no longer appears promising. Hertz et al.

[1995] proposed adjusting the cost function so that solutions with similar characteris-

tics are either penalised or rewarded depending on whether concentration or diversifi-

cation is desired. Both schemes represent a reactive search, that changes behaviour

through feedback about the current state of the search. Battiti's Reactive Tabu Search

(RTS) operates on the principle that the more a search attempts to re-visit the same

solution, the more diversification is required (repeatedly visiting the same solutions

indicates the search has found a local minima and is having trouble escaping). Con-

versely, the fewer repetitions there are, the more concentrated a search has to be in

order not to miss a promising alternative. In Battiti's method, diversification is con-

trolled by allowing the length of the tabu list to grow as more repetitions are encoun-

tered, and to shrink as the number of repetitions decrease.

Cancellation Sequences: Glover [1990] extended the idea of keeping a list of tabu

moves, with the idea of cancellation sequences. The insight behind this is that a solu-

tion is not necessarily revisited unless a move is made, and then reversed, without any

intervening moves. If there are intervening moves, then the whole sequence of moves

also have to be undone for the same solution to re-occur. A cancellation sequence (C-

Sequence) is recognised when a move is made that undoes a previous move. Instead

of making the move tabu, the previous move is cancelled, and all moves between the

cancelled move and the current move are added to a C-Sequence. Only if a C-

Sequence is empty does the current move become tabu.

2.3.3.2 HSAT, NOVELTY and RNOVELTY

HSAT was an early variation of GSAT proposed by Gent and Walsh [1993] that ex-

ploited the idea of memory for tie breaking. Here, if there is a choice of least cost do-

main values for a move, the value that was used longest ago is chosen. More recent

versions of WSAT [McAllester et al., 1997] also have incorporated the HSAT idea to

avoid revisiting previous solutions by keeping track of when a variable was last

‘flipped’. This idea is analogous to a tabu search but uses a simpler mechanism: when

choosing a move (flip) to fix a constraint (clause), the least cost move is selected un-

less this move uses the most recently instantiated domain value (in comparison to the

Chapter 2 Constraint Satisfaction Techniques 24

the set of domain values available to fix the constraint). In this case the second best

cost move may be accepted (depending on the heuristic). NOVELTY accepts the sec-

ond best move with probability p (0 ≤ p ≤ 1), whereas RNOVELTY additionally al-

lows n (the difference in cost between the best and second best moves) to influence

the selection (see figures 2.14 and 2.15). By considering n, RNOVELTY applies an-

other idea from simulated annealing, where the probability of acceptance is also con-

ditioned by the size of cost increase caused by a move.

procedure GenerateLocalMoves(s, TotalMoves)
begin
 if TotalMoves modulus RandomMovePeriod = 0 then s ← s ⊕ random move
 BestCost ← ∞, SecCost ← ∞
 randomly select a violated constraint c
 for each vnext ∈ c do
 begin
 dcurr ← current domain value of vnext
 for each d ∈ Dnext | d ≠ dcurr do
 begin
 m ← {v , d} next
 if (ƒ(s ⊕ m) = BestCost and LastUse(m) < LastUse(mbest)) or

ƒ(s ⊕ m) < BestCost then
 begin
 SecCost ← BestCost
 m ← m best
 BestCost ← ƒ(s ⊕ m)
 end
 else if (ƒ(s ⊕ m) = SecCost and LastUse(m) < LastUse(msec)) or

 ƒ(s ⊕ m) < SecCost then
 begin
 m ← m sec
 SecCost ← ƒ(s ⊕ m)
 end
 end
 end
 if mbest does not undo most recent change of all vnext ∈ c then msec ← ∅
 return mbest ∪ msec
end

Fig, 2.14. RNOVELTY version of GenerateLocalMoves

Chapter 2 Constraint Satisfaction Techniques 25

procedure MakeLocalMove(s, M’, TotalMoves)
begin
 select best move mbest from M’
 select second best move msec from M’
 if msec ≠ ∅ then
 begin
 n = ƒ(s ⊕ msec) - ƒ(s ⊕ mbest)
 r = random number between 0 and 1
 if (n ≤ MinDiff and r < 2p)
 or (n > MinDiff and r < 2p - 1) then mbest ← msec
 end
 s ← s ⊕ mbest, LastUse(mbest) ← TotalMoves, TotalMoves ← TotalMoves + 1
end

Fig. 2.15. RNOVELTY version of MakeLocalMove

2.3.4 Weighting Strategies

Constraint weighting schemes solve the problem of local minima by adding weights

to the cost of violated constraints. These weights permanently increase the cost of vio-

lating a constraint and so change the shape of the cost surface until the minimum can

be exceeded [Morris, 1993]. This is illustrated in the following example of an over

constrained graph colouring problem:

a
green

b
red

c
red

d
green

cab = 0

cac = 0 ccd = 0

cbd = 0

cbc = w a
green

b
green

c
red

d
green

 cab = 2w

cac = 0 ccd = 0

cbd = w

cbc = 0

a
green

b
green

c
red

d
red

cab = w

cac = 0 ccd = w

cbd = 0

cbc = 0

 (a) Local minimum, cost 2w (b) After Weighting, cost 3w (c) Final solution, cost w

Fig. 2.16. Using constraint weighting for graph colouring

In the graphs of figure 2.16 the nodes a, b, c and d represent the variables or areas to

be coloured, each having two domain values {red, green}, and the arcs cab, cac, cbc, cbd

and ccd represent the constraints a ≠ b, a ≠ c, b ≠ c, b ≠ d and c ≠ d respectively. Given

that each constraint violation adds a cost of w to the solution, the situation in figure

Chapter 2 Constraint Satisfaction Techniques 26

2.15a represents a local minimum of cost 2w. A constraint weighting algorithm could

then add a further weight w to each violated constraint increasing the cost of the solu-

tion to 4w. This alters the problem so that a choice of lower cost moves become avail-

able. Figure 2.15b shows the effect of changing the value of d to green, causing cbd to

be violated at a cost increase of w, but satisfying ccd at a cost decrease of 2w. From

figure 2.15b the best cost decreasing move is to change b to red, leading to the (opti-

mal) solution in figure 2.15c where only one constraint, cbc, is violated:

Figure 2.17 shows a CSP constraint weighting algorithm for solving CSPs and

PCSPs. Because constraint weighting makes moves in a weighted cost space, but is

looking for a solution in an unweighted cost space, two cost functions are required:

• ƒw(s) finds the weighted cost of s and is used for move selection.

• ƒ(s) finds the original (unweighted) cost of s and is used to test whether the desired

cost level has been reached in the local search framework of figure 2.3.

Otherwise the algorithm follows the basic hill climbing strategy of figures 2.4 and

2.5, with the addition of adding weights at each local minimum (M’ = ∅).

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestCost ← ƒw(s) - δ
 for each vi ∈ V do if vi in constraint violation then
 begin
 dcurr ← current domain value of vi
 for each d ∈ Di | d ≠ dcurr do
 begin
 m ← {vi, d}
 if ƒw(s ⊕ m) ≤ BestCost then
 begin
 if ƒw(s ⊕ m) < BestCost then
 begin
 BestCost ←ƒw(s ⊕ m)
 M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 end
 if M’ = ∅ then increase weights on all violated constraints
 return M’
end

Fig. 2.17. Constraint weighting version of GenerateLocalMoves

Chapter 2 Constraint Satisfaction Techniques 27

2.3.4.1 Developments in Constraint Weighting

Since the initial application of constraint weighting to solve satisfiability prob-

lems, [Frank, 1996; Frank, 1997] suggested several performance enhancing modi-

fications to the original algorithm, including updating weights after each move (in-

stead of at each minimum), using different functions to increase weights and al-

lowing weights to decay over the duration of the search. [Cha and Iwama, 1996]

produced significant performance improvements on CNF satisfiability problems

with their Adding New Clauses (ANC) heuristic, which instead of adding weights

at a local minimum, adds a new clause for each violated clause (the new clause be-

ing the resolvent of the violated clause and one of it’s neighbours). [Castell and

Cayrol, 1997] suggest an extended weighting algorithm called Mirror which, in

addition to weighting, has a scheme for ‘flipping’ variable values at each local

minimum. However, both ANC and Mirror are domain dependent techniques,

ANC relying on constraints being represented as clauses of disjunct literals and

Mirror requiring Boolean variables (Mirror also only appears useful for a small

class of satisfiability problems). More recently, Wah [Wah and Shang, 1997; Wu

and Wah, 1999] has done significant work in providing a mathematical framework

for constraint weighting based on the idea of discrete Lagrangian multipliers,

called Discrete Lagrangian Methods (DLM). Wah’s work has also introduced sev-

eral variations on the basic weighting scheme, including the rescaling of weights

during the search [Wah and Shang, 1997], the introduction of tabu lists and a spe-

cial weighting scheme that places extra weight on frequently violated constraints

[Wu and Wah, 1999].

In the broader domain of AI, constraint weighting heuristics have been applied to

neural networks [Davenport et al. 1994], genetic algorithms [Bowen and Dozier,

1996], timetabling problems [Cha et al., 1997; Thornton and Sattar, 1999] and staff

scheduling [Thornton and Sattar, 1997]. Specialised constraint weighting algorithms

have also been proposed for over-constrained problems with hard (mandatory) and

soft (desirable) constraints (e.g. [Cha et al., 1997; Voudouris and Tsang, 1996; Thorn-

ton and Sattar, 1998b]). In particular, Guided Local Search (GLS) [Voudouris and

Tsang, 1996] broadens the idea of weighting constraints to the idea of penalising ‘fea-

tures’ in the problem and introduces a utility function to guide the weighting of indi-

vidual features (GLS is considered further in Chapters 4, 5 and 6).

Chapter 2 Constraint Satisfaction Techniques 28

2.3.4.2 Constraint Weighting and Tabu Search

Alternative constraint weighting schemes have been independently developed to en-

hance the performance of tabu search strategies in over-constrained environments

[Gendreau et al., 1994]. These schemes apply weights to different groups of con-

straints, increasing the weight if a group is consistently in violation and decreasing

the weight if the group is consistently satisfied. Generally the weights cycle between

upper and lower bounds and assist the search to maintain the differing importance of

constraints while encouraging the search to diversify (i.e. not to get fixed on solutions

that satisfy the more important constraints). The issue of solving over-constrained

problems with differing constraint priorities is explored further in Chapter 6.

Minima Avoiding

Strategy
Strategy Method Example Techniques

None Accept the best local move that
does not increase the solution
cost (hill-climbing)

Min-Conflicts Heuristic
[Minton et al., 1992]; Simplex
Method [Dantzig, 1963]

Restart Terminate unsuccessful search
at stopping condition and restart
from a new initial solution

GSAT [Selman et al., 1992],
Averaging-In [Selman and
Kautz, 1993], EFLOP
[Yugami et al., 1994]

Stochastic Accept non-improving moves
according to a given probability
distribution

Simulated Annealing [Abram-
son, 1992], WSAT [Selman et
al., 1994]

Memory Use recorded characteristics of
previously visited solutions to
avoid revisiting these solutions

Tabu Search [Glover, 1989],
HSAT [Gent and Walsh,
1993] NOVELTY,
RNOVELTY [McAllester et
al., 1997]

Weighting Place weights on unsatisfied
constraints to bias the search to
satisfy these constraints

Breakout [Morris, 1993],
Clause Weighting [Selman
and Kautz, 1993], DLM [Wah
and Shang, 1997], GLS [Vou-
douris and Tsang, 1996]

Table 2.1. A local search taxonomy

Chapter 2 Constraint Satisfaction Techniques 29

2.4 Summary

The chapter firstly introduced the basic principles of constraint satisfaction and con-

structive search. Then a taxonomy of local search techniques was developed, based on

the methods used to escape or avoid local minima. Using a common local search

framework and an explanation of the neighbourhood searching heuristic, four funda-

mental local search strategies were introduced and then specified by redefining the

functions called from the general local search algorithm of figure 2.3. The resulting

local search taxonomy is summarised in table 2.1. This taxonomy shows that a large

range of local search techniques can be simply explained as the application and com-

bination of four basic ideas: restart when the search looks unpromising, add some ran-

domness into the selection of moves, avoid visiting previous solutions and add

weights to constraints that are repeatedly violated.

Chapter 3

Modelling Realistic Problems

In this chapter we examine the issues involved in transforming complex realistic

problems into a local search CSP framework. To do this we look at two example real

world scheduling problems: university timetabling and nurse rostering (problems that

will later be used in the empirical studies). We are specifically interested in develop-

ing a general local search approach that can efficiently solve complex problems with-

out the need of domain dependent heuristics and move operators. This leads us to pro-

pose an array-based domain representation and array-based resource constraints that

internally represent and count domain value usage.

3.1 Specific and General Solutions

It seems to be an axiom of computer science that a general purpose algorithm will

solve more problems less efficiently than a problem specific algorithm that employs

the best heuristics and data structures available for a given situation [Minton, 1996].

However, the time and effort involved in developing problem specific solutions

means a general approach is often more practical. In particular, declarative techniques

such as Constraint Logic Programming (CLP) offer the promise of simply describing

a problem and obtaining an answer without specifying an algorithm, heuristic or data

structure.

A major issue in constraint satisfaction is exactly how a problem is represented. By

defining the domain of a queen in the n-queens problem as the whole board we obtain

a much harder problem than defining the domain as a row (see Chapter 1). As prob-

lems become more complex and realistic the number of possible representations also

Chapter 3 Modelling Realistic Problems 31

grows, and the issue of efficiency becomes more important. While a large range of

problems can be modelled as discrete domain CSPs and solved using simple binary or

non-binary arithmetic and tree constraints, in many circumstances this can result in

complex models that are time consuming to solve. This has been recognised by the

CLP community and has resulted in the development of more efficient specialised

constraints such as alldifferent and cumulative [Marriott and Stuckey,

1998]. By developing domains and constraints that exploit specific situations, a gen-

eral CSP approach can also be made more efficient. This chapter explores several ex-

tensions to the standard CSP formulation that proved useful in solving two specific

scheduling problems. While retaining the basic structure of a CSP algorithm (i.e. vari-

ables instantiated with domain values and checked with constraints), we examine bi-

nary vs. non-binary constraint representations and show how array-based domain val-

ues can make problems easier to solve. In addition we examine complex constraints

and domain values that can encode more efficient move operators. This leads us to

propose specialised local search alldifferent, block and gap constraints.

Firstly, we introduce the problems that are the basis of our further discussion:

3.2 Problem Descriptions

The two problems considered in this chapter are based on actual organisations: the

timetabling problem models the situation at the Gold Coast Campus of Griffith Uni-

versity and the nurse rostering problem is taken from two wards at the Gold Coast

Hospital, Southport, Queensland. The constraints defined below either match or ex-

ceed the current standards of the two organisations and are designed to produce realis-

tic working solutions rather than approximate or idealised answers:

University Timetabling: A university timetabling problem consists of a set T of

teaching staff, {t1, t2, ..., ttmax}, a set R of rooms, {r1, r2, ..., rrmax}, a set G of student

groups, {g1, g2, ..., ggmax} and a set C of classes, {c1, c2, ..., ccmax}. The objective of the

problem is to assign to each class ck a staff member ti, a room rj, a subset of student

groups gC ⊆ G and a time interval startk .. endk such that the following constraints are

satisfied (∀ck ∈ C):

Chapter 3 Modelling Realistic Problems 32

1. staff member ti is qualified to teach class ck

2. staff member ti is available to teach during interval startk .. endk

3. all groups in gC are enrolled in class ck

4. room rj can hold class ck

5. the duration of class ck = endk - startk

6. non-elective enrollments for all groups gl ∈ G are satisfied

7. staff member ti does not teach more than maxweekti hours per week

8. no ti ∈ T, rj ∈ R or gl ∈ G is assigned two classes with overlapping time intervals

9. no staff member ti ∈ T teaches more than maxblockti hours of consecutive classes

10. no group gl ∈ G attends more than maxblockgl hours of consecutive classes

In addition the following ‘soft’ (desirable but not mandatory) constraints are defined:

1. interval startk .. endk is during a preferred teaching interval for staff member ti

2. same day gaps between classes for all groups gl ∈ G do not exceed maxgapgl

3. same day gaps between classes for all staff ti ∈ T do not exceed maxgapti

4. elective enrollments for all groups gl ∈ G are satisfied

5. lectures precede tutorials and laboratories in the same subject

Nurse Rostering: A nurse rostering problem consists of a set N of nursing staff, {n1,

n2, ..., nnmax} and a set W of work shifts, {w1, w2, ..., wwmax}. The objective of the prob-

lem is to assign to each shift wi a nurse nj and a time interval startk .. endk such that

the following constraints are satisfied:

1. for each time interval k, for each nurse skill level m, the number nurses nummk with

skill level m, assigned to interval k, is bounded by:

MinStaffNeededmk ≤ nummk ≤ MaxStaffAllowedmk

2. ∀wi ∈ W, if shift wi is assigned nurse nj in interval k, nj must be available for in-

terval k

3. ∀nj ∈ N, nj must work exactly TotalIntervalsnj time intervals per roster

4. no nurse nj ∈ N works more than TotalNightsnj night time intervals per roster

5. no nurse nj ∈ N works more than one time interval per day

6. no nurse nj ∈ N works more than MaxOnBlocknj days without a day off

7. no nurse nj ∈ N works less than MinOnBlocknj days without a day off

Chapter 3 Modelling Realistic Problems 33

8. no nurse nj ∈ N works more than NightBlocksnj consecutive night time intervals

9. no nurse nj ∈ N has a block of less than MinOffBlocknj consecutive days off

10. ∀nj ∈ N, nj must have at least NightGapnj hours break after a night shift

11. ∀nj ∈ N, nj must have at least DayGapnj hours break after a day shift

Again the following ‘soft’ constraints are defined:

1. days off should be preceded by a shift with interval k such that endk ≤ enddesired

2. days off should be followed by a shift with interval k such that startk ≥ startdesired

3. no nurse nj ∈ N works more than DesiredMaxBlocknj days without a day off

4. no nurse nj ∈ N works less than DesiredMinBlocknj days without a day off

5. ∀wi ∈ W, if wi is assigned nurse nj and interval k, k should not overlap a requested

time off interval for nurse nj

Given the problem definitions, we now look at issues arising from modelling these

problems as CSPs. Firstly we consider the transformation of non-binary constraints

into equivalent binary representations:

3.3 Binary vs. Non-Binary Representation

Much of the work in constraint satisfaction has concentrated on binary CSPs, i.e.

problems where constraints only involve two variables. Binary constraints can be

simply expressed and processed, allowing for concentration on the underlying prob-

lem rather than the details of representing specific constraints. Although it is well

known that any non-binary problem can be transformed into an equivalent binary rep-

resentation [Rossi et al., 1990], the question as to whether such transformations are

efficient or desirable has only recently been addressed [Bacchus and van Beek, 1998].

3.3.1 Transforming Non-Binary CSPs

From the original definition of a CSP (Section 2.1) we know that a constraint can be

represented as a relation where each tuple is a combination of variable values that sat-

isfy the constraint. In the dual graph method for transforming a non-binary CSP into

an equivalent binary representation [Rossi et al., 1990], each non-binary constraint

Chapter 3 Modelling Realistic Problems 34

becomes a variable whose domain is the original constraint relation. Binary equality

constraints then exist between all transformed variables that share variables from the

original problem. For example, consider two constraints C1 and C2, such that C1 con-

strains variables x1, x2 and x3 to be equal and C2 constrains variables x3, x4 and x5 to be

not equal, and where x1 ... x5 share the same domain {0,1,2}. In this case the non-

binary problem can be illustrated in figure 3.1a.

x1 x2 x3 x4 x5

C1 C2
x3 V2V1

 (a) (b)

Fig. 3.1. Non-binary and binary constraint graphs

The transformed problem, shown in Figure 3.1b, contains two variables V1 and V2

connected by a single binary constraint arc labelled with x3. V1 is the result of trans-

forming C1 and has the domain of all the {x1, x2, x3} tuples that satisfy C1 (i.e.

{0,0,0}, {1,1,1}, {2,2,2}). Similarly V2 is the result of transforming C2 and has

the domain of all the {x3, x4, x5} tuples that satisfy C2 (i.e. {0,1,2}, {0,2,1},

{1,0,2}, {1,2,0}, {2,0,1}, {2,1,0}). Then as V1 and V2 share variable x3 in

the original problem, a binary constraint is added ensuring the domain elements cor-

responding to x3 are equal (i.e. if V1 = {0,0,0} then the only values from C2 that sat-

isfy the x3 constraint are {0,1,2} and {0,2,1}).

Other transformation techniques exist, the best known being the hidden variable

method [Bacchus and van Beek, 1998]. A hidden variable transformation preserves

the original variables and their domains, but creates additional hidden variables to

represent each non-binary constraint. A hidden variable has domain values which

identify tuples in an original non-binary constraint. Hence if H1 is a hidden variable

representing C1, a value in H1 of 2 would correspond to tuple 2 in C1 (i.e. {1,1,1}).

H1 then has three binary constraints with x1, x2 and x3 respectively, ensuring the val-

ues of x1, x2 and x3 conform to the tuple indicated in H1 (in this case if H1 = 2 then H1

is satisfied only when x1 = 1, x2 = 1 and x3 = 1). Alternatively, the hidden variable

domain can directly represent the satisfying tuples of the original constraint, in the

same way as a dual variable [Stergiou and Walsh, 1999]. Here the only difference be-

Chapter 3 Modelling Realistic Problems 35

tween techniques is in the type of binary constraint used (either between dual vari-

ables, or between hidden variables and the corresponding original variables). The

consequences of non-binary transformations for large and realistic constraints are ex-

amined in the next section:

3.3.2 Domain Size Issues in Non-Binary Transformations

As a practical example of non-binary to binary transformation we consider the first

constraint in the rostering problem defining the number and level of staff required for

each shift (an instance of this constraint is that at least 7 and at most 9 registered

nurses are needed on the first Monday shift between 7.30 am and 3.30 pm). Let us

assume each possible time interval for each nurse is a variable with a {0,1} domain,

where 1 means the nurse works the interval and 0 means the nurse does not work the

interval. In this case, our example constraint would have all Monday 7.30 am to 3.30

pm time intervals of available registered nurses as variables. The constraint would

then be satisfied if the sum of all the variables is greater than 6 and less than 10. If we

assume there are 20 registered nurses available during the interval, the constraint can

be represented arithmetically as:

 6 < x1,1 + x1,2 + ... + x1,20 < 10

where xij is a {0,1} variable and where i identifies a time interval and j identifies a

nurse. The non-binary constraint graph for this constraint is also pictured in Figure

3.2:

RNInt1
Con

x1,17 x1,18 x1,19 x1,20x1,13 x1,14 x1,15 x1,16x1,9 x1,10 x1,11 x1,12x1,5 x1,6 x1,7 x1,8x1,1 x1,2 x1,3 x1,4

Fig. 3.2. A non-binary staff requirement constraint

If we perform a dual graph transformation on this non-binary constraint, we obtain a

variable v1 whose domain is all the possible ways between 7 to 9 of the 20 available

nurses can be assigned to interval 1. Hence, an example domain value with nurses 4,

6, 9, 13, 15, 16 and 17 working interval 1 would be:

Chapter 3 Modelling Realistic Problems 36

 0,0,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,0,0

and the total number of domain values for v1 is given by:

20!

7!13!

20!

8!12!

20!

9!11!
371,45+ + = 0

Given such a large domain, the space requirements for representing the problem be-

come significant. A standard binary CSP algorithm models a binary constraint be-

tween two variables x and y by creating a two-dimensional array such that each ele-

ment eij in the array is 1 if domain value i for x and domain value j for y satisfy the

constraint (otherwise eij = 0). Such extensional constraint representations are only

practical for small domain problems. A nurse roster can have over 200 non-binary

staff requirement constraints, translating into 200 variables each with several thou-

sand (or hundred thousand) domain values. These variables in turn are involved in

binary constraints with at least 35 other variables, each one of which can again have

several thousand domain values. Conservative estimates of the space required to rep-

resent the problem with 1 byte array elements soon reach 1,000 Gb.

The alternative is to represent the problem intensionally, i.e. by using run-time

functions to construct valid tuples for the original non-binary constraints and calculat-

ing whether these tuples satisfy the binary constraints in the transformed problem

(for example, ILOG® Solver uses hidden variable encoding to represent binary con-

straints). Clearly, the construction of a valid tuple involves evaluating the original

non-binary constraint and so is the same as solving the original non-binary problem.

In fact the transformation of a non-binary problem can be considered as an off-line

application of non-binary constraints in order to generate satisfying tuples and so

avoid the need of applying non-binary constraints during the solution process. From

this it follows that transformations of non-binary constraints that result in very large

domain sizes are unlikely to be useful.

3.3.3 Partial Non-Binary to Binary Transformation

The issue of problem representation has concentrated on transforming non-binary into

binary constraints, so that binary CSP techniques can be used [Rossi et al., 1990]. As

Bacchus and van Beek [1998] show, certain problems can be solved more efficiently

using binary constraints while others are better represented using non-binary con-

Chapter 3 Modelling Realistic Problems 37

straints. Our analysis in the previous section shows the transformation of non-binary

constraints can be impractical due to the size of the resulting domain. However we are

not required to represent constraints in a system as either all binary or all non-binary –

a mix of both constraint representations is also possible.

For instance, consider the remaining non-binary constraints in the nurse rostering

problem. We have already rejected the transformation of the staffing levels constraint

(constraint 1) due to the resulting domain size. Now we consider constraints 2 to 11

from section 3.1: each of these constraints partially defines the allowable combina-

tions of time intervals for each nurse. For example constraint 3 defines the total time

intervals each nurse can work in a roster. Using our previous notation, each interval

for each nurse is a {0,1} variable, so we can represent constraint 3 as the sum of all

time interval variables for each nurse. Assuming nurse 1 must work 8 intervals and

the roster is 42 intervals long, then the constraint for nurse 1 would be (where xij is a

variable and where i identifies a time interval and j = identifies a nurse):

x1,1 + x2,1 + ... + x42,1 = 8

with a domain size of:

42!

8!34!
118,030,185=

Again processing such a large domain would be impractical, but this domain can be

significantly reduced if we apply the remaining time interval constraints. For instance,

applying constraint 5 (no nurse should work more than one time interval per day) re-

duces the domain size for nurse 1 to 4,546,773 tuples. If we assume nurse 1 cannot

work less than 3 or more than 7 consecutive shifts, must have day off periods at least

2 days long and is scheduled to work at most 3 night shifts in a single block then the

domain size can be reduced to 32,960 tuples. If we simplify the problem by only al-

lowing two time intervals per day (day and night shift) the domain can be further re-

duced to 376 tuples. To clarify this, the table 3.1 shows an example domain value for

nurse 1 (the last row represents the actual variable values x1,1, x2,1, ..., x42,1):

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Day Day Day Off Off Off Day Day Night Night Night Off Off Off

100 100 100 000 000 000 100 100 001 001 001 000 000 000

Table 3.1. An example tupled nurse variable domain

Chapter 3 Modelling Realistic Problems 38

In effect, we have treated all the time interval constraints as one complex non-binary

constraint and transformed this constraint into a dual graph binary representation i.e.

we have generated a tupled variable whose domain is all possible values that satisfy

the original non-binary constraints. This is an example of a desirable non-binary to

binary transformation, because:

1. The new tupled domains are small enough to be represented extensionally.

2. The dual variable removes all the time interval constraints from the problem,

meaning both the number of consistency checks and the size of the search space

are reduced (as infeasible time interval combinations are no longer possible).

We now have a CSP that has been partially transformed from a non-binary to a binary

representation, with a set of non-binary staffing level constraints that constrain the

original {0,1} variables (from section 3.2.2), and a set of tupled variables represent-

ing the allowable permutations of time intervals for each nurse. The question now is

how to combine these representations into a single problem.

3.3.4 Defining Constraints for Tupled Domains

The combination of binary and non-binary representations for the rostering problem

can be achieved if we define non-binary constraints between the original {0,1} vari-

ables that are now represented within the tuples of the time interval variables. For ex-

ample, consider a rostering problem consisting of 3 nurses and 4 time intervals with

each nurse working 3 time intervals in the roster. Figure 3.3 shows each of the 4 pos-

sible time interval combinations for a nurse in such a problem (e.g. domain value 1

represents a nurse working time intervals 2, 3 and 4):

time interval
1 2 3 4

0111

1011

1101

110 11

2

3

4

domain value

Fig. 3.3. Nurse domain values for simplified problem

Chapter 3 Modelling Realistic Problems 39

If we consider each nurse as a variable vi (i = 1..3) with a tupled domain of time in-

tervals, then a problem solution will contain a domain value for each nurse:

 total nurses on duty 3 1 3 2

v1

v2

v3

nurse variable

time interval
1 2 3 4

0111

1101

1101

Fig. 3.4. Example solution for simplified problem

Now consider the staffing constraint that at least 2 nurses are required on duty in each

time interval (in figure 3.4, this constraint is violated in time interval 2). A standard

mathematical representation of this problem (e.g. [Warner, 1976]) would use aij vec-

tors to represent each tupled domain value, where i is the domain value index and j is

the variable (nurse) index (i.e. a11 = (0,1,1,1)) and a b vector to represent the

minimum staffing requirements for each time interval (i.e. b = (2,2,2,2)). The

problem is then solved using {0,1} decision variables, Xij, such that Xij = 1 if vari-

able j gets domain value i (otherwise Xij = 0), as shown in the following constraint

definitions:

ijj
j X=
=∑ 1

3
= 1, = 1..4i

ijj
j

i
i

ijXa b=
=

=
= ∑∑ ≥1

3
1
4

These constraints can then be transformed into a set of linear inequalities that can be

solved using standard arithmetic constraints. In this case the Xij constraints for each

nurse would be (indicating a nurse can only work one schedule):
X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1

and the aijXij constraints for each time interval would be (indicating there must be at

least two nurses on duty in each interval):

X21 + X31 + X41 + X22 + X32 + X42 + X23 + X33 + X43 ≥ 2
X11 + X31 + X41 + X12 + X32 + X42 + X13 + X33 + X43 ≥ 2
X11 + X21 + X41 + X12 + X22 + X42 + X13 + X23 + X43 ≥ 2
X11 + X21 + X31 + X12 + X22 + X32 + X13 + X23 + X33 ≥ 2

Chapter 3 Modelling Realistic Problems 40

In effect, we have transformed the tupled problem back to an atomic valued problem

and added back constraints to ensure each nurse only works one schedule (∑Xij = 1).

If we solve this problem using a standard CSP algorithm (i.e. by instantiating the Xij

variables and testing the constraints) we will incur the extra cost of evaluating the

∑Xij = 1 constraints. This cost is not incurred for a tupled domain because a variable

(nurse) can only have one domain value (schedule) at a time. Therefore a tupled rep-

resentation should perform fewer consistency checks as it will avoid trying multiple

schedule allocations. However, to evaluate the non-binary staffing constraints using

tupled variables, we need to specify the atomic value in the tuple to which a constraint

applies. A general way to approach this problem is to treat the tupled domain as an

array of ordered atomic values from which a single element can be referenced using

an index. In this way, the time interval constraints for the tupled representation can be

expressed in the following inequalities:

v1[1] + v2[1] + v3[1] ≥ 2

v1[2] + v2[2] + v3[2] ≥ 2

v1[3] + v2[3] + v3[3] ≥ 2

If we compare this system of constraints to the previous atomic valued equivalent we

can see the problem is captured more simply and so can be solved more efficiently.

The cost of the tupled representation is that a constraint check must look up an array

value rather than reading a domain value directly. While this is not a significant cost,

it does require the development of constraints that can operate on array domains.

3.3.5 Lessons for General Problems

Although the preceding discussion has concentrated on a particular problem, the un-

derlying concepts can be applied more generally. The process of transforming a non-

binary to a binary constraint (using the dual graph method) is equivalent to solving the

non-binary CSP represented by the original constraint. The domain of the new dual

variable then becomes the set of all solution tuples for the original non-binary CSP.

Many complex problems can be more efficiently solved by recognising and solving

smaller sub-problems and then using these answers to construct a complete answer to

the original problem [Freuder and Hubbe, 1995]. By definition, a CSP solution is a

tuple of domain values (one for each variable), and consequently a complete enumera-

Chapter 3 Modelling Realistic Problems 41

tion of solutions to a sub-CSP can be represented in the main problem as a dual vari-

able with an array-based domain and solved using array processing constraints.

Our previous discussion has shown a tupled domain can be replaced with atomic

values using vectors and decision variables. However this always requires additional

constraints to ensure only one value from each original tuple is instantiated. An array-

based representation avoids the cost of these constraints and is therefore likely (de-

pending on the problem structure) to produce a smaller representation that can be

solved more efficiently.

3.4 Representing Complex Move Operators

A ‘move’ for a CSP algorithm is achieved either by instantiating an uninstantiated

variable with a valid domain value or by replacing the existing domain value with an-

other value from the same domain (Chapter 2). Such moves are simple to implement

and keep the CSP approach general. However, for more complex problems, more so-

phisticated move operators can significantly improve the efficiency of a search (for

example the 2-OPT and 3-OPT moves in the Travelling Salesman Problem [Glover,

1989]). To implement a complex move within a general CSP framework we can either

define a move operator function and embed it within the CSP algorithm, or we can

define the problem variables and domains in such a way that changing a domain value

effects the desired move. In looking at the timetabling problem we consider the sec-

ond approach, firstly because an efficient move can be easily defined and secondly

because this maintains the generality of our implementation.

3.4.1 Making a Move in a Timetabling Problem

When solving or fixing a timetabling problem, a human timetabler usually thinks in

terms of moving a class from one room/time allocation to another. If rooms, staff and

student groups are all represented as variables, then moving a class involves defining

a fairly complex move operator that simultaneously changes the domain values of

several variables. Alternative moves that change the values of single variables would

be less efficient, as they would explore many more infeasible solutions and several

such moves would be required to replace the one more complex move. Given we want

Chapter 3 Modelling Realistic Problems 42

to avoid the use of problem specific move operators, the alternative is to look at dif-

ferent ways of modelling the problem:

Decision Variables. One possibility is to again think in terms of zero-one Xijk deci-

sion variables. In this case, Xijk = 1 could represent class i occurring in room j at time

k and Xijk = 0 would represent class i not occurring in room j at time k. Constraints to

avoid clashes for student groups can then be defined using a set of n × m vectors

(where n = number of groups and m = number of time slots) each with pnm elements

(made up of all the Xijk variables for group n at time m) such that the sum of elements

for each vector equals one. If we substitute classes for time slots, the model can then

be used to constrain each group to only attend a particular class once (staff member

teaching constraints can be defined in the same way). Using decision variables allows

a complex move (in the original problem) to be effected with a single change of do-

main. However, several disadvantages still remain:

1. Changing the domain value of a decision variable does not move a class from one

room/time slot to another, instead it turns a room/time slot for a class on or off.

Moving a class would involve turning the current class room/time allocation off

and turning another class room/time allocation on i.e. we still require a special

move operator.

2. If we leave the problem in it’s current form, then additional constraints are re-

quired to ensure a class is only scheduled once and that staff members and student

groups only attend a class once - this situation would not arise if we were able to

represent a class as a single variable.

3. Finally, the zero-one representation will provide poorer guidance to a local search

than a representation that moves a class directly from one room/time slot to an-

other. This is because a direct move method evaluates two zero-one moves simul-

taneously (i.e. it looks at the cost of turning off one slot and turning on another).

Chapter 3 Modelling Realistic Problems 43

3.4.2 Defining Array-based Local Search Constraints

One answer to the above problems is to represent each class as a variable and make

the variable domain all available room/time allocations. In this model, changing a

domain value has the desired effect of moving a class from one room/time slot to an-

other. However, the more complex domain (compared to the zero-one representation)

means we also require more complex constraints. Before describing these constraints

we first look at the operation of a constraint within a local search algorithm:

Constraint evaluation in a local search. Local search CSP algorithms operate by

evaluating the cost change caused by exchanging domain values in the neighbourhood

of the current solution (see Chapter 2). Some methods permanently store the cost of

using a domain value against each value (e.g. WSAT) and update the relevant costs

each time a move is effected. Other techniques calculate the domain value cost ‘on-

the-fly’, i.e. each time the domain value is tested in a solution. The WSAT approach

is efficient for problems where a move has relatively small side-effects on the costs of

other domain values, whereas ‘on-the-fly’ testing has a more general application (i.e.

it is better when there are large side-effects and performs adequately when there are

small side-effects). In either case we need to find the cost change incurred by ex-

changing the current domain value of a variable with a new value. This can be calcu-

lated by summing the cost change for each constraint in which the variable is in-

volved. The general solver developed in the thesis uses an Object-Oriented approach

to represent a CSP. Hence we have classes to represent domains, variables and con-

straints and a constraint engine that implements various local search algorithms.

Within this framework, a variable has a data member that points to the list of con-

straints in which it is involved and a constraint has a method that calculates the cost of

exchanging domain values. Using this structure, figure 3.5 shows the constraint en-

gine method that calculates the cost change incurred by exchanging domain value Old

with domain value New in variable V:

Chapter 3 Modelling Realistic Problems 44

method getCostChange(V, old, new)
begin
 costChange ← 0;
 C ← V.getConstraintList()
 for each constraint Cj ∈ C do
 costChange ← costChange + Cj.testChange(old, new)
 return costChange
end

Fig. 3.5. All purpose getCostChange method

Local search alldifferent constraints: In the timetabling problem, if we model

each class as a variable with a domain of available room/time slots, then the variable

will be involved in one large alldifferent constraint [Marriott and Stuckey,

1998] which has all other class variables as members (this constraint enforces that no

two classes can occur in the same room at the same time). Each class time value will

also be involved in an alldifferent constraint for each staff member and student

group assigned to the class (ensuring staff members and students do not attend the

two classes at the same time). This means a 2-tuple domain value is required of the

form (x, y) where x identifies the room/time and y identifies the time of a class. Then,

given a set of classes c1 ... ck, the constraint that no two classes share the same

room/time can be defined as: alldifferent(c1[1], c2[1], ..., ck[1]). Put-

ting this in the local search structure requires an alldifferent constraint that can

efficiently find the cost change of exchanging two domain values. One approach is to

count the number of times the old and new domain values are used by all the variables

in the constraint, as in figure 3.6:

method testChange(old, new)
begin
 oldCount ← 0, newCount ← 0, change ← 0
 V ← getVariableList()
 for each variable Vi ∈ V do
 if Vi[index] = old then oldCount ← oldCount + 1
 else if Vi[index] = new then newCount ← newCount + 1
 if oldCount > 1 then change ← -1
 if newCount > 0 then change ← change + 1
 return change
end

Fig. 3.6. testChange method for alldifferent constraint

Chapter 3 Modelling Realistic Problems 45

However, testChange in figure 3.6 requires up to 2n + 1 comparisons to evaluate a

move (where n = number of variables in constraint), and is significantly less efficient

than processing an equivalent zero-one representation. This is because a zero-one

problem uses arithmetic sum constraints which can be evaluated in a single compari-

son (by storing and updating the current sum for each constraint). For example, the

zero-one constraint to test whether switching a class c on at time t causes a clash for

staff member s requires the simple evaluation:

if sum(Xijk variables) taught by s where (i = c and k = t) > 0 then costChange ← 1

else costChange ← 0

To compete with a zero-one model our alldifferent constraint must find the

cost of moving a class in two comparisons (one for removing the old value and one

for adding the new value). This requires a direct look-up of the number of times a par-

ticular value is instantiated in the current solution and again is best solved using ar-

rays. For example, consider the earlier problem of moving a class taught by staff

member s to time t. An array-based alldifferent constraint for staff member s

would have an array with elements for each time slot in the timetable, such that each

element i holds a count of the number of classes taught by s in timeslot i. Given such

an array (called domainArray) and a procedure to update the array each time a move

is accepted, the revised code for alldifferent is shown in Figure 3.7:

method testChange(old, new)
begin
 change ← 0
 if domainArray[old] > 1 then change ← -1
 if domainArray[new] > 0 then change ← change + 1
 return change
end

Fig. 3.7. Array version of testChange method for alldifferent

Local search block and gap constraints An array-based representation has addi-

tional advantages for expressing the more complex constraints in the timetabling

problem, i.e. those defining the maximum consecutive block of time slots of classes

for staff and students (constraints 9 and 10), and those defining the maximum time

slot gap between classes (‘soft’ constraints 2 and 3). While the block constraints can

Chapter 3 Modelling Realistic Problems 46

be partly expressed as a series of arithmetic sum constraints in the zero-one model

(see Appendix), the gap constraints require a specialised non-linear representation

(because we have to distinguish between a gap at the beginning of a day and a gap

between classes).

Consider the situation for staff member s, who is constrained to work no more than

maxBlock consecutive time slots. Again we can represent all time slots in the timeta-

ble as an array and set each array element i equal to the number of classes s is teach-

ing in time slot i (time slot values are ordered in time, meaning, for all i, time slot i

precedes time slot i + 1). Now, if we move a class taught by s from time j to time k,

we can test the local effect of decrementing the count in array element j and incre-

menting the count in array element k. For instance, consider the situation in figure 3.8,

where maxBlock = 4:

Timeslot 1 2 3 4 5 6 7 8

Count 0 1 1 1 1 1 0 0

Fig. 3.8. A violated block constraint

Here the count from slot 2 to 6 means a block of 5 consecutive time slots is sched-

uled and consequently the constraint is in violation. Figure 3.9 shows the result of

moving a class from slot 4 to 7:

Timeslot 1 2 3 4 5 6 7 8

Count 0 1 1 0 1 1 1 0

Fig. 3.9. A satisfied block constraint

The block constraint is evaluated by testing for the presence of a block in the neigh-

bourhood of the time slot that is changed. Moving a class from slot 4 causes the slot 4

count to be decremented to zero, and hence reduces the size of an existing block. The

size of this block can be found by counting how many consecutive timeslots either

side of slot 4 have a count value greater than zero (see getBlockLength in figure

3.11). Similarly, moving a class to slot 7 causes the slot 7 count to be incremented to

one, hence creating or extending an existing block, the size of which can also be

calculated by examining the adjacent timeslots. The full logic of the block

constraint is shown in figures 3.10 and 3.11:

Chapter 3 Modelling Realistic Problems 47

method testChange(old, new)
begin
 change ← 0, domainArray[old] ← domainArray[old] - 1
 if domainArray[old] = 0 then
 begin
 getBlockLength(forward, back, old)
 if forward + back + 1 > maxBlock then
 change ← change - (forward + back + 1 - maxBlock)
 if forward > maxBlock then change ← change + (forward- maxBlock)
 if back > maxBlock then change ← change + (back - maxBlock)
 end
 if domainArray[new] = 0 then
 begin
 getBlockLength(forward, back, new)
 if forward + back + 1 > maxBlock then
 change ← change + (forward + back + 1 - maxBlock)
 if forward > maxBlock then change ←change - (forward - maxBlock)
 if back > maxBlock then change ← change - (back - maxBlock)
 end
 domainArray[old] ← domainArray[old] + 1
 return change
end

Fig. 3.10. Array version of testChange method for block constraint

method getBlockLength(forward, back, start)
begin
 forward ← 0, back ← 0
 while domainArray[start + forward + 1] > 0 do forward ← forward + 1
 while domainArray[start - back - 1] > 0 do back ← back + 1
end

Fig. 3.11. getBlockLength method for block constraint

The block constraint requires (old block length + new block length + 8) compari-

sons and is competitive with the (2 × (maxBlock + 1)) comparisons needed for a zero-

one representation (see Appendix).

A gap constraint poses a more complex problem, as a gap exists between classes,

hence gaps at the beginning or end of the day should be ignored. For example, Figure

3.12 shows an array (as with the block constraint) representing a one day schedule

for a staff member. Here only the empty slots from 4 to 10 represent an inter-class

gap:

Chapter 3 Modelling Realistic Problems 48

TSlot 1 2 3 4 5 6 7 8 9 10 11 12

Count 0 0 1 0 0 0 0 0 0 1 0 0

Fig. 3.12. An unsatisfied gap constraint

Assuming the maximum gap between classes (maxGap) = 5, the situation in figure

3.12 is in violation. Figure 3.13 shows the result of moving a class for the staff mem-

ber from time slot 3 to time slot 8 (hence satisfying the constraint):

TSlot 1 2 3 4 5 6 7 8 9 10 11 12

Count 0 0 0 0 0 0 0 1 0 1 0 0

Fig. 3.13. A satisfied gap constraint

Given classes can start at 8 am and finish at 9 pm we cannot decide if a new day has

started simply by measuring the gap size (i.e. an 11 hour gap may represent a gap be-

tween classes or an overnight break). Therefore the gap constraint needs to know

how to divide time slots into days or periods - this is achieved with the period func-

tion used in getGapLength (see figure 3.15). Given the forward and back gap lengths,

the constraint operates in a similar way to the block constraint, except the special

gap length of -1 indicates a gap either begins or ends a period. The full gap con-

straint logic is shown in figures 3.14 and 3.15:

method getGapLength(forward, back, start)
begin
 forward ← 0, back ← 0
 while forward ≥ 0 and domainArray[start + forward + 1] = 0 do
 if period(start + forward + 1) ≠ period(start) then forward ← -1
 else forward ← forward + 1
 while back ≥ 0 and domainArray[start - back - 1] = 0 do
 if period(start - back - 1) ≠ period(start) then back ← -1
 else back ← back + 1
end

Fig. 3.14. getGapLength method for gap constraint

Chapter 3 Modelling Realistic Problems 49

method testChange(old, new)
begin
 change ← 0, domainArray[old] ← domainArray[old] - 1
 if domainArray[old] = 0 then
 begin
 getGapLength(forward, back, old)
 if forward ≥ 0 and back ≥ 0 and forward + back + 1 > maxGap then
 change ← change + (forward + back + 1 - maxGap)
 if forward > maxGap then change ← change - (forward - maxGap)
 if back > maxGap then change ← change - (back - maxGap)
 end
 if domainArray[new] = 0 then
 begin
 getGapLength(forward, back, old)
 if forward ≥ 0 and back ≥ 0 and forward + back + 1 > maxGap then
 change ← change - (forward + back + 1 - maxGap)
 if forward > maxGap then change ← change + (forward - maxGap)
 if back > maxGap then change ← change + (back - maxGap)
 end
 domainArray[old] ← domainArray[old] + 1
 return change
end

Fig. 3.15. Array version of testChange method for gap constraint

3.5 Summary

The array-based alldifferent, block and gap constraints were developed spe-

cifically to solve a timetabling problem. However, the constraint that a resource can-

not be used more than once in a particular time period (represented in the alldif-

ferent constraint) is common to many other resource allocation and scheduling

problems, e.g. the allocation of ships to berth time slots, teams to match time slots and

jobs to machine time slots. In addition, the block and gap constraints are applicable

to any personnel scheduling problems were the number of consecutive hours, shifts or

days worked or not worked is important.

In summary, the chapter shows that complex real-world problems can be modelled

and solved efficiently as CSPs without the need of domain specific move operators or

special heuristics. We present an array-based domain representation for the rostering

problem, that allows sum constraints to efficiently operate between array elements of

different variables. To represent the timetabling problem, we developed a tupled do-

Chapter 3 Modelling Realistic Problems 50

main for each class that implements a simple class swapping move. To efficiently

process these variables we further developed array-based constraints that directly

store the level of resource usage for each domain value (in this case time and

room/time utilisation).

Chapter 4

Constraint Weighting

In this chapter we examine the behaviour and application of constraint weighting on a

range of different problems and in comparison to several other local search tech-

niques. Our aim is to characterise the problem domains for which constraint weight-

ing is most applicable and to evaluate three competing constraint weighting strategies.

We extend previous results from satisfiability testing by applying satisfiability tech-

niques to the broader domain of constraint satisfaction and test for differences in per-

formance using randomly generated problems and problems based on the realistic

situations described in Chapter 3.

4.1 Background and Motivations

The intensive research into satisfiability testing during the 1990s has produced a

set of powerful new local search heuristics. As introduced in Chapter 2, starting

from GSAT [Selman et al., 1992], the latest WSAT techniques have raised the

ceiling on solving hard 3-SAT problems from several hundred to several thousand

variables [Selman et al., 1997]. At the same time, a new class of clause or con-

straint weighting algorithms have been developed [Morris, 1993; Selman and

Kautz, 1993]. These algorithms have proved highly competitive with WSAT (at

least on smaller and more difficult problems [Cha and Iwama, 1995]), and have

stimulated the successful application of related techniques in several other do-

mains [Thornton and Sattar, 1998a; Bowen and Dozier, 1996; Davenport et al.,

1994; Voudouris and Tsang, 1996]. However, since the initial development of con-

straint weighting, WSAT has evolved new and more powerful heuristics (such as

Chapter 4 Constraint Weighting 52

NOVELTY and RNOVELTY [McAllester et al., 1997]). The improved perform-

ance of these heuristics (on hard random 3-SAT problems) brings the usefulness of

constraint weighting into question. Consequently, this chapter re-examines con-

straint weighting in the light of the latest WSAT developments. In order to place

our results in a broader context, we also report the performance of tabu and sto-

chastic search algorithms for each of our problem domains. In the process we ex-

amine the following questions:

• Are there particular problem domains for which constraint weighting is pre-

ferred?

• Does constraint weighting do better on more realistic, structured problems?

• Is there one weighting scheme that is superior on all the domains considered?

The main aim of the chapter is to provide practical guidance as to the relevance

and applicability of constraint weighting to the broader domain of constraint satis-

faction. Research has already looked at applying WSAT to integer optimization

problems [Walser et al., 1998], and applying constraint weighting to over-

constrained problems [Thornton and Sattar, 1998b; Voudouris and Tsang, 1996].

However, outside the satisfiability domain, there has been little direct comparison

between WSAT and other techniques. The research addresses this by applying

WSAT, tabu search and constraint weighting to three CSP formulations: university

timetabling, nurse rostering (see Chapter 3) and random binary constraint satisfac-

tion. In addition we explore the behavior of constraint weighting on several classes

of satisfiability problem.

The next sections introduce the algorithms used in the study, and then the results

for each problem domain are presented. From an analysis of these results we draw

general conclusions about the applicability and typical behaviour of constraint

weighting.

Chapter 4 Constraint Weighting 53

4.2 Constraint Weighting Algorithms

As introduced in Chapter 2, constraint weighting schemes solve the problem of lo-

cal minima by adding weights to the cost of violated constraints. These weights

permanently increase the cost of violating a constraint, changing the shape of the

cost surface so that minima can be avoided or exceeded [Morris, 1993].

Several weighting schemes have been proposed. In Morris’s [1993] formula-

tion, constraint weights are initialised to one and violated constraint weights are

incremented by one each time a local minimum is encountered. Frank [Frank,

1996; Frank, 1997] adjusts weights after each move and experiments with different

initial weights and weight increment functions and with allowing weights to decay

over time. Further work has applied constraint weighting to over-constrained prob-

lems using dynamic weight adjustment [Thornton and Sattar, 1998b] and utility

functions [Voudouris and Tsang, 1996].

In this chapter we are interested in when and what to weight. Therefore we keep

to Morris’s original incrementing scheme and explore variations of three of the

published weighting strategies:

1. MINWGT: Incrementing weights at each local minimum (based on [Morris, 1993]).

2. MOVEWGT: Incrementing weights when no local cost improving move exists

(based on [Frank, 1996] although Frank increments after all moves).

3. UTILWGT: Incrementing weights at each local minimum according to a utility

function (based on [Voudouris and Tsang, 1996]).

Voudouris and Tsang’s [1996] utility function is part of a more sophisticated algo-

rithm (Guided Local Search or GLS) that handles constraints with different abso-

lute violation costs. They penalise features in a local minimum that have the high-

est utility according to the following function:

utilityi(s*) = Ii(s*) × (ci / (1 + pi))

where s* is the current solution, i identifies a feature, ci is the cost of feature i, pi is

the penalty (or weight) currently applied to feature i and Ii(s*) is a function that

returns one if feature i is exhibited in solution s* (zero otherwise). In the subse-

quent problems we assume each feature is a constraint with a cost of one. In this

Chapter 4 Constraint Weighting 54

case the utility function will only select for weighting the violated constraint(s) in

a local minimum that have the smallest current weight. Our aim is to test the utility

function as a weighting strategy in isolation from the GLS algorithm, to see if it is

useful in a more general weighting approach.

The three weighting strategies are tested within the weighting algorithm intro-

duced in Chapter 2 (figure 2.17) with the addition of two new weighting points

(shown in figure 4.1).

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestCost ← ƒw(s) - δ
 for each vi ∈ V do if vi in constraint violation then
 begin
 dcurr ← current domain value of vi
 CurrentCost ← BestCost

for each d ∈ Di | d ≠ dcurr do
 begin
 m ← {vi, d}
 if ƒw(s ⊕ m) ≤ BestCost then
 begin
 if ƒw(s ⊕ m) < BestCost then
 begin
 BestCost ←ƒw(s ⊕ m)
 M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 if MOVEWGT and CurrentCost = BestCost then

increase weights on all violated constraints containing vi
 end
 if MINWGT and M’ = ∅ then

increase weights on all violated constraints
 if UTILWGT and M’ = ∅ then

increase weights on all violated constraints with the smallest weight
 return M’
end

Fig. 4.1. Three strategies for constraint weighting

Chapter 4 Constraint Weighting 55

4.3 WSAT and Tabu Search Algorithms

The other algorithms considered in this chapter are based on the WSAT and tabu

search techniques introduced in Chapter 2. As previously discussed, WSAT avoids

local minima by allowing cost increasing moves. The algorithm proceeds by se-

lecting violated constraints and then choosing a move which will improve or sat-

isfy the constraint, even when this results in an overall cost increase. The various

WSAT schemes differ according to the move selection heuristic employed, here

we consider three of the most recently developed variants:

1. BEST: BEST is a stochastic technique which, with probability p, will randomly

select a move that improves a violated constraint, otherwise it will pick the

least cost move that improves the constraint (see figure 2.12).

2. RNOVELTY: RNOVELTY [McAllester et al., 1997] considers both the overall

cost of a move and when the move was last used. If the best cost move is also

the most recently used move then according to a probability threshold and the

cost difference between the best and second best moves, the second best cost

move may be accepted (see figures 2.14 and 2.15).

3. NOVELTY: NOVELTY is a simplified version of RNOVELTY that does not

consider the cost difference between the best and second best available move.

Instead we consider choosing the second best move (according to a fixed prob-

ability p) whenever the best move is also the most recent of the available

moves for a constraint.

Finally we implement a constraint-based tabu search (TABU) that keeps a list of

the n most recently changed domain values and ensures that any value on the list is

not reused unless it leads to a new lowest cost solution (i.e. this is the aspiration

criteria explained in Chapter 2). The algorithm also follows the constraint-based

neighbourhood selection of WSAT, where GenerateLocalMove (see figure 2.12)

randomly selects a violated constraint and then tests all domain values of that con-

straint.

Chapter 4 Constraint Weighting 56

In the following satisfiability results, the BEST, RNOVELTY, NOVELTY and

TABU algorithms directly use the source code developed by Selman, Kautz and

McAllester, available at ftp://ftp.research.att.com/dist/ai. These algorithms were

then re-coded to solve the other CSP problems with one additional condition: the

local neighbourhood is restricted to only include moves that improve the originally

selected violated constraint. This condition mirrors the implicit condition in the

satisfiability algorithms (i.e. flipping any literal in a violated clause will cause the

clause to become true).

4.4 Experimental Results

4.4.1 Satisfiability Results

Research has already demonstrated the superiority of constraint weighting over

GSAT and earlier versions of WSAT for smaller randomly generated 3-SAT prob-

lems (up to 400 variables) and for single solution AIM generated problems [Cha

and Iwama, 1995]. To see if these results still hold, we updated Cha and Iwama’s

study by comparing our constraint weighting algorithms with McAllester et al.’s

[1997] implementation of RNOVELTY, NOVELTY, BEST and TABU. For our

problem set we randomly generated 100, 200 and 400 variable 3-SAT problems

with a clause/variable ratio of 4.3. This placed the problems in the accepted phase

transition area where the probability of satisfiability is approximately 0.5 [Mitchell

et al., 1992]. From this we selected the first ten satisfiable problems for each prob-

lem size (shown as r100, r200 and r400 in table 4.1). At each problem size we cal-

culated the average of 100 runs. We also used the 4 AIM generated single solution

100 variable problems available from the DIMACS benchmark set (see

ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf). Each problem was

solved 100 times and the averages reported. Table 4.1 shows the results for these

problems1 and confirms constraint weighting’s superiority for small AIM formula,

but indicates NOVELTY and RNOVELTY have better random 3-SAT perform-

ance. The results also show there is a growing difference between constraint

weighting and the other techniques as the problem size increases. For the r400

1All problems were solved on a Sun Creator 3D-2000

Chapter 4 Constraint Weighting 57

problems NOVELTY is still solving 100% of instances within 1,000,000 flips

where the success rate for the best weighting strategy (MOVEWGT) has dropped

to 61.5%. Also, for the larger problems, BEST starts to outperform the weighting

algorithms. Of the weighting strategies, each has similar performance, although

UTILWGT starts to do better and MOVEWGT worse as problem size increases.

(In table 4.1, Cut-off is the number of flips at which unsuccessful runs were termi-

nated, all Mean, Median, Max, Min and Std Dev statistics are for successful runs,

and success is the percentage of problems solved before the cut-off number of

flips).

Flips Time (seconds) Problem

Method

Mean Cut-off Mean Median Max Min Std Dev
Success

r100 NOVELTY 1331 250000 0.029 0.014 0.366 0.0009 0.045 100.0%
(100 vars RNOVELTY 1454 0.032 0.012 0.528 0.0009 0.055 100.0%
 432 cons) TABU 1820 0.035 0.017 0.564 0.0009 0.053 100.0%
 MOVEWGT 1988 0.034 0.011 2.057 0.0007 0.116 100.0%
 MINWGT 2068 0.038 0.012 2.169 0.0007 0.123 100.0%
 UTILWGT 2670 0.042 0.010 3.528 0.0006 0.171 99.7%
 BEST 4072 0.077 0.030 1.120 0.0013 0.121 100.0%
r200 RNOVELTY 25422 500000 0.552 0.125 10.164 0.0022 1.387 96.9%
(200 vars NOVELTY 29014 0.632 0.144 10.614 0.0029 1.379 98.9%
 864 cons) UTILWGT 43959 0.727 0.198 8.053 0.0029 1.295 89.3%

 MINWGT 45087 0.822 0.191 8.955 0.0024 1.545 89.9%
 BEST 46946 0.875 0.277 9.031 0.0047 1.441 98.7%
 MOVEWGT 50554 1.550 0.369 15.124 0.0037 2.739 85.6%
 TABU 57305 1.141 0.267 9.769 0.0053 1.909 91.5%
r400 RNOVELTY 85175 1000000 1.891 0.478 21.696 0.0112 3.294 94.7%
(400 vars NOVELTY 108497 2.374 0.671 21.507 0.0117 3.804 93.9%
 1728 cons) BEST 147933 2.759 1.094 18.178 0.0173 3.823 92.5%

 UTILWGT 160702 2.722 1.108 16.613 0.0126 3.634 60.7%
 MINWGT 164093 3.278 1.305 19.910 0.0136 4.357 57.9%
 MOVEWGT 175473 5.516 2.242 30.917 0.0307 7.042 61.5%
 TABU 264821 4.993 2.793 18.757 0.0578 5.119 44.6%
AIM 100 MOVEWGT 4410 250000 0.084 0.041 3.066 0.0021 0.228 100%
(100 vars MINWGT 4504 0.058 0.046 0.260 0.0034 0.043 100%
 200 cons) UTILWGT 10789 0.138 0.111 0.857 0.0044 0.115 100%
 RNOVELTY - - - - - - 0%
 NOVELTY - - - - - - 0%
 TABU - - - - - - 0%
 BEST - - - - - - 0%

Table 4.1. Results for small 3-SAT problems2

To investigate the gap between constraint weighting and WSAT for larger prob-

lems, we looked at the relative performance of the weighting algorithms with

2 In this and succeeding result tables techniques have been ordered according to overall performance based on

both percentage of problems solved and average number of moves (or flips)

Chapter 4 Constraint Weighting 58

RNOVELTY for the DIMACS benchmark large 3-SAT problems (800 to 6400

variables). The graph in figure 4.2 shows the best result obtained for each algo-

rithm (after 10 runs of 4 million flips on each problem) and confirms that con-

straint weighting performance starts to degrade as problem size increases. How-

ever, an interesting effect is that the relative performance of UTILWGT continues

to improve as the problem size grows until it significantly dominates the other

weighting methods.

0

10

20

30

40

50

60

70

80

90

100

r800 r1600 r3200 r6400

Problem Size

U
ns

at
is

fie
d

C
la

us
es

RNOVELTY
MINWGT
MOVEWGT
UTILWGT

Fig. 4.2. Result plot for large DIMACS 3-SAT problems

To test whether the random 3-SAT results are reproduced in more structured do-

mains we looked at a selection of conjunctive normal form (CNF) encodings of

realistic problems again taken from the DIMACS benchmark. These problems

comprised of two large graph colouring problems (g125.18 and g250.15), four in-

ductive inference problems (ii32: ii32b3 to ii32e3), four circuit fault diagnosis

problems (ssa: ssa7552-038 to ssa7552-160) and two parity function learning

problems (par: par8-2-c and par8-4-c).

Results averaging 100 runs on each problem in each category are given in table

4.2, and show constraint weighting performed relatively poorly on the hard graph

colouring problems but was superior to the WSAT techniques on the other DI-

MACS problems. No one weighting heuristic was superior in all cases: UTILWGT

was better on inductive inference and graph colouring (supporting the earlier find-

ing that the relative performance of UTILWGT improves as problem sizes be-

comes larger) and MOVEWGT was better on circuit diagnosis and parity learning.

Chapter 4 Constraint Weighting 59

However, given the results for the better methods on each problem class are very

similar (considering the standard deviations in table 4.2), only large differences

can be considered significant. Bearing this in mind, we cannot clearly distinguish

between weighting and novelty on the parity problems or between the better

weighting methods on the ssa and ii32 problems.

Flips Time (seconds) Problem

(max size)
Method

Mean Cut-off Mean Median Max Min Std Dev
Success

g125.18 NOVELTY 5915 1000000 1.639 1.494 5.086 0.3181 0.576 100.0%
g250.15 RNOVELTY 6880 1.741 1.598 5.397 0.2738 0.603 99.5%
graph UTILWGT 21921 3.741 2.847 47.883 0.6830 3.026 100.0%
colouring BEST 24566 3.609 3.052 27.352 0.5657 2.416 100.0%
(3750 vars TABU 26025 4.885 4.158 25.091 0.6830 3.002 100.0%
 233965 cons) MINWGT 34240 5.338 4.700 32.315 0.5790 3.045 100.0%
 MOVEWGT 218168 33.037 29.435 145.909 1.5723 16.627 88.0%
ssa (038-160) MOVEWGT 2885 250000 0.052 0.043 0.258 0.0211 0.027 100.0%
circuit MINWGT 3085 0.081 0.070 0.503 0.0340 0.045 100.0%
fault UTILWGT 11532 0.164 0.100 2.117 0.0218 0.199 99.8%
diagnosis NOVELTY 26987 0.672 0.313 6.150 0.0332 0.990 97.3%
(1501 vars RNOVELTY 29541 0.767 0.265 6.166 0.0385 1.259 94.0%
 3575 cons) BEST 29606 0.407 0.290 3.264 0.0461 0.373 99.8%
 TABU 58975 0.715 0.488 3.027 0.0517 0.638 87.0%
par (8-2c,8-4c) MOVEWGT 2542 250000 0.052 0.026 0.867 0.0011 0.088 100.0%
parity RNOVELTY 2760 0.049 0.038 0.242 0.0010 0.043 100.0%
function NOVELTY 2796 0.050 0.034 0.226 0.0008 0.047 100.0%
learning MINWGT 3098 0.046 0.019 0.623 0.0010 0.089 100.0%
(68 vars UTILWGT 7750 0.106 0.020 2.948 0.0006 0.330 99.0%
 270 cons) BEST 25183 0.381 0.201 3.297 0.0016 0.480 100.0%
 TABU 27635 0.417 0.153 3.245 0.0015 0.630 99.5%
ii32 (b3-e3) UTILWGT 916 250000 0.157 0.110 0.706 0.0325 0.128 100.0%
inductive MINWGT 1156 0.219 0.109 2.356 0.0306 0.312 100.0%
inference BEST 1185 0.122 0.076 1.412 0.0205 0.122 100.0%
(824 vars MOVEWGT 2739 0.483 0.150 2.971 0.0272 0.663 100.0%
 19478 cons) TABU 4324 0.391 0.132 2.980 0.0120 0.534 100.0%
 RNOVELTY 18477 2.911 2.445 23.606 0.0325 2.517 100.0%
 NOVELTY 51391 8.054 5.343 37.856 0.0302 8.670 47.0%

Table 4.2. Results for structured DIMACS problems

The overall satisfiability results show that the WSAT techniques tend to dominate

for very large problems and for randomly generated problems. Conversely, the

constraint weighting algorithms do better on the smaller realistic problems and on

the artificially generated AIM problems (the AIM problems were built up by start-

ing with a solution and then generating a problem that is only satisfied by that so-

lution [Asahiro et al., 1993]).

So far the results suggest that weighting performs less well in longer term

searches: in the domains where constraint weighting dominates, (e.g. AIM, parity

Chapter 4 Constraint Weighting 60

learning and circuit fault diagnosis) all solutions are found relatively quickly. In

the large, randomised and difficult problems (e.g. 3-SAT and graph colouring) the

constraint weighting heuristics do not seem to provide effective long term guid-

ance.

4.4.2 CSP Results

Satisfiability is a subset of the broader domain of constraint satisfaction. Although

CNF formulations can model multiple problem domains, they all share the same

constraint type (i.e. clauses of disjunct literals). For many CSPs there are more

natural and efficient ways of modelling constraints and variables. It is therefore

significant to explore the performance of our algorithms on a broader range of

problems. To this end, we looked at two CSP formulations of real-world problems

(university timetabling and nurse rostering), both involving complex non-binary

constraints and large non-standard variable domains (see Chapter 3). In addition

we ran tests on the well-studied problem of random binary constraint satisfaction

[Prosser, 1996].

For the purpose of the research, a university timetable problem generator was

developed. The generator can be tuned to produce a wide range of realistic prob-

lems, while also having a mode that creates relatively unstructured, randomised

problems. We were interested in building identical sized problem pairs, one re-

flecting the structure of a realistic timetabling problem (i.e. students doing de-

grees, following predictable lines of study, etc.) and the other using purely random

allocations. The motivation was to test if a realistic problem structure influences

the relative performance of the algorithms.

The nurse rostering experiments were run on a set of benchmark problems,

taken from a real hospital situation. Each schedule involves up to 30 nurses, over a

14 day period, with non-trivial constraints defining the actual conditions operating

in the hospital (for more details, see Chapter 3 and [Thornton 1995]).

Finally, two sets of hard random binary CSPs were generated, with 30 variables of

domain size 10, one with a constraint density of 80% and constraint tightness of 17%

and the other one with a constraint density of 40% and constraint tightness of 32%.

This placed the problems in the accepted phase transition area [Prosser, 1996] and

made them large enough to challenge the standard backtracking techniques.

Chapter 4 Constraint Weighting 61

Time (seconds) Problem

(size)
Method Mean

Iterations
Cut-off

Mean Median Max Min Std Dev
Success

tt-struct TABU 200174 106 iter 70.24 44.00 407.00 7.00 73.6523 82%
(500 cons) NOVELTY 228503 72.58 48.42 331.04 8.04 75.7549 84%
 RNOVELTY 213110 62.90 47.83 259.79 9.29 51.0738 78%
 MINWGT 239914 85.76 47.04 452.51 12.81 95.3296 74%
 MOVEWGT 250283 105.84 48.00 694.00 11.00 131.1727 70%
 UTILWGT 330810 130.52 74.00 481.00 14.00 125.2034 62%

 BEST 245826 67.91 48.00 289.00 16.00 78.6848 11%
tt-rand NOVELTY 106540 106 iter 28.95 23.36 109.71 12.55 18.5927 100%
(500 cons) RNOVELTY 117566 31.65 23.14 203.78 11.65 29.9896 97%
 MINWGT 111360 29.86 26.86 66.51 16.54 10.2034 95%

 MOVEWGT 112814 33.56 25.00 294.00 15.00 31.5215 97%
 UTILWGT 134489 38.47 31.00 180.00 18.00 22.3877 95%
 TABU 98555 32.35 18.00 352.00 9.00 50.7071 91%
 BEST 409520 105.03 100.00 240.00 21.00 59.8682 36%
roster MINWGT 125738 400 sec 54.10 24.01 395.51 2.24 75.2091 94%
(500 cons) UTILWGT 135010 59.01 23.00 332.00 1.00 82.1876 80%
 MOVEWGT 202222 86.75 42.00 393.00 3.00 89.2773 80%
 BEST 649476 72.07 38.00 362.00 3.00 86.4546 84%
 TABU 501647 43.97 7.00 397.00 1.00 97.4967 67%
 NOVELTY 545464 53.29 12.00 282.00 1.00 72.2156 73%
 RNOVELTY 874954 72.40 18.77 356.78 2.07 101.4248 76%
bin80 TABU 80175 2x106 iter 0.945 0.55 5.78 0.03 1.0874 100%
n=30 RNOVELTY 103155 1.239 0.67 5.42 0.01 1.3382 100%
m=10 BEST 211860 2.786 2.03 11.06 0.07 2.6493 100%
p1=80 MOVEWGT 264698 2.922 0.60 21.55 0.04 4.9709 89%
p2=17 MINWGT 243895 2.950 0.95 23.10 0.07 5.1019 79%
(200 cons) UTILWGT 242285 3.092 0.68 25.31 0.06 4.9914 75%
 NOVELTY 207728 2.391 1.07 16.76 0.02 3.4041 55%
 Backtrack 2.4x109 103 sec 408.600 n/a n/a n/a n/a 80%
bin40 TABU 90124 2x106 iter 0.609 0.37 3.34 0.01 0.6729 100%
n=30 RNOVELTY 198933 1.361 0.58 9.79 0.01 1.8367 100%
m=10 BEST 288590 2.255 1.20 15.00 0.04 2.8831 100%
p1=40 MOVEWGT 134950 0.848 0.15 9.67 0.05 1.7390 79%
p2=32 UTILWGT 209704 1.476 0.31 13.32 0.02 2.5588 57%
(200 cons) MINWGT 221497 1.465 0.31 11.11 0.04 2.3430 55%

 NOVELTY 200067 1.368 0.66 6.32 0.01 1.7171 48%
 Backtrack 33923486 103 sec 16.400 n/a n/a n/a n/a 100%

Table 4.3. Results for CSPs (tt-struct = structured timetabling, tt-rand = random timetabling,

roster = nurse rostering, bin = binary CSP)

Table 4.3 shows the results of running each class of problem against our existing

algorithms (all results are averages of 100 runs = 10 runs × 10 different problems).

We also report results for the binary CSPs using Van Beek’s backtracking algo-

rithm (see ftp://ftp.cs.ualberta.ca/pub/vanbeek/software). The table 4.3 results

show little distinction between the best techniques for both classes of timetable

problem, but favour TABU for the binary CSPs and MINWGT and UTILWGT for

Chapter 4 Constraint Weighting 62

the nurse rostering problems. Adding structure to the timetabling problems does

slow performance, but does not seem to favour a particular method.

4.4.3 Constraint Weight Curves

To further investigate the behaviour of constraint weighting, we looked at the way

constraint weights are built up during a search. To do this we developed constraint

weight curves which plot the constraint weights on the y-axis and order the con-

straints on the x-axis according to their ascending weight values. For example, if at

the solution point of a problem with 4 constraints a, b, c and d, constraint a has a

weight of 2, constraint b has a weight of 4, constraint c has a weight of 1 and con-

straint d has a weight of 10, after normalising these weights on a 0-100 scale, we

would produce the constraint weight graph shown in figure 4.3.

0
10
20
30
40
50
60
70
80
90

100

Con c Con a Con b Con d

Fig. 4.3. An example constraint weight curve

Constraint weight curves provide a picture of the distribution of weights across the

constraints. For example, Figure 4.4 shows the constraint weight curves for the

r100 to r400 3-SAT problems using the MOVEWGT heuristic (each curve is the

average of ten runs on ten different problems again normalised on axes from 0 to

100):

Chapter 4 Constraint Weighting 63

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Constraints

W
ei

gh
t

r100

r200

r400

Fig. 4.4. Constraint weight curves for various 3-SAT problems

We also created curves for the larger DIMACS 3-SAT problems (800 to 6400 vari-

ables) and found that after an initial predictable adjustment period, curves very

similar to those in figure 4.4 are produced. To see if this effect is consistent across

weighting strategies we plotted the averaged curves for each weighting strategy

solving a range of 200 to 6400 variable 3-SAT problems (shown in figure 4.5). In

combination, these curves show a remarkable consistency between methods and

across problem sizes and indicate that in the longer term, the weighting process

mainly serves to smooth the curves closer to an underlying distribution.

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Constraints

W
ei

gh
t

UTILWGT

MINWGT

MOVEWGT

Fig. 4.5. Constraint weight curves for different constraint weight methods

Chapter 4 Constraint Weighting 64

We therefore became interested in finding a function that expresses this underlying

distribution. After some trial and error, we found the best fit occurred with func-

tions of the form y = a – blogn(c – x). For example, figure 4.6 shows the match be-

tween one of the 3-SAT curves and y = 87.5 – 19logn(101 – x).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

X

Y

Y = 87.5 - 19ln(101 - X)
3-SAT Curve

Fig. 4.6. 3-SAT and log function comparison

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Constraints

W
ei

gh
t

3-SAT

par

AIM

Fig. 4.7. Non-uniform DIMACS constraint weight curves

To further explore this phenomenon we looked at the constraint weight curves for

the other CSP and DIMACS problems. For clarity, the AIM and parity learning

curves are shown in figure 4.7, the other DIMACS curves are shown in figure 4.8

and the CSP curves are shown in figure 4.9. In all graphs the r400 3-SAT curve is

given to enable comparison.

Chapter 4 Constraint Weighting 65

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Constraints

W
ei

gh
t

3-SAT
ssa
g125
ii32

Fig. 4.8. Uniform DIMACS constraint weight curves

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Constraints

W
ei

gh
t

3-SAT
binary
roster
tt_struct
tt_rand

Fig. 4.9. CSP constraint weight curves

The first feature observed from these curves is that there is a high degree of consis-

tency within problem domains but noticeable differences between domains. The three

figures also show we obtained three types of constraint weight curve for the problems

considered: the curves in figures 4.8 are similar (or uniform) in that after an initial

steeper start all the curves have a steadily increasing gradient. These curves differ

mainly in the steepness of their ascent and in the point at which the curve reaches the

constraint axis. The curves in figure 4.7 for the AIM and par problems show different

behaviour, in that each curve deviates from the steadily increasing gradients of the

other problems and exhibits some irregularity. For instance, the par problems show a

‘step’ between 22 and 28 on the constraint axis and the AIM problems show a similar

Chapter 4 Constraint Weighting 66

step between 80 and 95. Finally the roster and timetabling CSP curves in figure 4.9,

although showing a steadily increasing gradient do not show any weight accruing to

the first 40% of constraints (for the roster and tt_struct curves over 60% of con-

straints are unweighted). The binary CSP curve however shows noticeable similarity

to the original 3-SAT curve.

4.4.4 Constraint Trajectories

As the constraint weight curves for all problems were found to settle into fairly fixed

distributions, we became interested in testing whether the individual constraint

weights also converged to a fixed order. To do this we plotted the relative positions of

single constraints, within the total order of constraints, at different points during the

search. Figure 4.10 shows example distributions for 4 constraints (clauses) taken from

a 6400 variable 3-SAT problem. To understand this graph, consider constraint B (rep-

resented by the single continuous line): this line ends with a value of 94 on the Order

axis at 8 million iterations, meaning (on a scale of 0 to 100) constraint B was the 94th

most heavily weighted at 8 million iterations (note, as there are 27648 constraints in

the problem, 275 other constraints will also be categorised in 94th position). Although

the graph shows significant variation in the relative positions of each constraint, a

regular pattern of peaks and troughs does occur. This pattern can be understood as

representing a constraint changing from true to false and false to true. For example,

again considering B, this constraint starts in a high position (99) indicating it was ini-

tially false and so was weighted at the beginning of the search. After this B becomes

true and so does not accrue any more weight. As other constraints are being weighted

this causes the relative position of B to decline until it reaches such a point (at

800,000 iterations) that the search decides to make it false (in effect it has insufficient

weight to remain true). After this B remains false and so accrues weight at each local

minimum, causing the steep ascent from 800,000 to 900,000 iterations. At this point it

has accrued enough weight for the search to make it true again and so it starts a sec-

ond decline as other false constraints accrue more weight. Understood in this way, the

graph in figure 4.9 suggests that behind the peaks and troughs the overall importance

(or difficulty) of a constraint is best measured by taking the average of the peak val-

ues in the constraint’s trajectory. In effect, the height of a peak shows how hard it is

Chapter 4 Constraint Weighting 67

for a constraint to become true in the current local neighbourhood and successive

peaks measure different neighbourhoods. From this we can conclude that, without

knowing the trajectory of a constraint, the weight on a constraint at a particular point

in the search does not tell us much about the importance of that constraint (unless the

weight is relatively very high or very low).

 To confirm our results we looked at the trajectories of randomly selected con-

straints from each of our other problem domains. In most cases the same pattern of

sharp peaks with shallower declines was observed, with the exception of certain con-

straints that accrued very high or very little weight and maintained fairly straight tra-

jectories (this is examined in the next section). We also observed that in the domains

where problems are solved relatively quickly in relation to the number of constraints

(e.g. circuit diagnosis and inductive inference) the majority of constraints only

achieved a single peak before a solution was found (i.e. became true and never be-

came false again).

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8
Millions of Iterations (Flips)

O
rd

er

Constraint A
Constraint B
Constraint C
Constraint D

Fig. 4.10. Changing weight order for 4 selected constraints (DIMACS 6400 3-SAT problem)

AIM Trajectories. Of all the problem domains, the constraint weighting algo-

rithms most clearly dominated on the AIM problems. We therefore decided to in-

vestigate the AIM constraint trajectories in more detail to see if there are any gen-

eral features that cause the improved performance.

In contrast to the random problems, the AIM constraint weight curve exhibits a

bulge or a step starting around value 85 on the constraint axis (see Figure 4.7).

This suggests the constraint weight algorithm has found a group of especially dif-

Chapter 4 Constraint Weighting 68

ficult constraints, distinct from the rest of the problem, and is able to exploit this

difference to solve the problem more efficiently. This exploitation would take the

form of ensuring the constraints in this group are kept simultaneously true (by fre-

quently placing weights on them) and then exploring the search space by violating

constraints in the easier constraint group. In doing this, constraint weighting will

fix potential bottlenecks early in the search and quickly move to potential solution

areas (this is discussed further in section 4.5). In contrast, non-weighting methods

do not distinguish moves that violate difficult constraint groups and so are more

likely to move into constraint violations that are harder to repair.
Fig. 4.11. Weight trajectories of the 24 most heavily weighted AIM 1 constraints

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations (Flips)

O
rd

er

To test this hypothesis, we plotted the trajectories of the most heavily weighted

constraints in each of the AIM and r100 problems. These graphs showed a distinct

pattern emerging for the AIM problems with groups of constraints having parallel

trajectories. For example, figure 4.11 shows the trajectories for the first 24 most

heavily weighted constraints in the DIMACS aim-100-2-0-yes-1.cnf problem, fig-

ure 4.12 shows the trajectories for the next 10 most heavily weighted constraints

from the same problem and figure 4.13 shows the trajectories for the 24 most heav-

ily weighted constraints in an example r100 problem. The AIM graphs show a

definite split occurs between the 24th and 25th constraints: the first group quickly

converge to their relative positions and then maintain a high weight order for the

rest of the search, while the remaining constraints in figure 4.12 follow the more

typical ‘peak and trough’ behaviour shown by the r100 graph (figure 4.13) and de-

Chapter 4 Constraint Weighting 69

scribed in the previous section. The AIM constraint division can be explained by

the weighting algorithm continually adding weights to the first 24 constraints (be-

cause satisfying one constraint in this group quickly causes another to become

false) and supports the reasoning that the ‘bulge’ in the AIM constraint weight

curve is caused by groups of constraints that are difficult to satisfy.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations (Flips)

O
rd

er

Fig. 4.12. Weight trajectories of the second 10 most heavily weighted AIM 1 constraints

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations (Flips)

O
rd

er

Fig. 4.13. Weight trajectories of the first 17 most heavily weighted r100 constraints

Chapter 4 Constraint Weighting 70

4.4.5 Measuring Constancy

The AIM problem results suggest constraint weighting does better when it can rec-

ognise and simultaneously satisfy a group of difficult constraints. The parallel AIM

trajectories imply that if there is little change in the ordering of the heaviest con-

straints during a search then constraint weighting has recognised such a group of

difficult constraints and is therefore likely to have some advantage over non-

weighting methods. To test this hypothesis we developed a constancy measure Ct

that compares the membership of Hhalf (the set of the top 10% of heaviest weighted

constraints halfway through a search) with Hfull (the set of the top 10% of heaviest

weighted constraints at the end of the search). Specifically:

Ct = | Hhalf ∩ Hfull | ÷ | Hhalf |

i.e. we measure the proportion of constraints that are in the top 10% at the halfway

point that are still in the top 10% at the end of the search. Ct therefore varies from

zero to one, where zero represents no member of Hhalf being in Hfull and one repre-

sents all members of Hhalf being in Hfull. We developed Ct measures for each of our

problem domains based on an average of at least 100 runs with each run stopping

at the appropriate median iteration level reported in tables 4.1, 4.2 and 4.3. The

results are reported in figure 4.14, with the exception of the non-binary CSPs

(timetabling and rostering). These problems were not considered comparable on

the Ct measure because only relatively few constraints receive any weight during

the search (as shown in figure 4.9).

0.85

0.74

0.65

0.53
0.47 0.43

0.35
0.30 0.27 0.27

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ii32 ssa AIM r100 graph par r200 r400 bin80 bin40

A
ve

ra
ge

 C
t

Figure 4.14. Constancy measure Ct of the top 10% of the heaviest weighted constraints

Chapter 4 Constraint Weighting 71

The figure 4.14 plots correspond well with the performance results of sections 4.4.1

and 4.4.2 with the problems where weighting does well (ii32, ssa and AIM) also hav-

ing a high Ct measure. This bears out our reasoning that constraint weighting does

better when it can find and consistently satisfy a group of more difficult constraints.

4.4.6 Measuring Problem Structure

Small World Measures. So far in our discussion we have assumed a problem to be

structured if it is based on a realistic situation and random if it is constructed using

some form of random allocation of variables to constraints. Recent studies [Watts and

Strogatz, 1998; Walsh, 1999] have more formally classified problems as random or

structured based on the graph topology formed by representing problem variables as

nodes and problem constraints as edges [Gent et al. 1999]. The relative structure or

randomness of a graph is then measured using a clustering coefficient C and charac-

teristic path length L. C is defined as the average clustering of all nodes in a graph,

where the clustering of an individual node n is the proportion of edges existing be-

tween the k neighbours of n in relation to the total number of possible edges (k(k –

1)/2). L is then defined as the average of the shortest path lengths between all pairs of

nodes. Walsh [1999] further introduces a proximity ratio µ, defined as the ratio of C/L

normalised by Crand/Lrand where Crand and Lrand are the clustering coefficient and char-

acteristic path length for a random graph with the same number of nodes and edges as

the original graph. Using this ratio, Walsh defines a random graph as having a µ of

one, a structured graph as having a µ of less than one and a “small world” graph as

having a µ of greater than one. The assumption here is that a random graph will have

little clustering with relatively short paths between nodes and that a structured graph

(e.g. a lattice) will have high clustering with relatively long paths between nodes. The

small world graph sits in the middle with high clustering and short path lengths.

Walsh argues that many realistic problems exhibit some underlying structure but also

have an element of randomness and so would be expected to have a small world to-

pology.

Chapter 4 Constraint Weighting 72

Problem L Lrand C Crand µ
r100 1.7788 1.7740 0.2711 0.2297 1.1767
r200 1.9397 1.9232 0.1656 0.1218 1.3479
r400 2.1536 2.1341 0.1069 0.0626 1.6923
AIM 100 2.4226 2.3100 0.2565 0.0930 2.6301
graph colouring 2.4295 1.9963 0.3824 0.0362 8.6908
ssa 7.3983 5.5553 0.5883 0.1142 3.8689
par 2.7512 2.7279 0.3496 0.1023 3.3885
ii32 2.3625 1.8286 0.7862 0.1726 3.5261
tt_struct 1.5778 1.5808 0.7522 0.4191 1.7985
tt_rand 1.1596 1.1665 0.8493 0.8342 1.0241
roster 1.8907 1.9238 0.5044 0.1184 4.3344
bin80 (80,17) 1.2000 1.2000 0.8014 0.8000 1.0051
bin40 (40,32) 1.6043 1.6000 0.4077 0.4000 1.0165

Table 4.4. Averaged small world measures for each problem set

One of the concerns of the current study is to examine whether randomness or struc-

ture in a problem has any effect on the relative performance of the constraint weight-

ing algorithms. We therefore calculated C, L, Crand, Lrand and µ for various problems

used in the study (averages of these measures are shown for each problem class in ta-

ble 4.4). These results show that all problems either exhibit a random topology (bi-

nary CSPs, and random timetable problems) or some degree of small world topology.

Interestingly, the small random 3-SAT problems have a nearly random topology but

as problem size increases a stronger and stronger small world topology emerges (due

to greater than random clustering). In addition, adding realistic assumptions to the

timetabling problems does produce a small world structure (again due to greater than

random clustering). However, µ does not seem to be an obvious predictor of con-

straint weighting performance: those problems where weighting does well (ssa, ii32,

AIM and rostering) cannot be clearly distinguished from the other problems on the

basis of µ alone. There is some indication that weighting benefits from a greater than

random path length. For instance, the two problems where L most exceeds Lrand (ssa

and ii32) are also problems that weighting found easy to solve. However this is less

clear for the AIM results, where weighting does well but L and Lrand are similar, or for

graph colouring, where weighting does poorly but L significantly exceeds Lrand. The

clearest observation that can be made from the small world results is that constraint

weighting does less well on purely random problems. This suggests that weighting

relies on finding some structure within a problem to obtain leverage over the other

methods, but it does not appear that this structure can be clearly identified using the

Chapter 4 Constraint Weighting 73

small world measures. For this reason we decided to look more carefully at the differ-

ent ways variables are connected in the various problem domains.

Neighbour count measures. Given the small world measures categorised our prob-

lem set as either small world or random, we became interested in measuring the de-

gree of structure within our small world problems. The idea was to recognise structure

by looking for neighbour relationships that are distinctly different from a randomly

generated problem. To do this we looked at the distribution of neighbour relationships

between variables. Firstly, for each of our problems we generated at least 100 ran-

dom graphs with the same number of variables and edges as the corresponding origi-

nal problem. We then counted the number of neighbours for each node and measured

(for each graph) the maximum, minimum, mean, median, standard deviation, skew-

ness and kurtosis of the neighbour counts. We repeated the procedure for the graphs

representing the original problems and calculated the average measures for each prob-

lem class (these results are summarised in table 4.5).

Problem Max-Min

Range
Mean Median Std Dev Skewness Kurtosis

r100 28.20 22.74 24.10 5.5779 0.0896 -0.0408
random 20.74 23.40 4.1533 0.1221 -0.0041
r200 34.50 24.25 26.00 6.4354 0.2267 -0.0425
random 25.06 25.01 4.5957 0.1539 0.0062
r400 41.50 24.96 26.60 6.6239 0.1853 0.1048
random 28.47 25.89 4.8298 0.1788 0.0264
AIM 100 5.50 9.10 9.00 1.1787 -0.0702 0.1890
random 14.10 9.90 2.8507 0.2650 0.0410
graph colouring 36.00 108.95 108.50 6.4994 0.2655 -0.1555
random 71.90 109.75 10.1620 0.0917 -0.0120
ssa 135.00 3.79 5.00 4.9305 19.1745 472.8120
random 10.73 4.42 1.9063 0.6157 0.2432
par 17.00 5.10 4.00 3.4003 3.0011 8.1012
random 9.65 5.95 2.1370 0.3850 0.0439
ii32 82.00 64.57 94.25 30.1816 -0.0493 -1.5454
random 43.30 65.30 7.2918 0.0844 0.0039
tt_struct 234.70 138.85 180.80 57.8651 -0.5566 -0.7396
random 51.31 139.42 8.8190 0.0200 -0.0023
tt_rand 50.00 277.00 277.90 10.1426 -0.4297 -0.2305
random 31.48 277.37 5.4869 -0.1944 0.0340
roster 4.70 14.72 15.10 1.3417 -0.5542 -0.0875
random 20.27 15.48 3.6889 0.2277 0.0412
bin80 (80,17) 8.50 23.20 23.20 2.1540 -0.4061 -0.0567
random 8.49 23.50 2.1540 -0.2315 -0.0111
bin40 (40,32) 10.20 11.60 11.40 2.5733 0.2835 -0.1178
random 10.47 12.13 2.5720 0.0604 -0.0463

Table 4.5. Statistics for variable neighbour counts by problem domain

Chapter 4 Constraint Weighting 74

As expected, we found the random graphs to have a roughly normal distribution of

neighbour counts (the normal distribution having a zero skewness and kurtosis [Ta-

bachnick and Fidell, 1989]). However, of our problem set, only ssa and par showed a

distinctly non-normal distribution. A further examination of these problems showed

that the non-normality was caused by certain regular structures of clauses that created

a large set of variables in each problem with identical neighbour counts. We therefore

looked further at the max-min range and standard deviation of neighbour counts to

find more evidence of structure within the other problems. The graphs in figures 4.15

and 4.16 show the difference between original problem and random problem max-min

ranges and standard deviations as a proportion of the random values. Here a negative

value indicates the original value was less than the random value and vice versa.

ssa
tt_struct

ii32
par

tt_rand
r400
r200
r100

bin80
bin40

graph
AIM

roster

-2 0 2 4 6 8 10

(range - random range)/random range

12

Figure 4.15. Neighbour count ranges as a proportion of random neighbour counts

tt_struct
ii32

ssa
tt_rand

par
r200
r400
r100

bin80
bin40

graph
AIM

roster

-1 0 1 2 3 4 5

(std dev - random std dev)/random std dev

6

Figure 4.16. Neighbour count standard deviations as a proportion of random neighbour counts

Chapter 4 Constraint Weighting 75

As would be expected, the binary CSPs conform closely to their random counterparts,

but all other problems (including random 3-SAT) show some degree of deviation

from pure randomness. Given that the 3-SAT problems are randomly generated, we

assume that the small increase in range and standard deviation over random for these

problems is caused by the method of constraint representation (i.e. disjunct clauses of

3 literals). However the more significant positive deviations (for ssa, tt_struct and

ii32) do seem to indicate problem structure, as do the negative deviations for graph

colouring, AIM and roster. Taken together, the neighbour count measures reflect the

level of structure in each problem that we would expect from our original knowledge

of the problem domains. In addition they show the graph colouring, AIM and roster

problems to be related in having less neighbours than would be expected and ssa,

tt_struct and ii32 to be related in having more neighbours than expected. Comparing

the neighbour count results to the performance results for constraint weighting further

supports the finding that weighting does better on more structured problems (or con-

versely, problems where weighting does worse (3-SAT, graph colouring and binary

CSP) are also those problems with the closest to random neighbour distributions).

4.5 Analysis

4.5.1 Constraint Weighting Behaviour

When examining the behaviour of constraint weighting it is tempting to think in terms

of ‘difficult’ and ‘easy’ constraints. However, in isolation (assuming a problem is not

over-constrained) any constraint is easy to satisfy. It is the effect that satisfying a con-

straint has on the other constraints in a system that is significant. An easy constraint is

one whose satisfaction has little effect on the rest of the problem, whereas a difficult

constraint is one whose satisfaction tends to cause other constraints to become unsat-

isfied. However, difficult and easy constraints may together form a difficult constraint

group (i.e. one that is difficult to satisfy entirely). A standard local search will tend to

satisfy difficult individual constraints through cost guidance alone but is unable to

recognise situations where the same constraints are interacting with each other and

repeatedly becoming unsatisfied. In problems where such difficult sub-groups of con-

straints exist we would expect constraint weighting to do well, because it can recog-

nise and penalise frequently violated constraints. In this way the whole group of con-

Chapter 4 Constraint Weighting 76

nected constraints will accrue weight, increasing the chances that the group is satis-

fied and moving the search to areas where there is more freedom of movement.

The existence of difficult constraint groups is a common feature in realistic

problem solving. For instance, in nurse rostering areas of difficulty tend to focus

on particular days where there is a staff shortage and so only involve constraints

that are connected to that day. Similarly, timetabling problems generally have dif-

ficulty in scheduling classes in rooms where there is a high demand (e.g. computer

labs and larger lecture theatres). Both these problems have examples of resource

bottlenecks that only involve a limited set of constraints. Human problem solvers

intuitively understand bottlenecks and tend to fix them first and then go on to solve

the rest of the problem where allocations are less constrained. However, a local

search without guidance will tend to keep revisiting a bottleneck because it is un-

able to recognise all the constraints involved. It is in this situation that constraint

weighting is likely to outperform other non-weighting methods.

4.5.2 Identifying Hard Constraint Groups

Random problems. Our previous analysis of randomly generated problems has

shown that we expect an approximately normal distribution of connections via

constraints between variables. In such problems difficult constraint groups have to

be generated by chance alone and are not part of the underlying problem structure.

The 3-SAT and binary CSP constraint curves in figure 4.9 show that on these hard

random problems, weights become spread across nearly all the problem con-

straints. The curves are also very similar in shape, exhibiting (after an initially

steeper start) a constantly increasing gradient. In addition the random problems

exhibit the lowest Ct measures (see figure 4.14), meaning there is a greater fluctua-

tion in the membership of the heaviest weighted constraints. Combining this in-

formation suggests that although some constraints consistently accrue more weight

than others, there is no separation point where a weighting algorithm can recog-

nise that one constraint group is significantly different from another (reflected in

the smoothly increasing slope of the 3-SAT and binary CSP constraint weight

curves). This lack of distinction between constraint groups seems inherent in our

Chapter 4 Constraint Weighting 77

randomly generated problems and provides an explanation for constraint weight-

ing’s poorer performance on these domains.

Structured satisfiability problems. In contrast, for those problems where con-

straint weighting does well we have several indications that the weighting process

has identified some non-random structure which it is able to exploit. For instance,

the ssa and ii32 constraint curves both exhibit a sharp turn near the end of their

plots in figure 4.9. Taken in conjunction with the high Ct levels for these problems

(between 0.74 and 0.85 in figure 4.14), a separate hard constraint group is indi-

cated. Although the graph colouring plot also exhibits a sharp turn in figure 4.9,

the Ct level for these problems is lower (0.47) meaning there is more fluctuation in

membership in the peak group of constraints. Additionally the poorer performance

of constraint weighting on graph colouring may be explained by the size of the

problems (they were the largest in the set) rather than a lack of structure (both the

constraint curves and the neighbour counts indicate some structure is present).

In the other satisfiability problems where constraint weighting does well (AIM

and par) we again see the constraint curves deviate from the smoothly increasing

random plots (see figure 4.7). In this case the AIM curve has the stronger indica-

tion of a separate hard constraint group (in the bulge at the top of the plot) which is

further confirmed by the higher AIM Ct measure (0.65 versus 0.43 for par) and the

superior performance of AIM (for par weighting is roughly equivalent to RNOV-

ELTY). In fact, for the par problems, although there is an indication of structure

from the neighbour count skewness and kurtosis measures, the constraint curve

only shows a deviation from random in the early part of the plot (in figure 4.7),

and the Ct and other neighbourhood measures are similar to the random results.

Overall, this suggests that although there is some structure in the par problems this

has not resulted in the delineation of a separate hard constraint group.

Structured CSPs. The realistic CSPs (rostering and timetabling) present a differ-

ent interpretation problem. Here the weight becomes concentrated on a small

group of constraints, with zero weight accruing on the remainder (the roster and

timetable curves from figure 4.9 are reproduced in more detail in figure 4.17). For

this reason the Ct measures were not interesting as membership of the top 10% of

Chapter 4 Constraint Weighting 78

constraints was fairly constant. Zero weight constraints are unlikely to provide

leverage to a constraint weighting algorithm, because such constraints are hard to

violate (instead of hard to satisfy). This means both weighting and non-weighting

algorithms will tend to search in the space where these constraints are satisfied,

although it is still possible for weighting to obtain leverage by finding a harder

sub-group within the weighted constraints.

0
10
20
30
40
50
60
70
80
90

100

40 50 60 70 80 90 100

Constraints

W
ei

gh
t

roster

tt_struct

tt_rand

Fig. 4.17. Roster and timetabling constraint weight curves

Looking at the curves in figure 4.17, the weighted ranges for timetabling and ros-

tering have smoothly increasing gradients and show no obvious separation of con-

straint groups. However the rostering curve is noticeably wider for the top 8% of

constraints providing a possible alternative indication of a harder constraint group.

It is significant to note that a similar effect also appears in the ‘bulge’ of the AIM

curve of figure 4.7, where AIM initially follows the 3-SAT trajectory and then be-

comes wider at the end. The AIM and rostering problem structure measures are

also similar, with both having less than random neighbour count ranges and stan-

dard deviations (see figures 4.15 and 4.16). Given that, of all problem domains

considered, constraint weighting has the strongest performance advantage for the

rostering and AIM problems (see tables 4.1 and 4.3) the similarities in constraint

weight curves for these problems may be indicators of a hard constraint group.

However, there is little qualitative difference between the roster and timetable

curves and the tt_rand curve also diverges and is fatter than the tt_struct curve (at

least until the top 2-3% of constraints) without a corresponding improvement in

Chapter 4 Constraint Weighting 79

weighting performance. We therefore looked in more detail at the weight distribu-

tions for higher end of the timetabling and rostering constraint weight curves. This

is shown in figure 4.18 where we plot the top 5% most heavily weighted con-

straints for each problem.

20

30

40

50

60

70

80

90

100

95 96 97 98 99 100

Constraints

W
ei

gh
t

roster

tt_struct

tt_rand

Fig. 4.18. Top 5% of roster and timetabling constraint weight curves

The figure 4.18 curves accentuate the differences between the timetabling and ros-

ter curves and show the roster curve maintains a greater width throughout the up-

per part of the graph. Given that roster problems tend to have bottlenecks on cer-

tain shifts which only involve 3 or 4 constraints, the greater top end width of the

roster curve suggests weighting is penalising these relatively small hard constraint

groups. As previously discussed (in section 4.5.1) recognising and simultaneously

satisfying the constraints for a difficult shift would give weighting an advantage

over non-weighting methods that tend cycle through violations of the same con-

straints.

In contrast, the timetabling curves start to meet and have a steeper gradient at

the top end of the graph. This suggests weighting’s ability to distinguish hard con-

straint groups is roughly equivalent for the structured and random timetabling

problems and worse than for rostering (findings that correspond to the performance

results of table 4.3).

Overall, the roster and timetable analysis suggests that the behaviour of con-

straint weight curves for the final 5-10% of constraints can be equally as signifi-

Chapter 4 Constraint Weighting 80

cant as the overall shape of the curve, as it is here that relatively small hard con-

straint groups can be recognised. It is of further interest to note that the UTILWGT

curve in figure 4.5 is also slightly wider than the other weighting methods at the

top end of the graph. This suggests UTILWGT is better able to distinguish rela-

tively small hard constraint groups for the larger 3-SAT problems and provides an

additional explanation of UTILWGT’s superior performance on these problems.

Finally it should be noted that the curve width arguments do not apply to the 3-

SAT and binary CSP curves (in figure 4.9) because these curves, while being

wider at the top end, remain wider throughout their length because of an overall

lack of distinction between constraints.

4.5.3 Scaling Effects

Given that constraint weighting does better when it can find distinctions between

groups of constraints, we would expect the probability of randomly generating hard

constraint groups to decline (causing the performance of constraint weighting to also

decline) as 3-SAT problem size increases. This is because the number of constraints

in a random 3-SAT problem grows at the rate of 4.3n (where n is the number of vari-

ables) whereas the number of possible constraints grows at a faster rate of 2n(n-1)(n-

2). Hence the probability of obtaining a particular pattern of constraint connections

should decline as n increases. This reasoning is confirmed by looking at the mean

neighbour count statistics in table 4.5 and the average neighbour clustering statistics

(C) in table 4.4. Here the mean number of neighbours remains fairly static from n =

100 to n = 400 (moving from 22.74 to 24.96) but the average clustering starts to de-

cline significantly (from 27.1% to 10.7%). Also the Ct measure starts to decline as

random 3-SAT problem size increases (from 0.5275 to 0.3040 in figure 4.14) indicat-

ing there is less and less consistency in the top 10% of weighted constraints.

 In addition there may be a granularity effect in constraint weighting, i.e. as the

number of problem constraints increase, the effect of weighting a single constraint

necessarily decreases, and constraints start to become weighted and violated in larger

and larger groups. In this way the weight guidance becomes more general and less

detailed, which could then cause promising search areas to be ignored. This is further

backed up by the relative improvement in the performance of UTILWGT for longer

Chapter 4 Constraint Weighting 81

searches – as UTILWGT increments weights less frequently than the other methods

we would expect it’s performance to deteriorate more slowly.

4.5.4 Overall Behaviour

Performance. Overall, constraint weighting has done better on the AIM, par, ssa,

ii32 and nurse rostering problems. For each of these domains the constraint weight

curves have deviated in some way from the smoothly increasing curves of the ran-

dom 3-SAT and binary CSP problems (idealised in the log function of figure 4.6),

indicating weighting has gained an advantage through being able to distinguish

between constraint groups. Results for larger random 3-SAT and graph colouring

problems further indicate that weighting gives poorer guidance as problem sizes

grow. Of the non-weighting techniques, NOVELTY and RNOVELTY performed

best on the 3-SAT, graph colouring and timetabling problems, while TABU domi-

nated the binary CSP problems.

A comparison of weighting strategies does not favour one strategy in all situa-

tions. MOVEWGT performs better on the ssa, par, AIM and binary CSPs, where as

MINWGT does better on the realistic CSP problems (timetabling and nurse roster-

ing). In addition, UTILWGT works better on ii32 and longer term searches (larger

3-SAT and graph colouring problems), as it adds weight more slowly and so ap-

pears to maintain an effective search for longer. This result ties in with Frank’s

work [Frank, 1997] on causing weights to decay during the search, and it may

prove useful to investigate a combination of these strategies for larger problems.

In terms of updating previous results, [Cha and Iwama, 1996] considered the

performance of constraint weighting on AIM problems as evidence that weighting

is good for especially difficult satisfiability problems. We qualify that result by

showing that AIM problems have a recognisable structure that constraint weighting

can exploit.

Randomness and Structure. In general, our findings suggest constraint weighting

is better for structured problems (by structured we mean problems that exhibit no-

ticeably different neighbour count distributions in comparison to equivalent ran-

dom problems). The random problem generators used for the 3-SAT, binary CSP

Chapter 4 Constraint Weighting 82

and timetabling problems produce problems that are associated with smoothly in-

creasing constraint weight graphs. These curves show a corresponding evenly in-

creasing distribution of difficulty across constraints (from easy to hard), and so

reflect the kind of problem we would expect from a purely random generator (i.e.

continuous and without obvious structure). It is these problems that we would term

as unstructured and for which constraint weighting has done relatively poorly. Our

effort to add structure to the timetabling problem by making the domains and con-

straints more realistic did not produce any significant change in the performance of

the various algorithms or in the shape of the constraint weight curves. However

our neighbour count and small world measures did indicate we had increased the

structure of the timetabling problems over the equivalent random problems. This

shows that the addition of structure into a problem does not necessarily favour

constraint weighting. Similarly, although the par problems exhibited significant

structure according to our measures, constraint weighting performance for these

problems was only roughly equivalent to the other methods.

Matching Problems and Algorithms. Finally, the study shows the usefulness of

investigating constraint weight behaviour and problem structure when evaluating

whether constraint weighting is a useful technique for a new problem domain. The

presence of deviations from random neighbour count distributions, high Ct meas-

ures or unusual changes in the slope of a constraint weight curve, all indicate con-

straint weighting is at least a promising technique for a problem.

Noise Parameters. As a postscript, when considering constraint weighting as a

general CSP technique it should be noted that all the weighting algorithms used in

this study were parameter free (i.e. they did not have to be ‘tuned’ to solve a prob-

lem). In contrast (and as shown in Chapter 2), the WSAT techniques all have a

noise parameter, the setting of which can significantly affect the performance of

the algorithms. Similarly tabu search algorithms require the tuning of the tabu list

length. Although there are various schemes for setting 3-SAT noise parameters

(e.g. [McAllester et al. 1997; Mazure et al, 1997]), we found these methods were

not applicable across the full range of our problem domains. Therefore consider-

able effort was taken to get the best performance from the WSAT and TABU algo-

Chapter 4 Constraint Weighting 83

rithms – effort that was not required for constraint weighting (note, there are other

formulations of constraint weighting that do require parameters, for instance see

[Voudouris and Tsang, 1996]).

 More specifically, the WSAT noise parameters were set for this and subsequent

chapters by taking a problem from each class reported and solving that problem

over a range of parameter values for each algorithm. The noise value p was ini-

tially set at 50% and then varied in steps of ±10% (i.e. 50, 40, 60, 30, 80, etc). As

soon as a value for p was found which had superior performance to both (p + 10)%

and (p – 10)% then it was accepted as the parameter setting for that algorithm and

problem class. The number of runs on a particular problem for a particular value of

p was decided on a trial and error basis (depending on how clear the distinction

between different p levels appeared). The tabu list length was set in a similar way

but with a more variable granularity: the initial list length was set at 8 and then

varied by ±1, then for list lengths > 12 we started moving in steps of 2 (14, 16, 18

etc). To allow for reproduction of our results, table 4.6 shows the various parame-

ter settings used in the current chapter.

Problem RNOVELTY

p
NOVELTY

p
BEST

p
TABU

list length
tt-struct 20 40 50 20

tt-rand 20 40 50 20

roster 40 40 50 8

bin80 40 40 50 20

bin40 40 40 50 20

g125.18 30 50 10 10

g250.15 40 10 0 20

ssa038-160 95 90 80 20

par8-2-c 90 70 40 7

par8-4-c 90 70 50 7

ii32b3 70 50 50 10

ii32c3 70 50 50 8

ii32d3 70 50 50 18

ii32e3 70 50 50 9

r100 60 60 50 5

r200 60 60 50 7

r400 60 60 50 12

AIM 100 not solved not solved not solved not solved

Table 4.6. Parameter settings for WSAT and TABU algorithms

Chapter 4 Constraint Weighting 84

4.6 Summary

The main conclusions of the chapter are:

• Constraint weighting is best suited to problems where the weighting process is

able to distinguish harder sub-groups of constraints that have a distinctly dif-

ferent weight profile from the remaining problem constraints.

• Constraint weighting is more likely to find these harder sub-groups of con-

straints within structured problems.

To recognise when constraint weighting is more appropriate we have introduced

two approaches: firstly the analysis of constraint weighting behaviour using con-

straint weight curves and the trajectory constancy measure Ct and secondly the

analysis of problem structure using neighbour count distributions. Finally, we

found constraint weighting performance tends to degrade as problem size grows,

due to a combination of larger randomised problems having less structure and a

hypothesised weighting granularity effect.

Chapter 5

Improving Constraint Weighting

The empirical study in Chapter 4 shows constraint weighting to be competitive, and in

some cases superior, to the latest WSAT local search heuristics. Our next question is

whether constraint weighting can be improved as a general (domain independent)

search technique. To address this we have developed two approaches: firstly we add a

weighting capability into the WSAT and tabu search heuristics, and secondly we de-

velop a more sophisticated weighting algorithm that places weights between con-

straints that are simultaneously violated at a local minimum. This new arc weighting

algorithm builds on the insights of the previous chapter by recognising sub-groups of

constraints that tend to become violated at the same time.

5.1 Background and Motivations

While research has been conducted into different implementations of weighting

strategies [Frank 1996, 1997; Voudouris and Tsang 1996], the basic concept of

constraint weighting has mainly been extended for solving satisfiability problems

[Cha and Iwama 1996, Castell and Cayrol 1997]. [Frank, 1996; Frank, 1997] sug-

gested several performance enhancing modifications to the weighting algorithm,

including updating weights after each move, only changing variables that are in-

volved in a violation, using different functions to increase weights and allowing

weights to decay over the duration of the search (some of which we have tested in

Chapter 4). While Frank’s ideas have produced benefits in certain domains, his

work can be viewed as a fine tuning of constraint weighting rather than the devel-

opment of a new approach. [Voudouris and Tsang, 1996]’s work on Guided Local

Chapter 5 Improving Constraint Weighting 86

Search (GLS) can also be viewed as a generalisation of constraint weighting,

where constraints are ‘features’ and a utility function decides the weight penalties

that are then translated using a paramatised cost function.

Other research has looked at new formulations of the weighting strategy. For

example, [Cha and Iwama, 1996] produced significant performance improvements

with their Adding New Clauses (ANC) heuristic, which instead of adding weights

at a local minimum, adds a new clause for each violated clause (the new clause be-

ing the resolvent of the violated clause and one of it’s neighbours). Castell and

Cayrol [1997] also suggest an extended weighting algorithm called Mirror which,

in addition to weighting, has a scheme for ‘flipping’ variable values at each local

minimum. However, both ANC and Mirror are domain dependent techniques,

ANC relying on constraints being represented as clauses of disjunct literals and

Mirror requiring Boolean variables. In addition the Mirror algorithm only appears

useful for a small class of problem.

In this thesis we are interested in constraint weighting as a general (domain in-

dependent) technique for solving CSPs, and in this chapter we are interested in ex-

tending or evolving the basic constraint weighting algorithm. Therefore we have

not considered modifying the weighting algorithm for specific situations or the

fine tuning of the weighting process. Instead we have worked to introduce some-

thing new into the basic algorithm. Firstly, we look at mixing the WSAT, TABU

and weight techniques (introduced in Chapter 4) using weighted cost guidance

(explained in Section 5.2). Secondly, we add another level of weighting to con-

straint weighting, which operates when two or more constraints become simulta-

neously violated in a local minimum (explained in Section 5.3). Finally we present

and discuss the results of an empirical study designed to evaluate the new tech-

niques.

5.2 Hybrid Techniques

After the promising results of Chapter 4, our next step was to see if the joining of ex-

isting techniques would produce a better overall algorithm. To do this we modified

the RNOVELTY, NOVELTY, BEST and TABU algorithms introduced in Chapter 4

to use the weighted cost of a move when evaluating their respective neighbourhoods.

Chapter 5 Improving Constraint Weighting 87

By adapting the MOVEWGT heuristic, we cause each of the hybrid algorithms to in-

crement the weight of a constraint if the best move for that constraint cannot reduce

the overall weighted cost. As an example, figure 5.1 shows the new GenerateLocal-

Moves function for the weighting version of NOVELTY, known as NOVELTYWGT

(the same modifications were applied to other algorithms to produce

RNOVELTYWGT, BESTWGT and TABUWGT).

procedure GenerateLocalMoves(s, TotalMoves)
begin
 randomly select a violated constraint c

BestCost ← ∞, SecCost ← ∞
 for each vnext ∈ c do
 begin
 dcurr ← current domain value of vnext
 for each d ∈ Dnext | d ≠ dcurr do
 begin
 m ← {v , d} next
 if (ƒw(s ⊕ m) = BestCost and LastUse(m) < LastUse(mbest))
 or ƒw(s ⊕ m) < BestCost then
 begin
 SecCost ← BestCost
 m ← m best
 BestCost ← ƒ(s ⊕ m)
 end
 elseif (ƒw(s ⊕ m) = SecCost and LastUse(m) < LastUse(msec))
 or ƒw(s ⊕ m) < SecCost then
 begin
 m ← m sec
 SecCost ← ƒw(s ⊕ m)
 end
 end
 end
 if BestCost ≥ fw(s) then increase weight of c
 if mbest does not undo most recent change of all vnext ∈ c then msec ← ∅
 return mbest ∪ msec
end

Fig. 5.1. NOVELTYWGT version of GenerateLocalMoves

Figure 5.1 differs from the original NOVELTY algorithm only in respect of using a

weighted cost function (fw) to evaluate moves and in adding weight to a constraint

when no move can improve on the current overall weighted cost (i.e. if BestCost ≥

fw(s) then increase weight of c).

Chapter 5 Improving Constraint Weighting 88

5.3 Arc Weighting

The Arc Weighting algorithm extends the concept of a weighting algorithm to in-

clude weighting the connections or arcs that exist between constraints. A simple

weighting algorithm builds up weights on individual constraints each time a con-

straint is violated, either at a local minimum [Morris, 1993] or each time a new

variable value is chosen [Frank, 1996]. In either case the weights build up a picture

of how hard a constraint is to satisfy and so represent knowledge or learning about

the search space [Frank, 1997]. Within this framework, weighting the arcs between

violated constraints represents learning about which combinations of constraints

are harder to satisfy. For instance, consider the example in figure 5.2:

(0)

(1)

(2)

B(3)C(4)

A(3)

Fig. 5.2. A simple constraint weighting scenario

The nodes A, B and C are three constraints in a hypothetical CSP. The values asso-

ciated with A, B and C represent the current weights on each constraint. A con-

straint weight equals (1 + v) where v is the number of times the constraint has al-

ready been violated in a local minima and 1 is the initial weight of the constraint.

(ie A(3) means constraint A has already been violated in 2 earlier local minima,

plus 1 representing it’s initial weight). The values on the arcs between constraints

represent the number of times the two connected constraints have been simultane-

ously violated (i.e. the value 1 against arc BC represents that constraints B and C

were once both violated in the same local minimum). Now consider the choice be-

tween two moves m1 and m2, such that m1 violates constraints A and B and m2 vio-

lates constraints A and C. The cost of m1 for a simple weighting algorithm would

be the sum of the weights on A and B (3 + 3 = 6) and the cost of m2 would be the

sum of the weights on A and C (3 + 4 = 7). Therefore m1 would be preferred. How-

ever, an arc weighting algorithm would also consider that A and B have already

Chapter 5 Improving Constraint Weighting 89

been violated together in two previous minima, so the cost of m1 includes the arc

weight AB (3 + 3 + 2 = 8). The cost of m2 still equals 7 as the arc weight AC = 0.

Therefore, unlike simple weighting, arc weighting would prefer m2. In accepting

m2 the search will move to the previously unexplored area where both A and C are

violated, rather than re-exploring an AB violation. In this way, arc weighting can

produce a more diverse search that is less likely to revisit previous solutions.

Looked at more formally, arc weighting operates on a graph G = (V, E) where

each vertex vi represents a constraint (or clause) and each edge ek represents a con-

nection between two constraints vi and vj. The graph is complete in order to cap-

ture all information about violated constraint groups, hence an initial set of n con-

straints results in a set of n(n - 1)/2 edges. This means a CNF satisfiability problem

with 400 clauses will require 79,800 arcs! Typically an iterative repair algorithm

calculates the cost of all candidate variable values before making a move. Clearly

an arc weighting algorithm that checks all arcs for each variable value would be

impractical with a significant number of constraints. Therefore the main challenge

is to develop an efficient implementation of arc weighting without loss of arc in-

formation.

5.3.1 An Efficient Network Representation

The first step in representing the network graph is to recognise that the only rele-

vant arcs at a particular point in the search space are those existing between cur-

rently violated constraints that have also already been weighted. (in the proposed

algorithm, weighted constraints are those constraints that have been previously

violated in a local minimum solution). Therefore the initial requirement is to build

and maintain a list of currently violated, weighted constraints. This list (called

CList) is generally short, but changes according to the type of problem and the

state of the search. Next we need to represent and update the arc weights. This is

done by first constructing an n x n array (called ArcArray) where element i,j repre-

sents the number of times constraints i and j have been violated together. The

CList is then maintained in the following way: Each time a move is tested, all the

newly violated and newly satisfied weighted constraints are added to a temporary

list (TList). If the move appears promising (i.e. it satisfies at least one constraint

that was previously violated) then the constraints in TList are merged with CList:

Chapter 5 Improving Constraint Weighting 90

Firstly CList is copied (as the move may still be rejected) then each newly satisfied

constraint is removed from CList and the arc weights between the satisfied con-

straint and each remaining CList constraint are calculated from ArcArray and sub-

tracted from the total cost for the current move. Then each newly violated con-

straint is added to CList and all the arc weights between it and the existing CList

constraints are added to the total cost. According to the new total cost, the move is

either accepted or rejected. If rejected, CList reverts to its original state. This algo-

rithm is shown in figure 5.3 (which shows the arc weighting cost function fw-arc)

and figure 5.4 (which shows the arc weighting version of GenerateLocalMoves).

function fw-arc(CList, OldValue, NewValue)
begin
 Improve ← False, Counter ← 0, Diff ← 0, TList ← ∅
 for each constraint ci | OldValue ∈ domain of v and v constrained by ci do
 begin
 CChange ← weighted cost of changing OldValue to NewValue for v
 if CChange < 0 then Improve ← True
 if ci already weighted and CChange ≠ 0 then add ci to TList
 Diff ← Diff + CChange
 end
 if Improve = True and TList ≠ ∅ then for each constraint ci ∈ TList do
 begin
 if ci violated with OldValue then
 if ci satisfied with NewValue then
 begin
 delete ci from CList
 for each constraint cj ∈ CList do Diff ← Diff - ArcArray[i][j]
 end
 else
 begin
 for each constraint cj ∈ CList do Diff ← Diff + ArcArray[i][j]
 insert ci into CList
 end
 end
 return Diff
end

Fig. 5.3. Arc weight cost function

Chapter 5 Improving Constraint Weighting 91

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, Vviol = ∅
 for each vi ∈ V do if vi in constraint violation then Vviol ← Vviol + vi
 while M’= ∅ and Vviol ≠ ∅ do

begin
 select and delete vi from Vviol

 dcurr ← current domain value of vi
 CurrentCost ← BestCost

for each d ∈ Di | d ≠ dcurr and M’= ∅ do
 begin
 m ← {vi, d}

CopyList ← CList
 TestCost = fw-arc(CList, dcurr, d)
 if TestCost < BestCost

or (TestCost = BestCost and random number < p) then
 begin
 BestCost ←TestCost
 M’ ← M’∪ m
 end
 else CList ← CopyList
 end
 end
 if M’ = ∅ then

begin
 MoveSideways()

increase weights on all violated constraints and arcs
BestCost ← BestCost + cost change due to weight increase

end
return M’

end

Fig. 5.4. Arc weight version of GenerateLocalMoves

5.3.2 Modifications to the Weighting Algorithm

As there is no ‘standard’ weighting approach, certain choices were made in the

construction of the algorithm used in the study. [Frank, 1996] experimented with

only testing moves for variables that are currently involved in a constraint viola-

tion. This eliminates the possibility of many ‘sideways’ moves but significantly

reduces the number of values tested before each move. Tests with this approach

showed a significant speed up in search times for smaller problem instances, but a

tendency for the algorithm to become ‘lost’ in larger problems and fail to find a

solution. A compromise approach was developed that forces a move which

Chapter 5 Improving Constraint Weighting 92

changes the value of a variable not involved in a constraint violation each time a

local minimum is encountered (represented by MoveSideways() in figure 5.4). For

the test problems considered, this compromise performed better than either origi-

nal approach.

Observation of the behaviour of the arc weighting algorithm indicated that it

strongly favours solutions with only one constraint violation, and tends to cycle

between these solutions (because there is zero arc weight for a single constraint

violation). To remedy this behaviour an alternative weight allocation strategy was

developed. Previously each constraint starts with a weight of one and is incre-

mented by one each time it is violated at a local minimum. The new scheme dis-

tributes a fixed weight equal to the total number of constraints. If only one con-

straint is violated at a local minimum then it gets the full fixed weight, otherwise

the weight is proportionally divided between all violated constraints. This ‘propor-

tional weighting’ scheme significantly improves the performance of the arc

weighting algorithm while causing the standard weighting algorithm to deteriorate.

5.4 Arc Weighting Experimental Results

5.4.1 Arc Weighting on Specialised and General Problem Domains

In a preliminary investigation we found that arc weighting generally does not per-

form well when embedded in an algorithm designed to exploit a specific problem

structure. For instance, the fastest CNF satisfiability algorithms [e.g. McAllester et

al. 1997] permanently store the cost of flipping each variable during the search.

Each time a move is executed, the cost of flipping all connected variables is ad-

justed. This approach is efficient because all variables have a binary domain (true

or false) and the effect of flipping a variable is easily computed by keeping a count

of the number of true literals in a clause. If we add arc weighting to such an algo-

rithm it performs badly because of the extra cost of recalculating the arc weight for

all weighted variables after each move.

Similarly, a binary CSP algorithm can do a table look-up to discover whether a

domain value violates a constraint (see Section 3.3.2) and consequently the cost of

calculating arc-weights greatly exceeds the cost of simple constraint evaluation.

Both CNF satisfiability and binary CSP algorithms exploit a binary problem struc-

Chapter 5 Improving Constraint Weighting 93

ture which does not exist in realistic non-binary problems (such as nurse rostering

and timetabling). Although realistic problems can be transformed into binary CSP

or CNF format this can lead to large problem representations that are inefficient to

solve (for example see Chapter 3 or [Cha et al., 1997]).

Consequently, we have evaluated arc-weighting within a general purpose con-

straint satisfaction algorithm that does not assume fixed domain sizes or binary

constraints (this is the same constraint engine that was used to solve the nurse ros-

tering and timetabling problems in Chapter 4). To specifically measure the effect

of arc-weighting, we developed an algorithm where the arc-weighting features can

be turned off and the algorithm reverts to the MINWGT heuristic used in Chapter

4. Using these two methods (ARCWGT and MINWGT) we experimented on a lar-

ger sample of nurse rostering problems (16 problems) and transformed a selection

of smaller satisfiability problems into a CSP format using the following method: a

clause becomes a constraint between 3 variables, {x1,x2,x3}, each with a domain of

{0,1} and corresponding coefficients {a1,a2,a3}. These variables then form a con-

straint a1x1 + a2x2 + a3x3 > b where aixi corresponds to the ith literal in the clause

such that ai = -1 if the literal is negative, otherwise ai = 1, and b = -(total number

of negative literals in clause). Two classes of CNF problem were used:

• randomly generated 3 SAT problems with a clause/variable ratio in the cross-

over region of 4.3. These problems are prefixed with an r followed by the

number of variables, ie r100 represents a randomly generated, satisfiable for-

mula with 100 variables and 430 clauses.

• single solution SAT problems with a clause/variable ratio of 2.0 created using

an AIM generator (see [Asahiro, 1993]). These problems are prefixed AIM fol-

lowed by the number of variables (as above).

As in Chapter 4 the nurse rostering CSPs are based on real data used to roster

nurses in a public hospital. The model has a variable for each staff member, with a

domain of allowable schedules. Typically there are 25-35 variables each with a

domain size of up to 5000 values. Therefore the structure of the problem differs

significantly from the 2 value domain of the CNF problems. In addition, approxi-

mately 400 non-binary constraints are defined between variables expressing allow-

Chapter 5 Improving Constraint Weighting 94

able levels of staff for each shift, and preferred shift combinations. Although the

general problem is over-constrained, optimal solutions have been found using an

integer programming (IP) approach [Thornton and Sattar, 1997]. The IP solutions

allow the problem to be formulated as a CSP, by defining each constraint to be

satisfied when it reaches level attained in the optimum solution.

Problem Method RunTime (secs) Loops Hills Minima
 Mean Median Std Dev Max Min

 r100 MINWGT 7.43 3.42 10.39 51 0.11 3955 3035 1398
 ARCWGT 6.04 3.72 7.90 48 0.30 2354 4218 637
 r200 MINWGT 56.27 18.32 97.57 641 0.23 17171 9723 6614
 ARCWGT 20.91 9.21 27.02 121 0.93 4654 10839 1198
 r400 MINWGT 342.23 292.57 202.10 1203 3.68 61534 47383 22566
 ARCWGT 79.34 59.47 69.42 602 6.31 10779 31879 2684
 AIM 100 MINWGT 9.89 9.30 4.59 29 1.25 13322 5797 5101
 ARCWGT 6.41 5.62 3.49 21 1.39 7908 5796 2531
 AIM 200 MINWGT 88.25 79.78 45.25 261 19.80 66072 23557 26274
 ARCWGT 56.74 48.07 38.32 268 9.40 40618 27879 13316
 roster MINWGT 144.35 29.23 250.38 1574 1.83 207 390 69
 ARCWGT 74.02 27.85 97.68 575 2.36 136 475 38

Table 5.1. Comparison of mean performance values

Problem Time Std Dev Loops Hills Minima
 r100 .81 .76 .60 1.39 .46
 r200 .37 .28 .27 1.11 .18
 r400 .23 .34 .18 .67 .12
 AIM 100 .65 .76 .59 1.00 .50
 AIM 200 .64 .85 .62 1.18 .51
roster .51 .39 .66 1.22 .55

Table 5.2. Table 5.1 ARCWGT values as a proportion of MINWGT values

5.4.2 Arc Weighting Performance

For each category of problem, between 100 and 200 solutions were generated by

each algorithm. The mean performance values for these solutions are reported in

table 5.1. The Time column represents the mean execution time in seconds on a

Sun Creator 3D-2000 and Std Dev is the standard deviation of the time. Loops is

the mean number of iterations through the main program loop (the while loop in

figure 5.4), Hills is the mean number of improving moves made by the algorithm

and Minima is the mean number of local minima encountered.

The study uses multiple performance measures to capture precise differences be-

tween the two algorithms. While previous research has concentrated on counting

the number of ‘flips’ or moves (e.g. [Cha and Iwama 1996; Frank 1996]), this

Chapter 5 Improving Constraint Weighting 95

measure was found to be inadequate for comparing ARCWGT and MINWGT. As

table 5.1 shows, for several problems the number of hill climbing moves made by

ARCWGT exceeds MINWGT, while the ARCWGT execution time and number of

iterations are actually less. This shows the number of moves is only a partial

measure of the amount of ‘work’ done by the algorithms. The other dimension is

the number of domain values tried (and hence the number of constraints tested)

before a weighted cost improving move is found. This is analogous to the count of

instantiations and consistency checks used in evaluating backtracking (e.g. see

Haralick and Elliott [1980]). The amount of ‘work’ done by each algorithm is

therefore better captured in counting the main program iterations (Loops in table

5.1). However, the Loops measure does not capture the extra work done by

ARCWGT in maintaining CList (see figure 5.3). For this reason, execution times

are also recorded.

5.5 Analysis of Arc Weighting

The results show that the average solution times and the average number of itera-

tions performed by the arc weighting algorithm are significantly less than for stan-

dard weighting. This supports the earlier hypothesis that arc weighting provides

additional useful information about the search space. The time results also indicate

that the benefits of arc weighting outweigh the costs of maintaining the constraint

list (see figures 5.5 and 5.6).

5.5.1 Distinguishing Moves

Table 5.2 re-expresses the results from table 5.1, giving the ARCWGT values as a

proportion of the MINWGT values, and more clearly shows the relative differ-

ences between the algorithms. In all cases the ARCWGT results are less than the

MINWGT results, except for the number of hill-climbing or improving moves. The

hill climb counts are shown in more detail in figure 5.7, which plots the average

number of hill climbs performed, firstly for all problems completed in less than

10,000 iterations, then for problems completed between 10,000 and 20,000 itera-

tions, and so on. As discussed earlier, the arc weighting information should incline

the search to avoid visiting previously violated groups of constraints and hence to

Chapter 5 Improving Constraint Weighting 96

perform a more diverse search. The greater number of hill climbing moves com-

bined with a reduced number of local minima for ARCWGT (see figure 5.8) indi-

cate a more diverse search is occurring. More precisely, the hill climbing behav-

iour shows that, for a given number of iterations, ARCWGT is more likely to find

a hill climbing move than MINWGT, because arc weighting is able to distinguish

between moves that simple weighting would evaluate as having the same cost. Of

course, the ability to distinguish between moves is only useful if the result, as in

the present case, is a faster overall search.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Time (seconds)

Pr
op

or
tio

n
of

 S
ol

ve
d

Pr
ob

le
m

s

. MINWGT

ARCWGT

Fig. 5.5. Proportion of solved problems by time

5.5.2 Arc Weighting Costs

As would be expected, there is a greater proportional reduction in the number of

program iterations than in the execution time for ARCWGT (compare figures 5.5

and 5.6). This reflects the cost to ARCWGT of using arc weights and is further

analysed in table 5.3. Here the average number of iterations per second are calcu-

lated for each algorithm and problem class. The table shows the ARCWGT main

loop is running at approximately 74% of the speed of MINWGT for the random

CNF problems, increasing to 94% for the AIM problems. The probable explanation

for this difference is the greater clause or constraint density for the random prob-

lems (4.3 in comparison to 2.0 for the AIM problems). The greater density would

increase the average length of CList (figure 5.3) and hence add to ARCWGT’s

Chapter 5 Improving Constraint Weighting 97

overhead. However, a larger CList indicates that arc weights are also giving more

guidance to the search, and so a counterbalancing improvement in search effi-

ciency would be expected (as the results demonstrate).

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 140 180

Iterations (x1000)

P
ro

po
rti

on
 o

f S
ol

ve
d

P
ro

bl
em

s

MINWGT
ARCWGT

Fig. 5.6. Proportion of solved problems by iterations

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

Iterations (x1000)

H
ill

C
lim

bs
 (x

10
00

)

MINWGT
ARCWGT

Fig. 5.7. Comparison of hill climbing moves

Chapter 5 Improving Constraint Weighting 98

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

Iterations (x1000)

M
in

im
a

(x
10

00
)

MINWGT
ARCWGT

Fig. 5.8. Number of minima by iterations

Problem Method Loops/Time ARCWGT/
MINWGT

 r100 MINWGT 532.30 73.22%
 ARCWGT 389.74
 r200 MINWGT 305.15 72.94%
 ARCWGT 222.57
 r400 MINWGT 179.80 75.56%
 ARCWGT 135.86
 AIM 100 MINWGT 1347.02 91.59%
 ARCWGT 1233.70
 AIM 200 MINWGT 748.69 95.61%
 ARCWGT 715.86
 roster MINWGT 1.43 92.03%
 ARCWGT 1.32

Table 5.3. Comparison of iteration speed

5.5.3 Effects of Problem Size

The results do not support any firm conclusions as to whether ARCWGT performs

proportionally better as problem size increases. While ARCWGT tends to do better

with larger random CNF problems (r200 and r400), there was little size effect be-

tween the single solution AIM problems (AIM 100 and AIM 200). However, as fig-

ures 5.5 and 5.6 indicate, the two algorithms do have similar performance when

solving easier problems. This is to be expected, as in the early stages of a search,

relatively few constraints are weighted. As the search continues, the number of

weighted constraints grows and hence the effect of arc weighting becomes more

pronounced.

Chapter 5 Improving Constraint Weighting 99

5.5.4 Divergence

A further property of ARCWGT is that solution times tend to be more predictable

or less divergent than for MINWGT. This is shown in the execution time standard

deviations and in the graph of figure 5.9, which plots the number of solutions

found at various iteration ranges. As [Cha and Iwama, 1996] point out, reduced

divergence is useful when using an iterative repair technique to indicate unsatisfi-

ability.

0

50

100

150

200

250

300

0 30 60 90 120 0 30 60 90 120

Iterations (x1000)

N
um

be
r o

f S
ol

ve
d

P
ro

bl
em

s

 .

ARCWGT MINWGT

Fig. 5.9. Number of solved satisfiability problems by iterations

5.5.5 Applicability to Other Domains

As previously discussed (in Section 5.4.1), ARCWGT does not perform well in

comparison to specialised weighting algorithms that exploit the binary domains of

satisfiability problems and the binary constaints of binary CSPs. The current em-

pirical study shows ARCWGT can produce performance improvements when em-

bedded in a more general constraint solving approach using non-binary domains

and constraints. The crucial questions for the arc-weighting approach are (a)

whether the arc-weight information is useful to improve a search and (b) whether

the gains obtained from arc-weighting can outweigh its cost. Using our results we

can only conclude that arc-weighting has the better absolute performance for the

nurse rostering problems. Although the arc-weighting information does improve

Chapter 5 Improving Constraint Weighting 100

the search for satisfiability, the cost of maintaining the arc weights makes it un-

competitive with the specialised satisfiability algorithms used in Chapter 4.

We also looked at solving the structured timetabling problems from Chapter 4

using arc-weighting. Here we found the average execution times for ARCWGT

and MINWGT to be virtually the same (100.8 seconds for ARCWGT versus 101.3

seconds for MINWGT). Again ARCWGT had a smaller Loops score (231 to 444)

and a higher Hills score (3263 to 3023). More significantly ARCWGT was able to

solve a greater proportion of the problems within 1 million iterations (86% versus

74%) and performed significantly better on the problems that MINWGT found

hardest. In contrast MINWGT had the better performance on the easier randomly

generated timetabling problems (with an average execution time of 30.2 seconds in

comparison to ARCWGT’s 46.5 seconds). These additional results back up similar

observations from the nurse rostering problems, where ARCWGT performed better

on the problems that MINWGT found relatively more difficult. This suggests that

arc-weighting information is best employed in the later stages of a search after an

simple weighting algorithm has failed to find an answer. Such an approach would

avoid the overhead of calculating the arc-weight costs in the early part of the

search (only ArcArray need be updated) but could help improve longer term

searches. The issue then arises as to the exact point in a search where arc-

weighting should be invoked – although this could be resolved by trial and error,

further investigation may reveal that an optimum point can be calculated (based on

existing weight levels in the search).

5.6 Hybrid Experimental Results

We tested our hybrid constraint weighting algorithms by directly embedding the

weighting features described in Section 5.2 into the code developed by [McAllester et

al., 1997] for solving satisfiability problems. We then re-ran the satisfiability experi-

ments reported in Chapter 4. Results for NOVELTYWGT, RNOVELTYWGT and

BESTWGT are shown in tables 5.4 (3-SAT) and 5.5 (DIMACS). Each table also re-

produces the Chapter 4 unweighted results (in brackets) for each algorithm and the

MOVEWGT results for each problem type. The TABUWGT results are not presented

Chapter 5 Improving Constraint Weighting 101

because the weighted algorithm was unable to match or exceed the performance of

TABU on any of the problem types.

Flips Time (seconds) Problem Method
Mean Cut-off Mean Median Max Min Std Dev

Success

r100 NOVELTYWGT 1698 (1331) 250000 0.039 0.016 0.543 0.001 0.0573 100% (100)
 RNOVELTYWGT 2175 (1454) 0.052 0.018 1.204 0.001 0.0976 100% (100)
 BESTWGT 4154 (4072) 0.078 0.042 0.861 0.001 0.0956 100% (100)
 MOVEWGT 1988 0.037 0.011 2.057 0.001 0.1158 100%
r200 NOVELTYWGT 27673 (29014) 500000 0.625 0.257 10.973 0.004 0.9604 100% (99)
 RNOVELTYWGT 48833 (25422) 1.081 0.290 10.933 0.003 1.8638 96% (97)
 BESTWGT 74998 (46946) 1.360 0.605 8.681 0.006 1.6813 98% (99)
 MOVEWGT 50554 1.550 0.369 15.124 0.004 2.7387 86%
r400 NOVELTYWGT 183276 (108497) 1000000 4.437 2.302 24.127 0.012 5.2357 92% (94)
 RNOVELTYWGT 227159 (85175) 5.605 2.815 24.564 0.027 6.4395 69% (95)
 BESTWGT 304512 (147933) 5.665 3.827 18.588 0.131 5.0172 76% (93)
 MOVEWGT 175473 5.516 2.242 30.917 0.031 7.0424 62%
AIM 100 RNOVELTYWGT 6109 (-) 250000 0.085 0.045 2.112 0.004 0.1569 100% (0)
 BESTWGT 10295 (-) 0.107 0.071 1.111 0.006 0.1213 100% (0)
 NOVELTYWGT 19264 (-) 0.261 0.101 3.289 0.008 0.4407 100% (0)
 MOVEWGT 4410 0.085 0.041 3.066 0.002 0.2283 100%

Table 5.4. 3-SAT results for hybrid weighting algorithms

Flips Time (seconds) Problem Method

Mean Cut-off Mean Median Max Min Std Dev
Success

g125.18 NOVELTYWGT 60613 (5915) 1000000 9.26 7.85 51.97 1.350 5.8319 100% (100)
g250.15 RNOVELTYWGT 108644 (6880) 16.36 13.15 117.32 1.590 12.2995 100% (99)
graph BESTWGT 449189 (24566) 60.35 60.31 126.33 1.527 4.4695 52% (100)
colouring MOVEWGT 218168 33.04 29.44 145.91 1.572 16.6267 88%
ssa BESTWGT 5937 (29606) 500000 0.07 0.06 0.42 0.022 0.0484 100% (99)
circuit RNOVELTYWGT 8792 (29541) 0.20 0.11 4.26 0.024 0.3070 100% (94)
fault NOVELTYWGT 9340 (26987) 0.21 0.12 1.77 0.025 0.2364 100% (97)
diagnosis MOVEWGT 2885 0.05 0.04 0.26 0.021 0.0270 100%
par8 NOVELTYWGT 1663 (2796) 250000 0.03 0.02 0.19 0.001 0.0300 100% (100)
parity RNOVELTYWGT 1944 (2760) 0.04 0.02 0.20 0.001 0.0347 100% (100)
function BESTWGT 17172 (25183) 0.25 0.13 3.06 0.001 0.3792 100% (100)
learning MOVEWGT 2542 0.05 0.03 0.87 0.001 0.0883 100%
ii32 BESTWGT 641 (1185) 500000 0.07 0.05 0.31 0.019 0.0596 100% (100)
inductive RNOVELTYWGT 1207 (18477) 0.17 0.13 0.60 0.028 0.1183 100% (100)
inference NOVELTYWGT 1227 (51391) 0.18 0.12 0.83 0.029 0.1354 100% (47)
 MOVEWGT 2739 0.48 0.15 2.97 0.027 0.6633 100%

Table 5.5 DIMACS results for hybrid weighting algorithms

5.7 Analysis of Hybrid Algorithm Performance

Tables 5.4 and 5.5 show that a weighting feature in the WSAT algorithms produces

varying results. Starting with the randomly generated 3-SAT problems (r100, r200

and r400), weighting causes performance to deteriorate for all three hybrid techniques

(NOVELTYWGT, RNOVELTYWGT and BESTWGT) in comparison to the corre-

sponding unweighted algorithms reported in Chapter 4. Conversely, hybrid perform-

Chapter 5 Improving Constraint Weighting 102

ance did improve for the AIM problems, where previously the unweighted algorithms

were unable to find a solution. However, the hybrid WSAT algorithms could not

match the performance of the pure weighting algorithm (MOVEWGT) on the AIM

problems. As far as the 3-SAT results are concerned, the hybrid WSAT algorithms

did worse on the problems the unweighted algorithms were relatively good at and bet-

ter on the problems that the unweighted algorithms were relatively poor at, but were

unable to produce a new best result on any of the 3-SAT problems considered.

The DIMACS results in table 5.5 produce a similar picture for the graph colouring

and circuit fault diagnosis (ssa) problems (i.e. unweighted WSAT was good on graph

colouring, now hybrid weighting causes a deterioration, and unweighted WSAT was

poor on ssa and hybrid weighting causes an improvement, but not sufficient to outper-

form the pure weighting algorithm). The interesting results occur for the parity func-

tion learning problems where the hybrid NOVELTYWGT has the best overall per-

formance of all Chapter 4 and 5 algorithms, and similarly for the inductive inference

problems where the hybrid BESTWGT algorithm dominates. In both these problem

domains there was little distinction between pure weighting and the best WSAT alter-

native reported in Chapter 4. The Chapter 5 results therefore suggest that in such cir-

cumstances (i.e. pure weighting and WSAT perform equally as well) then a hybrid

technique may be applicable. However, given the limited scope of our study, this ob-

servation requires with further testing.

5.8 Summary

The main conclusions of the chapter are:

• arc weighting can lead to improved performance in solving general CSPs but is

uncompetitive with techniques that exploit the binary structure of variable do-

mains and constraints in binary CSPs and satisfiability problems.

• adding a weighting capability to the various WSAT techniques can also im-

prove performance, most noticeably on problems where standard weighting and

WSAT techniques are evenly matched.

Chapter 5 Improving Constraint Weighting 103

Although the improvements we have suggested for constraint weighting can pro-

duce performance benefits, we cannot claim to have produced a better weighting

algorithm in any absolute sense. The issue therefore arises as to when the various

enhancements are applicable. Again the study cannot give an absolute answer to

this question, but the results do suggest certain guidelines: firstly ARCWGT is ap-

plicable to more general CSP formulations that do not exhibit special problem

characteristics (such as exclusively binary domains or constraints). Also

ARCWGT appears to do better on harder than average problems that MINWGT

has difficulty solving. As previously discussed, this suggests that arc-weighting is

best employed as an ‘add-on’ to constraint weighting, which is invoked in the later

stages of a search within a standard constraint weighting algorithm.

The second class of techniques considered in this chapter were the hybrid

weighting algorithms. We firstly rejected the idea of adding weights to a tabu

search as this consistently caused performance to decline. However, for the WSAT

techniques (BESTWGT, NOVELTYWGT and RNOVELTYWGT) a weighting

component did improve the performance of the original unweighted techniques re-

ported in Chapter 4 on several problem domains. Further, for the parity function

learning and inductive inference problems one of the new hybrid algorithms was

able to outperform all the algorithms considered so far in the study. Interestingly,

it was in these two domains that the original pure weighting and WSAT algorithms

from Chapter 4 were fairly evenly matched. This led us to conclude that hybrid

weighting is probably best suited to problems where neither WSAT nor pure

weighting has a clear advantage.

Chapter 6

Over Constrained Problems

Real-world constraint satisfaction problems (CSPs) are often over constrained while

containing a set of mandatory or hard constraints that have to be satisfied for a solu-

tion to be acceptable. Our earlier work (in Chapter 4) indicates constraint weighting

performs well on problems where there is a distinction between constraint groups.

Over constrained problems with hard constraints provide a ready made distinction be-

tween constraints, suggesting constraint weighting may be suitable for such problems.

However, little work has been done in applying constraint weighting to over con-

strained problems with hard constraints. The difficulty has been finding a weighting

scheme that can weight unsatisfied constraints and still maintain the distinction be-

tween the mandatory and non-mandatory constraints. This chapter presents a new

weighting strategy that simulates the transformation of an over constrained problem

with mandatory constraints into an equivalent problem where all constraints have

equal importance, using hard constraint repetition. In addition, two dynamic con-

straint weighting schemes are introduced that alter the number of simulated hard con-

straint repetitions according to feedback received during the search.

6.1 Background and Motivations

An over constrained problem is defined as a standard CSP (i.e. as a set of variables,

each with a set of domain values and a set of constraints defining the allowable com-

binations of domain values for the variables) with the additional proviso that no com-

bination of variable instantiations can simultaneously satisfy all the constraints. The

objective therefore becomes to satisfy as many as possible of the constraints [Freuder

Chapter 6 Over Constrained Problems 105

and Wallace, 1992]. Given all constraints are of equal importance, a standard weight-

ing algorithm can be applied to an over constrained problem with minimal modifica-

tion (see section 6.2). However, most realistic over constrained problems involve con-

straints of varying levels of importance. Typically there is a set of hard constraints

that have to be satisfied (otherwise the solution is not acceptable) and a set of soft

constraints whose satisfaction is desirable but not mandatory. The simplest way to

represent the relative importance of a constraint is to give it a weight. However, a

weighting algorithm already applies weights to constraints during the search to escape

local minima. The question then arises, how can a weighting algorithm add weights to

constraints without distorting the original weights that indicate the relative impor-

tance of the constraints?

[Cha et al., 1997] proposed an initial answer to this question by calculating fixed

hard constraint weights based on an analysis of the problem domain. The present

study describes two algorithms that dynamically calculate the relative weights of hard

and soft constraints during program execution. This means the approach is independ-

ent of specific domain knowledge and produces a more extensive search of the prob-

lem space. By analysing a set of over constrained problems, for which there are

known optimal answers, the study shows the two dynamic weighting schemes per-

form at least as well as an ideal weight incrementing scheme that relies on foreknowl-

edge of an optimal answer (a situation not usually found in practice).

The motivation of the chapter is to investigate the implementation of local search

weighting techniques developed in the domain of CNF satisfiability to the more com-

plex ‘real-world’ of constraint satisfaction. The chapter also introduces implementa-

tions of TABU [Glover 1989], NOVELTY and RNOVELTY [McAllester et al. 1997]

and Guided Local Search [Voudouris and Tsang 1996] adapted to solve over con-

strained problems. These algorithms (plus two non-dynamic constraint weighting

techniques) are compared to dynamic constraint weighting using over constrained

versions of our existing nurse rostering and timetabling problems. In addition we look

at a set of over constrained radio frequency allocation problems

Chapter 6 Over Constrained Problems 106

procedure GenerateLocalMoves(s, TotalMoves)
begin
 M’← ∅, BestWeightedCost ← ƒw(s) - δ
 for each vi ∈ V do if vi in constraint violation then
 begin
 dcurr ← current domain value of vi
 for each d ∈ Di | d ≠ dcurr do
 begin
 m ← {vi, d}
 if ƒ(s ⊕ m) < BestUnWeightedCost and ƒh(s ⊕ m) = 0 then
 begin
 BestUnWeightedCost ←ƒ(s ⊕ m)
 BestSolution ← s ⊕ m
 end
 if ƒw(s ⊕ m) ≤ BestWeightedCost then
 begin
 if ƒw(s ⊕ m) < BestWeightedCost then
 begin
 BestWeightedCost ←ƒw(s ⊕ m)
 M’ ← ∅
 end
 M’ ← M’∪ m
 end
 end
 end
 if M’ = ∅ then IncreaseViolatedConstraintWeights()
 return M’
end

Fig. 6.1. GenerateLocalMoves for over constrained constraint weighting

6.2 Constraint Weighting for Over Constrained Problems

Figure 6.1 gives the pseudocode for the basic constraint weighting strategy used in the

chapter. As the algorithm solves over constrained problems with hard constraints, it

needs to keep track of the best solution currently found in the search (here the best

solution minimises the soft constraint cost while satisfying all hard constraints). Con-

sequently we need an additional cost function fh(s) that returns the number of hard

constraint violations in solution s. This is not required for standard CSPs because a

clear stopping condition exists (i.e. when all the constraints are satisfied). Also for

over constrained problems, it is generally not known when an optimal solution is

found (unless some other complete method has initially solved the problem). Instead,

the search terminates when it has continued for sufficiently long without finding an

Chapter 6 Over Constrained Problems 107

improving move. This means the terminating solution cannot be the best solution, and

requires the storage of each successive best solution as it is found. Further, a con-

straint weighting algorithm may discover an optimum solution during the search, but

fail to recognise it because the current constraint weights make another move more

attractive. Therefore the algorithm must also calculate the unweighted cost of each

move (f(s)) and use this measure to evaluate the best solution:

6.2.1 Weighting with Hard and Soft Constraints

As we have already shown, constraint weighting can be an effective technique for

solving hard CSP problems. As yet however, there has been little work in applying

constraint weighting to more realistic over constrained problems involving hard and

soft constraints. A pioneering work in this area was Cha et al.’s paper on university

timetabling [1997]. They converted a small graduate student timetabling problem into

CNF format, dividing the clauses into hard and soft constraints. The hard constraint

clauses were limited to being either all positive or all negative literals, reflecting the

restriction that the problem of satisfying the hard constraints must be relatively easy.

The greater importance of the hard constraints was then represented by adding a fixed

weight to each hard constraint clause.

Thornton and Sattar [1997] also looked at solving a set of realistic over constrained

nurse rostering problems using constraint weighting. In their approach only violated

hard constraint weights are incremented at a local minimum. A soft constraint heuris-

tic is then used to bias the search towards solutions that satisfy a greater number of

soft constraints. However, empirical tests showed the soft constraint heuristic, al-

though causing some improvement, was rarely able to find the (already known) opti-

mal solutions.

Both Cha et al. and Thornton and Sattar’s methods attempt to satisfy as many soft

constraints as possible while looking for a solution that satisfies all hard constraints.

Once such a solution is found, a limited search is made for the best soft constraint cost

and then the algorithms are either terminated or reset. Cha et al. reset their constraint

weights because, in further searching, the distinction between hard and soft con-

straints weights is lost (due to the weighting action of the algorithm) and the search is

no longer able to find acceptable solutions. In Thornton and Sattar’s approach the

algorithm terminates because there is no mechanism that allows the soft constraint

Chapter 6 Over Constrained Problems 108

gorithm terminates because there is no mechanism that allows the soft constraint

weights to increase, so the search is unable to move out of it’s local area.

Maintaining the Hard Constraint Differential. One of the contributions of this

chapter is the extension of Cha et al.’s concept of repeating hard constraints [1997]. If

each hard constraint is actually repeated in a problem (say n times) then, when a hard

constraint is violated in a local minimum, all n copies of the constraint would receive

a weight increment of w, causing a total increase in cost of n × w. This can be simu-

lated, as with Cha et al., by giving each hard constraint an initial weight of n. The

new step is to increment each hard constraint violated at a local minimum with a

weight of n × w instead of w (soft constraint violations are still incremented by w).

Such a system behaves identically to a system where all constraints have equal

weight, with each hard constraint repeated n times. Previous studies have already

demonstrated that simple constraint weighting is an effective search strategy. There-

fore we should expect the new hard constraint weighting strategy to be equally effec-

tive.

In order to adequately explore the search space, a constraint weighting algorithm

must be able to move from one area to another where all hard constraints are satisfied,

via intermediate solutions where some hard constraints are violated. Unlike the pre-

viously discussed algorithms, the new hard constraint weighting strategy is able to do

this systematically rather than accidentally:

Example. Consider the situation in figure 6.2: A, B, c and d represent four constraints

in an unspecified over constrained problem, where A and B are hard constraints, c and

d are soft constraints, and wA, wB, wc and wd represent the constraint weights of A, B, c

and d respectively. Let the number of hard constraint repetitions n = 3 and the weight

increment w = 1. Hence, the soft constraints are given initial weights wc = wd = w = 1,

and the hard constraints are given initial weights wA = wB = n × w = 3. Figure 3(a),

represents the first local minimum found in the search, where all hard constraints are

satisfied and both soft constraints are violated. As yet no weights have been added by

the search so the cost of the solution = wc + wd = 2. A constraint weighting algorithm

will now add weight w to c and d, making wc = 2 and wd = 2, and a new solution cost

= 4. If we assume there is no move available that does not violate both hard con-

Chapter 6 Over Constrained Problems 109

straints, then we are still at a local minimum (as wA + wB > wc + wd) and the soft con-

straints will be incremented twice more until wc = wd = 4. In this case the cost of vio-

lating both hard constraints (6) is less than the cost of violating both soft constraints

(8), so the move which violates both hard constraints will be accepted (shown in fig-

ure 6.2(b)). Assuming this solution is another local minimum, the weights of a and b

are now incremented. In Cha et al.’s scheme, wA and wB will be incremented by w to 4

(figure 6.2(c)), whereas in the new constraint weighting scheme wA and wB will each

be incremented by n × w to 6 (figure 6.2(d)). Here the crucial difference between the

two approaches is evident. In Cha et al.’s solution all constraints now have the same

weight and there is no way to further distinguish between the hard and soft con-

straints. This means the search has no guidance towards solutions which satisfy the

hard constraints. In the new constraint weighting strategy, the soft constraints have

been allowed to overpower the hard constraints, but as soon as a hard constraint is

violated the dominance of the hard constraints is reasserted and the search will now

concentrate on finding another solution where all hard constraints are satisfied.

d
wd =4

c
wc =4

B
wB =4

A
wA =4 (c)

Cost=wA+wB =8
Increment = w B

wB =3

(a) Cost=wc+wd =2

d
wd =1

c
wc =1

A
wA =3

B
wB =3

d
wd =4

c
wc =4

A
wA =3

d
wd =4

c
wc =4

B
wB =6

A
wA =6 (d)

Cost=wA+wB =12
Increment = nw

(b) Cost=wc+wd =8

Fig. 6.2. Weighting hard and soft constraints

Deciding the Initial Hard Constraint Weights. [Cha et al., 1997] recognised the

crucial question for their research was to find the best number of repetitions of the

hard constraint clauses. In the extreme case, the weight on each hard constraint can be

set to equal the total initial cost of violating all soft constraints plus one (as in the pre-

vious example). However, such a scheme when applied to their timetabling problem

places very large initial weights on the hard clauses. In practice they found the hard

constraint clauses are quickly satisfied with such weights, but high levels of soft con-

straint violation remain. At the other extreme, giving insufficient weight to the hard

Chapter 6 Over Constrained Problems 110

constraints results in a search that is unlikely to find any solution where all hard con-

straints are satisfied (although soft constraint satisfaction would be very high).

The issue of the number of repetitions is equally important to the new constraint

weighting scheme. The greater the difference between the initial hard and soft con-

straint weights the slower the search will be, as it will take longer to build up weights

on the soft constraints. However, setting the initial hard and soft constraint weights

too close together will cause the search to excessively explore areas of hard constraint

violation where (by definition) no acceptable solution can exist. Worse still, the

search may approach an optimum solution but fail to converge on it because of the

over-valuing of the soft constraints. The question therefore arises, how much weight

is too much and how much is too little? Cha et al.’s answer was to look at their par-

ticular problem and calculate the average number of soft constraint violations that

would be caused by satisfying a currently violated hard constraint (they assume that

most constraints are already satisfied). They then use this value to set the initial hard

constraint weights. Clearly there are problems with this approach. Firstly, the number

of soft violations caused by the satisfaction of a hard constraint will vary within the

search space and secondly, the method requires a detailed analysis of the search

space.

6.2.2 Dynamic Constraint Weighting

A useful property for a hard and soft constraint weighting algorithm would be the

ability to learn the correct ratio of hard to soft constraint weights during the search

itself. Consequently, the second contribution of the chapter is the development and

empirical evaluation of two such dynamic constraint weighting strategies.

Downward Weight Adjustment (DWA). The first strategy, Downward Weight Ad-

justment, involves starting the search with the number of repetitions, n, set to the total

number of soft constraints + 1 (i.e. the maximum value). Then, as soon as a solution is

found where all hard constraints are satisfied (i.e. an acceptable solution), the value of

n is adjusted downwards to be one more than the number of soft constraints currently

violated (scur + 1). Each time a new acceptable solution is found such that scur < n,

then n is set to scur + 1 (the new best level of soft constraint violation), i.e. the number

Chapter 6 Over Constrained Problems 111

of hard constraint repetitions is dynamically adjusted according to the best solution

found so far in the search.

This approach is based on the insight that number of hard constraint repetitions, n,

should not be set to less than the optimum number of soft constraint violations, sopt. If

n is less than sopt then the search will tend to prefer a solution where a hard constraint

is violated over an optimal solution. If n is close to but greater than sopt then the

search may prefer a single hard constraint violation over many non-optimal accept-

able solutions, but will still prefer an optimal solution. However the value of sopt is

generally unknown (unless a complete method has already solved the problem).

Therefore, Downward Adjustment Weighting keeps making a closer and closer esti-

mate of sopt by resetting the value of n each time a new unweighted cost reducing

solution is found. However, the definition of unweighted cost has become more com-

plex due to introduction of constraint repetition. Now the unweighted cost equals the

number of violated constraints including repetitions and the weighted cost equals the

sum of the weights of all violated constraints including repetitions. Put more formally,

consider an over constrained problem with a set of hard constraints H = {h1, h2, h3, ...

hk} and a set of soft constraints S = {s1, s2, s3, ... sj}. Each hard constraint has a weight

whi, i = 1... k, and each soft constraint has a weight wsi, i = 1 ... j, where the weight i

equals the number of times constraint i has been violated in a local minimum. Letting

n be the number of hard constraint repetitions, CH be a vector with elements chi,

where i = 1... k, such that element chi = 0 if hi is satisfied and chi = 1 otherwise, and

CS be a vector with elements csi, where i = 1 ... j, such that element csi = 0 if si is sat-

isfied and csi = 1 otherwise, then we have the following definitions:

 WeightedCost = (1) n wh ch ws ci
i

k

i i
i

j

i
= =
∑ ∑+

1 1
s

s

 UnweightedCost = (2) n ch ci
i

k

i
i

j

= =
∑ ∑+

1 1

The analysis so far assumes a weight increment of one and that constraints have only

two states: satisfied or violated. However, the approach can be easily extended to in-

clude different additive or multiplicative weight increments and varying levels of con-

straint violation.

Chapter 6 Over Constrained Problems 112

Flexible Weight Adjustment (FWA). The second dynamic constraint weighting

strategy involves adjusting the value of n according to the current state of the search.

We start with the smallest differential that distinguishes hard and soft constraints (i.e.

n = 2) and then proceed to increase the value of n by 1 each time a non-acceptable

local minimum is encountered. n is therefore increased to a level sufficient to cause

all hard constraints to be satisfied. Each acceptable local minimum encountered,

causes n to be reduced by 1, making it easier for hard constraints to be violated and so

encouraging the search to diversify out of the current local area. In effect, in non-

acceptable areas the search becomes increasingly attracted to acceptable areas and in

acceptable areas the attraction moves to the non-acceptable. Using the earlier defini-

tions of n, hi, si, whi and wsi, figure 6.3 gives the pseudocode necessary to implement

FWA (Note IncreaseViolatedConstraintWeights() is called from the main constraint

weighting algorithm in figure 6.1).

procedure IncreaseViolatedConstraintWeights()
begin
 TotalHardViolations ← 0
 for each violated hard constraint hi do
 begin
 whi ← whi + 1
 TotalHardViolations ← TotalHardViolations + 1
 end
 for each violated soft constraint si do wsi ← wsi + 1
 if TotalHardViolations > 0 then n ← n + 1
 else if n > MinRepetitions then n ← n − 1
end

Fig. 6.3. The Flexible Weight Adjustment algorithm

6.3 Experiments

6.3.1 Control Algorithms

The two dynamic weighting strategies were compared to two forms of fixed weight-

ing called MaxIncrement (MAX) and MinIncrement (MIN). MaxIncrement sets the

weights of all hard constraints to the total number of soft constraints plus one, and

increments all hard constraints by this amount in a local minimum. This is the largest

realistic setting for the constraint increment and favours solutions where all hard con-

straints are satisfied at the expense of satisfying the soft constraints. MinIncrement

Chapter 6 Over Constrained Problems 113

sets the weights of all hard constraints to the number of soft constraints left unsatis-

fied in an optimal solution (plus one) and again increments by this value. The opti-

mum level of constraint violation is the smallest realistic setting for an increment,

otherwise the search is likely to ignore an optimum solution (see section 6.2). An im-

plementation of [Cha et al., 1997]’s reset algorithm was also tried on our test prob-

lems, but in most cases the algorithm was unable to find an acceptable solution. Cha

et al.’s approach assumes the initial problem of finding an acceptable solution is rela-

tively easy. In our test problems this was not the case.

6.3.2 Comparison Algorithms

We further developed versions of the BEST, TABU, NOVELTY, and RNOVELTY

algorithms (introduced in Chapter 4) for over constrained problems. For each of these

techniques (as in MinIncrement) the cost of violating a hard constraint is set to be n +

1 times as great as violating a soft constraint, where n is the least number of soft con-

straint violations found by any of the weighting techniques. This extends earlier work

by [Jiang et al., 1995] on using WSAT to solve weighted MAX-SAT problems. We

also tested the dynamic weighting scheme used by [Schaerf, 1996] for tabu search. In

this method, the weight on a class of constraints is incremented if any of the con-

straints are violated after a fixed cycle of moves, otherwise the weights are decre-

mented. Applying this scheme to the hard constraints in our test problems produced

poor results because (in most cases) the problem of satisfying the hard constraints was

difficult in itself. Consequently, continually increasing weights tended to build up on

the hard constraints, producing poor sensitivity to changes in soft constraint costs.

For this reason further investigation of the scheme was rejected. Adaptations of DWA

and FWA for TABU, NOVELTY and RNOVELTY were also tried but did not per-

form as well as the fixed weight method. Consequently only the fixed weight versions

of TABU, NOVELTY and RNOVELTY are reported. Additionally, the performance

of BEST was significantly inferior on all problem domains, so for brevity we have

removed BEST from the results and discussion.

Finally we developed a version of [Voudouris and Tsang, 1996]’s Guided Local

Search (GLS). This extends the UTIL algorithm of Chapter 4 to include consideration

of the differential cost of hard and soft constraints, and introduces a new cost function

Chapter 6 Over Constrained Problems 114

that uses both the unweighted and penalty cost of a solution. Previously UTIL penal-

ised (or weighted) constraints in a local minimum with the greatest utility, as meas-

ured by:

utilityi(s*) = Ii(s*) × (ci / (1 + pi))

where s* is the current solution, i identifies a feature, ci is the cost of feature i, pi is

the penalty (or weight) currently applied to feature i and Ii(s*) is a function that re-

turns one if feature i is exhibited in solution s* (zero otherwise). For CSPs we as-

sumed all constraints to be features with a cost of 1. Now with hard and soft con-

straints we can define a greater cost (ci) for the hard constraints and so further bias the

search to satisfy these constraints (as these constraints will also attract greater penal-

ties). Further, we use the GLS cost function of the form:

cost(s*) = g(s*) + λ Σ pi Ii(s*)

where pi, Ii and s* are defined as before, g(s*) is the unpenalised cost of s* and λ is a

parameter defined within the GLS algorithm. To maintain consistency between algo-

rithms we embedded GLS within our standard local search neighbourhood function

which randomly selects variables involved in constraint violations (this differs from

[Voudouris and Tsang, 1996]’s Fast Local Search selection method). Also we incre-

ment penalties on constraints by one in a local minimum whereas GLS uses a more

sophisticated scheme based on the maximum or minimum cost difference in the local

neighbourhood of moves.

6.3.3 Test Problems

The algorithms were tested on the set of 16 real-world nurse rostering problems and

10 randomly generated timetabling problems introduced in Chapter 4 and also on a

selection of the Radio Link Frequency Assignment Problems (RLFAP) used by [Vou-

douris and Tsang, 1996] to evaluate GLS.

The nurse rostering problems involve allocating a set of pre-generated legal sched-

ules to each nurse in a roster, such that all hard constraints involving levels of staff for

each shift are satisfied. Soft constraints are introduced by attaching a score to each

schedule indicating how unattractive a schedule is for a nurse (where the best sched-

ule gets a zero score). Therefore each nurse is associated with one soft constraint

Chapter 6 Over Constrained Problems 115

which is satisfied if the nurse is allocated a zero cost schedule. Further details of the

problems are described elsewhere [Thornton, 1995]. One attractive feature of the do-

main is that, although the problems are difficult for a local search algorithm to solve,

we have optimal answers for each problem obtained from an integer programming

application [Thornton, 1995].

The over constrained timetabling problems were generated by adding additional

soft constraints for each staff member defining which time slots the staff member

would prefer to teach (existing hard constraints already define which time slots the

staff member is unavailable to teach). These soft constraints were added to the ran-

domly generated timetabling problems (tt_rand) already reported in Chapter 4.

Finally we used a selection of the over constrained RLFAPs reported by [Vou-

douris and Tsang, 1996] in their evaluation of GLS. The chosen problems (1, 2, 3 and

11) involve assigning frequencies to radio links subject to a set of hard binary con-

straints defining the minimum or exact difference in frequencies between radio link

pairs. Additionally the problems have an optimisation criteria that a solution should

use the least possible number of frequencies. If we think of this criteria as a con-

straint, we want the total number of frequencies assigned in a solution to equal m,

where m is the (unknown) optimum frequency use. This constraint involves a dynamic

assignment cost and so cannot be modelled as a simple relationship between variables

or by assigning a fixed cost to a domain value (as in the nurse rostering problem). In-

stead we have to consider the number of times a particular frequency (domain value)

is assigned for each move. [Voudouris and Tsang, 1996] take the cost of using domain

value v to be NVar – NVarv where NVar is the total number of variables and NVarv is

the number of variables using value v. This cost is then included in the overall move

evaluation cost. Additionally, penalties are associated with each v and may be in-

creased at a local minimum according to the utility function defined earlier. The prob-

lem with Voudouris and Tsang’s approach for our neighbourhood selection heuristic

is that there is no criteria to decide whether a variable is in violation of an assignment

cost (in effect the constraint is to make all assignment costs equal zero hence all vari-

ables are in violation). For this reason we added the definition that a variable is only

in violation of an assignment cost constraint if it is currently assigned the least used

frequency. Similarly, only the least used frequency is weighted at a local minimum.

Chapter 6 Over Constrained Problems 116

6.3.4 Results

All problems were solved on a Sun Creator 3D-2000. For the nurse rostering prob-

lems, runs were either terminated on finding an optimum solution, or after 1 million

domain value changes had been tested. The timetable problems, having no known op-

timal solution, were also terminated after 1 million domain value tests. The RLFAPs

were solved using an adapted binary CSP algorithm and were terminated on finding

an optimal solution (as reported by [Voudouris and Tsang, 1996]) or after 200,000

variable tests (approximately 3 million domain value tests).

Tables 6.1 to 6.3 show the average scores, times, values tested and proportion of

problems solved for each algorithm. The nurse rostering results show the average of

160 runs (10 × 16 problems), the timetabling results show the average of 100 runs (10

× 10 problems) and the RLFAP results show the average of 400 runs (100 × 4 prob-

lems) for each algorithm. For each problem instance the mean, median and standard

deviations were calculated over all runs for a particular algorithm. The results then

show the averaged statistics over all problems in a class for each algorithm (Note, the

proportion of optimal solutions is not reported for the timetabling problems because

the optimum solution score is unknown). The result tables also report statistics on all

runs and for successful runs. By successful we mean those runs that found a solution

satisfying all hard constraints. Those runs which failed to find such a solution were

given a cost or score of 100. Otherwise scores refer to the best level of soft constraint

violation found within a hard constraint satisfying solution.

Generally, the results for over constrained problems with unknown optimum solu-

tions are best interpreted using anytime curves [Freuder and Wallace, 1992]. These

curves plot the cost of the best solution found in the search against execution time,

and represent the quality of solution that would be found if an algorithm were termi-

nated at a particular point. Anytime performance is significant for problems where

there is insufficient time to find an optimal solution, or the optimum is unknown, and

so are relevant to over constrained problems. Consequently we have also generated

anytime curves for each problem domain, firstly comparing the performance of our

weighting and control algorithms (FWA, DWA, MAX and MIN) and then comparing

the best of the weighting strategies with our other techniques (NOVELTY,

RNOVELTY, TABU and GLS). These curves are shown in figures 6.4 to 6.9. In each

Chapter 6 Over Constrained Problems 117

graph, the y-axis represents the averaged sum of all soft constraint costs of the best

solutions found at a given time for each run of an algorithm (as before, a solution that

violates a hard constraint is given a fixed cost of 100).

Rostering FWA DWA MAX MIN GLS NOV RNOV TABU
% solved 95.63 100.00 99.38 98.13 96.88 67.50 66.88 56.25

% optimal 70.00 70.63 44.38 76.25 30.63 21.25 21.88 9.38
All Runs

best score 21.69 21.81 22.31 21.94 23.38 36.50 35.50 45.19
median score 23.12 22.53 23.53 23.54 25.91 42.84 46.53 54.66

mean score 25.17 22.78 24.40 24.19 27.83 47.02 47.29 54.67
std deviation 4.13 1.02 2.77 2.06 6.15 12.44 9.74 8.44

Successful Runs
Score:

best 21.69 21.81 22.31 21.94 23.38 21.85 20.62 20.27
median 22.31 22.53 23.50 23.28 25.84 24.81 25.46 23.95

mean 22.79 22.78 24.09 23.26 26.16 25.38 25.36 24.13
std deviation 2.08 1.49 2.24 1.74 2.68 3.22 3.62 4.17

Time (secs):
median 111.28 134.81 177.03 111.78 82.75 167.73 148.96 97.41

mean 126.05 142.49 185.89 125.61 107.24 168.72 166.47 101.90
std deviation 301.71 292.95 288.99 280.93 260.27 289.22 282.25 174.25

Values tested:
median 260545 323393 425935 269591 203049 1697130 1557874 1017677

mean 294565 342642 449777 303266 266163 1708292 1725057 1096642
std deviation 243287 232773 235305 219788 219145 1060563 1049648 740826

Table 6.1. Averaged results for 16 nurse rostering problems

6.4 Analysis

6.4.1 Nurse Rostering

Starting with the nurse rostering problems, table 6.1 shows all the weighting algo-

rithms (FWA, DWA, MAX, MIN and GLS) performing well in terms of finding solu-

tions (with success rates ranging from 95.63% to 100%) where as the non-weighting

techniques (TABU, NOVELTY and RNOVELTY) have trouble finding any hard con-

straint satisfying solutions (with success rates ranging from 67.5% to 56.25%). If we

further consider the % optimal measure we see only FWA, DWA and MIN are con-

sistently able to find optimal answers (with success rates ranging from to 70% to

76.25%). The score (solution cost) statistics do little to separate the better algorithms

(FWA, DWA and MIN), except DWA does have a slightly lower mean and standard

deviation. Also, although TABU has the lowest average best score for successful runs

(20.27), this does not indicate superior performance, as TABU is only able to find so-

lutions slightly more than half the time (56.25%) and had the worst rate for finding

Chapter 6 Over Constrained Problems 118

optimal solutions (9.38%). Similarly, a reading of the time and values tested statistics

suggests that TABU is doing better because it is faster. However, these measures in-

dicate the point at which an algorithm stops finding improving solutions, showing

only that TABU is more effective in the earlier stages of the search. The best picture

of the relationship between time and score is given by the anytime curves in figures

6.4 and 6.5. Here (in figure 6.4) we see the initial weighting techniques (FWA, DWA,

MAX and MIN) having fairly similar performance, but with DWA doing slightly bet-

ter in the longer term (as suggested by the score statistics). Figure 6.5 plots DWA

against the other techniques (GLS, TABU, NOVELTY and RNOVELTY) and shows

the weighting strategies (DWA and GLS) are doing significantly better than the other

techniques, with DWA again dominating. Interestingly, the curves show the non-

weighting techniques (TABU, NOVELTY and RNOVELTY) are clustered together

with similar shaped curves, indicating a clear distinction between the weighting and

non-weighting techniques for this domain.

20

25

30

35

40

45

50

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

FWA
DWA
MIN
MAX

Figure 6.4. Nurse rostering anytime curves for weighting algorithms

Chapter 6 Over Constrained Problems 119

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

GLS
DWA
TABU
NOVELTY
RNOVELTY

Figure 6.5. Nurse rostering anytime curves for comparative algorithms

6.4.2 Timetabling

The timetabling statistics in table 6.2 again show the weighting strategies are doing

better in terms of the percentage of solutions found, although GLS is doing less well

than the other weighting strategies (66% versus 85-96%). More generally,

NOVELTY and RNOVELTY are doing noticeably worse than any of the other tech-

niques with a 21-30% success rate. The score statistics for all runs start to separate

FWA and MIN as the better techniques, with TABU appearing the next most promis-

ing (again the low scores for NOVELTY and RNOVELTY on successful runs are ex-

plained by the low success rate for these algorithms). The time and values tested sta-

tistics do little to distinguish between techniques except to indicate that NOVELTY

and RNOVELTY tend to stop finding improving solutions earlier in the search. Again

the anytime curves in figures 6.6 and 6.7 give the clearest picture. Figure 6.6 distin-

guishes FWA as the better weighting technique, and (in comparison to the nurse ros-

tering curves of figure 6.4) we see a greater separation between weighting strategies.

In looking at the broader category of techniques in figure 6.7, FWA again strongly

dominates the other methods. However, in comparison to the nurse rostering curves

(figure 6.5) GLS performs quite poorly and TABU proves to be the better of the non-

weighting techniques.

Chapter 6 Over Constrained Problems 120

Timetabling FWA DWA MAX MIN GLS NOV RNOV TABU

% solved 92 91 96 85 66 21 30 59
All Runs

best score 35.70 58.90 71.30 41.80 61.80 65.90 52.80 49.10
median score 48.85 76.25 85.50 59.05 81.20 89.20 86.95 69.30

mean score 50.56 77.18 85.46 60.43 81.71 87.63 82.58 69.41
std deviation 11.36 13.56 8.46 14.87 14.12 13.25 15.95 18.63

Successful Runs
Score:

best 35.70 58.90 71.30 41.80 57.56 31.80 32.57 43.44
median 47.60 76.65 85.60 57.00 73.94 37.50 39.29 49.56

mean 47.64 77.23 85.53 57.49 73.47 37.83 39.20 49.88
std deviation 7.96 14.20 8.56 13.19 11.34 5.72 7.77 5.05

Time (secs):
median 237.45 216.10 225.65 229.05 216.72 184.64 173.03 222.38

mean 232.55 211.23 212.79 222.56 211.50 185.88 168.77 207.84
std deviation 79.49 98.78 140.99 106.26 105.22 83.42 104.77 131.00

Values tested:
median 922419 828301 840790 854674 812718 715688 648981 795806

mean 889094 815197 786014 825519 789885 721987 634235 739870
std deviation 105495 139212 176849 139223 157820 141324 148944 200714

Table 6.2. Averaged results for 10 random timetabling problems

50
55
60
65
70
75
80
85
90
95

100

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

FWA
DWA
MIN
MAX

Figure 6.6. Timetabling anytime curves for weighting algorithms

6.4.3 RLFAPs

Unlike the other problem domains, the % solved and % optimal values for RLFAP in

table 6.3 do not strongly distinguish between techniques. DWA has the highest suc-

cess rate (97%) in a range of 84.5 to 97 and GLS finds more optimal solutions

(40.75%) in a range of 32.5 to 40.75. Additionally the score statistics show a roughly

equivalent performance between algorithms (for instance, the mean score for all runs

Chapter 6 Over Constrained Problems 121

ranges from 25.96 to 32.24). Similar time and values tested statistics are also ob-

served, although TABU does tend to continue improving for longer than the other

techniques. The anytime curves in figure 6.8 show FWA to have the better initial per-

formance although MIN and DWA do approach and meet FWA in the later stages of

the searches. Figure 6.9 shows a greater separation with FWA performing better than

GLS and the other non-weighting techniques (TABU, NOVELTY and RNOVELTY).

50
55
60
65
70
75
80
85
90
95

100

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

GLS
FWA
TABU
NOVELTY
RNOVELTY

Figure 6.7. Timetabling anytime curves for comparative algorithms

RLFAPs FWA DWA MAX MIN GLS NOV RNOV TABU

% solved 95.75 97.00 95.50 95.5 88.00 92.50 92.50 84.50
% optimal 36.25 37.00 33.25 37.5 40.75 32.50 34.50 34.00

All Runs
best score 20.00 20.00 20.50 19.5 20.50 19.00 19.00 18.50

median score 23.00 24.00 24.50 23 23.50 22.25 21.75 38.00
mean score 26.24 25.96 27.74 26.42 30.80 27.08 27.23 32.42

std deviation 8.12 7.51 8.17 8.28 9.79 9.29 9.60 10.76
Successful Runs
Score:

best 20.00 20.00 20.50 19.5 20.50 19.00 19.00 18.50
median 23.00 24.00 24.50 23 23.50 22.25 21.75 21.00

mean 23.76 24.21 25.12 23.79 23.99 22.31 22.27 22.31
std deviation 4.20 4.47 4.10 4.32 4.01 3.14 3.29 5.19

Time (secs):
median 4.93 6.70 7.18 4.75 4.33 7.95 8.12 13.10

mean 8.36 10.56 11.31 9.22 7.93 14.27 16.63 19.61
std deviation 123.97 123.60 129.29 125.47 101.31 193.61 224.37 221.40

Values tested:
median 825071 1012192 1075649 716451 672930 958040 958170 1484668

mean 1241642 1413781 1527254 1182376 1126668 1703293 1940451 2126074
std deviation 1673644 1460627 1537160 1463000 1542761 2502318 2854597 2831966

Table 6.3. Averaged results for 4 RLFAPs (1,2,3 and 11)

Chapter 6 Over Constrained Problems 122

25

30

35

40

45

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

FWA
DWA
MIN
MAX

Figure 6.8. RLFAP anytime curves for weighting algorithms

25

30

35

40

45

50

0 50 100 150 200 250

Time(secs)

So
ft

C
on

st
ra

in
t C

os
t

GLS
FWA
TABU
NOVELTY
RNOVELTY

Figure 6.9. RLFAP anytime curves for comparative algorithms

6.4.4 Overall Comparison

The results, summarised by the anytime curves, show that the two dynamic weighting

strategies (FWA and DWA) dominate in all three problem domains. FWA is better on

timetabling and RLFAP and DWA is better on the nurse rostering problems. These

results should be compared to the results in Chapter 4 (table 4.3) which are based on

the same nurse rostering and timetabling problems formulated as CSPs. In the Chapter

Chapter 6 Over Constrained Problems 123

4 nurse rostering CSP formulation the schedule cost is modelled as a hard constraint

which is satisfied when the (already known) optimum solution cost is reached. There-

fore the Chapter 4 and Chapter 6 versions of these problems are equivalent in that a

solution to one problem is the solution to the other. The situation is different for the

over constrained timetabling problems, which have been made more difficult by add-

ing additional soft constraints and so cannot be considered exactly equivalent to their

CSP counterparts. Bearing this in mind, the Chapter 4 results for the nurse rostering

problems show a similar algorithm ordering in that NOVELTY, RNOVELTY and

TABU perform relatively worse than the weighting strategies. However if we com-

pare the percentage of optimal solutions found in table 6.1 to the equivalent success

rate in table 4.3 we find a proportionally greater deterioration in performance of the

non-weighting algorithms. This is illustrated in table 6.4.

Rostering MIN GLS/UTIL NOVELTY RNOVELTY TABU
CSP success rate 94.00 80.00 73.00 76.00 67.00
Over constrained optimal rate 76.25 30.63 21.25 21.88 9.38
Proportional change 1 : 1.23 1 : 2.61 1 : 3.44 1 : 3.47 1 : 7.14

Table 6.4. Comparison of Chapter 4 and Chapter 6 nurse rostering success rates

Similarly, comparing the timetabling success rates from Chapter 4 (tt_rand in table

4.3) to the over constrained success rates in table 6.2 shows another proportionally

greater deterioration for the non-weighting algorithms (see table 6.5). In this case

NOVELTY and RNOVELTY, which dominated the CSP timetable formulations, be-

come clearly uncompetitive for the over constrained problems.

Timetabling MIN GLS/UTIL NOVELTY RNOVELTY TABU
CSP success rate 95.00 95.00 100.00 97.00 91.00
Over constrained optimal rate 85.00 66.00 21.00 30.00 59.00
Proportional change 1 : 1.12 1 : 1.44 1 : 4.76 1 : 3.23 1 : 1.54

Table 6.5. Comparison of Chapter 4 and Chapter 6 timetabling success rates

In conjunction, the timetabling and nurse rostering results indicate that adding a two-

tier weighting scheme (for hard and soft constraints) into a NOVELTY or TABU

based algorithm causes a greater deterioration in performance than adding the equiva-

Chapter 6 Over Constrained Problems 124

lent weighting scheme into our constraint weighting algorithm (note MIN uses the

same fixed weight scheme as NOVELTY, RNOVELTY and TABU). This conclusion

is supported by an intuitive understanding of the operation of the different algorithms:

for TABU, NOVELTY and RNOVELTY adding weights to hard constraints will

make the search topography more rugged, meaning the algorithms will have to search

more extensively to escape from a local minimum, especially one that satisfies all

hard constraints. The same situation is true of a weighting algorithm, except that

weights will tend to build up on soft constraints that are difficult to satisfy, reducing

the distinction between easy hard and difficult soft constraints, and so making the es-

cape from a hard constraint satisfying minimum easier.

FWA versus DWA. In looking at the two dynamic constraint weighting schemes

(FWA and DWA), FWA strongly dominates the timetabling problems, has a small

advantage on the RLFAPs and is slightly worse than DWA for the nurse rostering

problems. A likely explanation for these results is that FWA is better for longer term

searches (the mean values tested for FWA were 889094 for timetabling, 1241642 for

RLFAP and 294565 for nurse rostering). This better long term performance of FWA

can be explained by FWA being able to make upward revisions to the overall weight

of hard constraints in response to local conditions. DWA initially places greater im-

portance on the hard constraints and only slowly reduces these weights. Therefore we

would expect DWA to quickly find hard constraint satisfying solutions and, for easier

problems, to drive more quickly to the optimal solution. However, if DWA is in-

volved in a more protracted search it is likely to encounter new regions where the

hard constraints are difficult to satisfy. Because it has no means to increase the overall

importance of the hard constraints it must escape these regions by weighting hard

constraints individually. In contrast, FWA, when encountering a region of difficult

hard constraints, can easily shift the focus from the soft constraints by incrementing

the overall weight of all hard constraints. In this way FWA can move more quickly to

another hard constraint satisfying region and so should spend a greater proportion of

the later stages of a search in promising (hard constraint satisfying) regions (in com-

parison to DWA).

Chapter 6 Over Constrained Problems 125

Flexible versus Fixed Weighting. An interesting result of the study is that the dy-

namic weighting strategies have performed slightly better than the MinIncrement

(MIN) algorithm. MinIncrement uses what is probably the best fixed increment (i.e.

the optimal solution cost), a value that would typically be estimated from an analysis

of the problem domain (as in Cha et al.’s study). In contrast, the dynamic weighting

strategies do not rely on domain knowledge, and so avoid the effort and possible er-

rors in using fixed increments, while delivering at least comparable performance.

GLS. It should be noted that the version of GLS developed in this study differs from

the original proposed by [Voudouris and Tsang, 1996]. Not only do we not incorpo-

rate the Fast Local Search heuristic, we also use a fixed penalty increment and model

the RLFAPs assignment costs differently. For comparison purposes we report in table

6.6 the published results for GLS [Voudouris and Tsang, 1995] with our results for

the 4 RLFAP problems used in the study.

RLFAP
Instance

Method Best
Solution

Average Cost
(Std. Dev)

Average Time
(CPU sec.)

scen01 GLS original 16 18.6 (2.3) 8.77
 GLS adapted 16 20.9 (4.8) 9.38
scen02 GLS original 14 14 (0.0) 0.59
 GLS adapted 14 14 (0.0) 0.97
scen03 GLS original 16 15.4 (1.3) 5.62
 GLS adapted 16 17.8 (5.9) 10.39
scen11 GLS original 28 n/a 98.97
 GLS adapted 38 43.2 (1.4) 10.96

Table 6.6. Comparison of original and adapted GLS performance

Table 6.6 shows the original GLS algorithm has generally better performance than our

adaptation both in terms of average cost and standard deviation (note CPU time is not

directly comparable as the experiments were performed on different machines). This

indicates that Voudouris and Tsang’s specialised modelling in conjunction with the

Fast Local Search heuristic does produce better results on the RLFAPs. Therefore we

should not conclude that FWA or DWA are better than GLS in any absolute sense.

However we can say that within the common algorithmic and modelling framework

chosen for our study, the GLS move selection heuristic did not do as well as FWA or

Chapter 6 Over Constrained Problems 126

DWA. To investigate this further would require testing the FWA and DWA heuristics

within the original GLS framework. We leave this for future research.

6.5 Summary

The main contributions of the Chapter are as follows:

• The development of a constraint weighting strategy that simulates the transforma-

tion of an over constrained problem with hard and soft constraints into an equiva-

lent problem with a single constraint type, where the importance of each hard con-

straint is represented by repetition.

• The development of two dynamic constraint weighting strategies that adjust the

number of repetitions of each hard constraint through dynamic feedback with the

search space.

• The empirical evaluation of the new weighting strategies.

The main finding of the study is that for all the problem domains considered, one or

other of the dynamic weighting strategies outperforms both the fixed weighting strate-

gies and the alternative non-weighting strategies considered. Using comparisons with

results in Chapter 4 we observe that constraint weighting performance is less

degraded by the introduction of hard constraint weights than the alternative

NOVELTY and TABU algorithms.

In Chapter 4 we concluded that (within our empirical study) constraint weighting

performs better on problems where weighting can distinguish between groups of con-

straints. This led us to develop arc-weighting in Chapter 5 and then to investigate the

distinction between hard and soft constraints in the current chapter. The superior per-

formance of constraint weighting on over constrained problems therefore supports our

original findings and further suggests constraint weighting is particularly suited to the

over constrained problem domain.

Chapter 7

Conclusion

In this chapter we summarise the findings and contributions of the thesis and discuss

future research directions.

7.1 Summary

The overall aim of the thesis has been to investigate the use of constraint weighting as

a general purpose heuristic for constraint satisfaction. Addressing this aim, the broad

conclusion of the thesis is that constraint weighting is a useful technique for con-

straint satisfaction, specifically for problems where constraint groups can be distin-

guished by the weighting process. Through the investigation we have also developed

and empirically tested various improvements to constraint weighting, including arc

weighting, hybrid weighting and dynamic constraint weighting techniques for hard

and soft constraint problems.

In more detail, Chapter 2 started by placing constraint weighting in the context of the

other major constraint satisfaction techniques and introduced a taxonomy of local

search methods. Then in Chapter 3 we looked at modelling realistic problems within a

general CSP framework. This led us to investigate the transformation of non-binary

constraints to a dual graph binary representation and to propose a partial transforma-

tion model. In addition we looked at representing complex move operators and went

on to develop an array-based domain representation and array-based resource con-

straints that internally represent and count domain value usage.

Chapter 7 Conclusion 128

Chapter 4 introduced the empirical section of the thesis with an examination of the

behaviour and application of constraint weighting in comparison with several other

local search techniques and in relation to a range of CSPs and satisfiability problems.

Through this analysis we developed a set of measures that describe problem structure

and constraint weighting behaviour. These included constraint weight curves, which

give a graphical picture of the distribution of weight across constraints and a con-

stancy measure Ct that quantifies the amount of movement in the top 10% of

weighted constraints. To further measure problem structure we examined the distribu-

tion of neighbour counts across variables. In conjunction and within our problem set,

these measures indicated that constraint weighting does better on structured (as op-

posed to random) problems where it is able to distinguish between harder and easier

groups of constraints. The empirical study also showed that constraint weighting is

competitive with some of the best heuristics developed in the satisfiability domain

(specifically NOVELTY and RNOVELTY) and that of three weighting heuristics ex-

amined none was a clear winner on all the domains considered. It was also observed

that constraint weighting performance tends to decline faster on random problems as

problem size grows (relative to the other techniques). This decline was explained by

the falling rate of clustering between variables causing a corresponding fall in the

probability of generating hard constraint groups. It was further observed that weight-

ing techniques that add weight more infrequently tend to do better on larger problems.

This led us to propose a weighting granularity effect, that causes the guidance of

weighting to decline as the amount of weight and number of problem constraints

grows (the work in Chapter 4 extends already published work in [Thornton and Sattar,

1999]).

Chapter 5 investigated whether constraint weighting can be improved as a general

purpose CSP solving technique and introduced two main approaches: firstly the

development of hybrid algorithms that combine weighting with the other local

search heuristics introduced in Chapter 4, and secondly the introduction of an arc

weighting algorithm that additionally weights the connections between constraints

that are simultaneously violated at a local minimum. The arc weighting method

built on the results of Chapter 4 by recognising and reinforcing the presence of

harder sub-groups of constraints. Empirical results for the new methods indicated

Chapter 7 Conclusion 129

that hybrid weighting algorithms are more likely to outperform their parent algo-

rithms when solving problems for which the parent algorithms are fairly evenly

matched. The arc weighting algorithm was shown to outperform a standard weight-

ing algorithm on a range of CSPs and especially on problems the standard method

found more difficult. However, arc weighting was found to be uncompetitive with

the specialised algorithms developed for binary CSPs and satisfiability because it

is unable to efficiently exploit the binary nature of these problems. We therefore

concluded that arc weighting is best used as a general purpose technique for solv-

ing non-binary problems and as an ‘add-on’ to constraint weighting that is invoked

in the later stages of a search (the work in Chapter 5 is based on ideas already pro-

posed in [Thornton and Sattar, 1998a] and [Thornton and Sattar, 1999]).

Finally Chapter 6 looked at the application of constraint weighting to the domain

of over-constrained problems with hard and soft constraints. This work again built

on the findings of Chapter 4 which suggest that distinctions between constraint

groups (such as hard and soft constraints) will favour a constraint weighting heu-

ristic. Chapter 6 was specifically interested in developing a weighting scheme that

can penalise frequently violated constraints without losing the original weight dis-

tinction between the hard and soft constraints in the system. To this end we pro-

posed and empirically evaluated two constraint weighting heuristics that dynami-

cally change the relative importance of the hard and soft constraint groups during

the search by means of simulated hard constraint repetition. Our results indicated

that the dynamic constraint weighting methods have a clear advantage over fixed

weighting schemes and other selected local search techniques when solving hard

and soft constraint systems. Given the underpinning of these results with the re-

sults from Chapter 4, we concluded that constraint weighting appears especially

suited to the over-constrained problem domain where different groups of con-

straints have different levels of importance (Chapter 6 extends and updates work

originally published in [Thornton and Sattar, 1998b].

Chapter 7 Conclusion 130

7.2 Future Work

As previously discussed, the main aim of the thesis has been to investigate con-

straint weighting as a general purpose method for constraint satisfaction. This

places the work within the broader context of developing automated ways of solv-

ing CSPs (i.e. without the human intervention required to choose or develop an

appropriate heuristic). To this end the thesis has shown (not surprisingly) that none

of the local search methods we have considered is superior in all situations. How-

ever, we have also shown that there are certain features of problem structure and

weighting behaviour that indicate where constraint weighting may perform better

than our other techniques. This further suggests that through an automated analysis

of problem structure we may be able to decide in advance which algorithm is best

suited for a particular problem. We have started the work in this area for constraint

weighting, but equally we could have considered those conditions for which a tabu

or stochastic method is better suited. The systemmatic categorisation of such in-

formation on a broad range of problem domains and the development of accurate

and reliable measures would go a long way towards developing fully automated

and efficient problem solving techniques. In relation to this area there has already

been relevant work in categorising search space topology [Frank et al., 1997],

measuring randomness using ‘approximate entropy’ [Hogg, 1998], categorising

problems according to their cost distributions [Gomes et al., 1998] and also

[Kwan, 1997]’s work on mapping CSPs to solution methods.

Another area related to our work is the development of algorithms that can dy-

namically change their search heuristic through feedback about performance dur-

ing the search. This is connected to earlier work by [Minton, 1996] on MULTI-

TAC and more recently to [Boyan and Moore, 1998]’s work on STAGE. Our

method of measuring the consistency of membership of the top 10% of weighted

constraints already suggests that if this consistency measure is low then constraint

weighting is unlikely to do well. A next step would be to develop an algorithm that

tracks consistency and is able to change heuristics if the consistency falls below a

certain level. Another simple approach suggested by our work is to abandon the

use of weights if a solution is not found relatively early during a search in relation

Chapter 7 Conclusion 131

to the size of the problem (the definition of when ‘early’ would be for a particular

problem is another research issue).

Following on from the WSAT approach of solving CSPs by selecting a violated

constraint and trying to improve that constraint according to a given heuristic, we

envisage building systems where different constraints use different heuristics on

the same problem. Further, through a process of feedback during the search a con-

straint would be able to change or adapt its heuristic to suit local conditions. This

idea is part of a larger plan to develop local search strategies that are controlled by

the local decisions of autonomous constraint ‘agents’ (joining together the ideas of

[Hogg and Williams, 1993] and [Lui and Sycara, 1995]). Here each agent would be

able to identify and appropriately respond to the prevailing conditions in its imme-

diate environment. There seems to be a close connection between the concept of an

agent and the idea of an autonomous constraint. Such a constraint would have

plans in the form of heuristics and rules for their application, beliefs about the en-

vironment (e.g. the instantiation of variables and the state of other constraints in

the system) and a range of possible actions (e.g. changing the instantiation of the

variables under its control). Seen this way a local search can already be understood

as an emergent behaviour (i.e. solving the problem) based on a series of local deci-

sions. Our idea is to extend the range of behaviours available to individual con-

straints with the objective of developing self-adapting systems that can learn the

best way to solve a particular problem.

On a more immediate level there are several avenues to extend our existing work

on constraint weighting. Firstly, we have concentrated on the average performance

of the algorithms considered. Recent work [Hoos and Stutzle, 1999] has looked at

categorising the run length distributions (RLDs) for various local search algo-

rithms on individual problem instances. This work has shown that reporting the

averaged mean and standard deviation over a number of problem instances does

not necessarily present a complete picture of algorithm performance. Recognising

the type of RLD and whether the RLDs of different algorithms cross gives further

insight into whether one algorithm strictly dominates another and whether a restart

strategy will benefit a particular approach. Extending this work to examine con-

straint weighting would both clarify the differences observed between techniques

Chapter 7 Conclusion 132

in the thesis and provide guidance in the use of constraint weighting restart strate-

gies. Also, we have only briefly looked at the area of hybrid local search tech-

niques. Other work [Wu and Wah, 1999] has successfully applied a more sophisti-

cated tabu and weighting algorithm to the larger parity learning and tower of hanoi

problems from the DIMACS benchmark. Further investigation into constraint

weighting hybrids has therefore already proved useful. As previously suggested,

[Frank, 1997]’s weight decay scheme and [Voudouris and Tsang, 1996]’s GLS

method both appear promising for larger problems and suggest a more detailed in-

vestigation of this area is required. Of all our results, the strong performance of the

dynamic weighting schemes on over-constrained hard and soft constraint problems

appears the most promising. It would therefore be worthwhile to extend our em-

pirical study to see if the encouraging results are replicated in other domains. Fi-

nally, our work has already shown different weight heuristics perform differently

on different problems. However, beyond recognising that UTILWGT does better

on longer term searches (because it applies less weight) an explanation for the

variations in weighting heuristic performance has not been proposed. A more de-

tailed investigation into this question therefore also seems called for.

Appendix

Zero-One Block Constraints

Block constraints apply to staff members and student groups in the timetabling prob-

lem and specify that each staff member/student group should not be scheduled more

than b consecutive class timeslots. These constraints can be modelled in a zero-one

variable framework (introduced in Chapter 3) by building vectors to represent all b +

1 consecutive time slots for a group or staff member and constraining the total sum of

these elements to be ≤ b. For example, for staff member s, if b = 4 we would have

constraints for all Xijk taught by s where k ≥ 1 and k ≤ 5, Σ Xijk ≤ 4, and for k ≥ 2 and

k ≤ 6, Σ Xijk ≤ 4, and so on for all valid time slot sequences. Then, if a particular Xijk is

changed we would require at most b + 1 vector sum evaluations to check the block

for a particular staff member or student group, as shown in the following example:

Consider changing X1,1,8 from 0 to 1 (which represents putting class 1 in room 1 at

timeslot 8). Assuming staff member s who teaches class 1 must not be scheduled

more than b = 4 consecutive timeslots, we must check 4 timeslots before and after

timeslot 8 to verify the block constraint. Converting this into our vector representa-

tion, we must check all sequences of 5 timeslots that contain timeslot 8, i.e. k ≥ 4 to k

≤ 8, k ≥ 5 to k ≤ 9, k ≥ 6 to k ≤ 10, k ≥ 7 to k ≤ 11 and k ≥ 8 to k ≤ 12. Hence we

make at most b + 1 = 5 evaluations.

The zero-one block constraint only partly represents a true block constraint because a

local search of the zero-one representation allows the same class to be scheduled

Appendix 134

more than once. Hence the block sum could be violated because a class is scheduled

twice and not because the block length has been exceeded. This will not affect the

correctness of a final solution (because other constraints will ensure a class is only

scheduled once) but it will affect the guidance of a local search through non-feasible

space.

Bibliography

 [Abramson, 1992] D. Abramson. A very high speed architecture for simulated an-

nealing. IEEE Computing, May:27-36, 1992

[Asahiro et al., 1993] Y. Asahiro, K. Iwama, and E. Miyano. Random generation of

test instances with controlled attributes. In Proceedings of the 2nd DIMACS Chal-

lenge Workshop, 1993.

[Bacchus and van Beek, 1998] F. Bacchus and P. van Beek. On the conversion be-

tween non-binary and binary constraint satisfaction problems. In Proceedings of

the 15th National Conference on Artificial Intelligence (AAAI’98), pages 311-318,

1998.

[Battiti, 1995] R. Battiti. Reactive search: toward self-tuning heuristics. In Proceed-

ings of Applied Decision Technologies, pages 1-19, 1995,

[Bitner and Reingold, 1975] J. Bitner and E. Reingold. Backtrack programming tech-

niques. Communications of the ACM, 18(11):651-656, 1975.

[Boyan and Moore, 1998] J. Boyan and A. Moore. Learning evaluation functions for

global optimization and boolean satisfiability, In Proceedings of the 15th National

Conference on Artificial Intelligence (AAAI’98), pages 3-10, 1998.

[Bowen and Dozier, 1996] J. Bowen, and G. Dozier. Constraint satisfaction using a

hybrid evolutionary hill-climbing algorithm that performs opportunistic arc and

Bibliography 136

path revision. In Proceedings of the 13th National Conference on Artificial Intelli-

gence (AAAI’96), pages 326-331, 1996.

[Castell and Cayrol, 1997] T. Castell and M. Cayrol. Hidden gold in random genera-

tion of SAT satisfiable instances. In Proceedings of the 15th International Joint

Conference on Artificial Intelligence (IJCAI’97), pages 372-377, 1997.

[Cha and Iwama, 1995] B. Cha and K. Iwama. Performance Test of Local Search Al-

gorithms Using New Types of Random CNF Formulas. In Proceedings of the 14th

International Joint Conference on Artificial Intelligence (IJCAI’95), pages 304-

310, 1995.

[Cha and Iwama, 1996] B. Cha and K. Iwama. Adding new clauses for faster local

search. In Proceedings of the 13th National Conference on Artificial Intelligence

(AAAI’96), pages 332-337, 1996.

[Cha et al., 1997] B. Cha, K. Iwama, Y. Kambayashi and S. Miyazaki. Local search

algorithms for partial MAXSAT. In Proceedings of the 14th National Conference

on Artificial Intelligence (AAAI’97), pages 332-337, 1997.

[Connolly, 1992] D. Connolly. General purpose simulated annealing. Journal of Op-

erational Research Society, 43(5):495-505, 1992.

[Davenport et al., 1994] A. Davenport, E. Tsang, C. Wang, and K. Zhu. GENET: A

connectionist architecture for solving constraint satisfaction problems by iterative

improvement. In Proceedings of the 12th National Conference on Artificial Intelli-

gence (AAAI’94), pages 325-330, 1994.

[Dantzig, 1963] G. Dantzig. Linear Programming and Extensions. Princeton Univer-

sity Press, Princeton, N.J., 1963.

[Dechter, 1992]. R. Dechter. Constraint Networks. In S. Shapiro, editor, Encyclopedia

of Artificial Intelligence, pages 276-285, Wiley, New York, 1992.

Bibliography 137

[Frank, 1996] J. Frank. Weighting for Godot. In Proceedings of the 13th National

Conference on Artificial Intelligence (AAAI’96), pages 338-343, 1996.

[Frank, 1997] J. Frank. Learning Short-Term Weights for GSAT. In Proceedings of

the 14th National Conference on Artificial Intelligence (AAAI’97), pages 384-389,

1997.

[Frank et al., 1997] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: local

search topology. Journal of Artificial Intelligence Research, 7:249-281, 1997.

[Freuder and Hubbe, 1995] E. Freuder and P. Hubbe. Extracting constraint satisfac-

tion subproblems. In Proceedings of the 14th International Joint Conference on Ar-

tificial Intelligence (IJCAI’95), pages 548-555, 1995.

[Freuder and Wallace, 1992] E. Freuder and R. Wallace. Partial constraint satisfac-

tion. Artificial Intelligence, 58(1-3):21-70, 1992.

 [Gaschnig, 1977] J. Gaschnig. A general backtracking algorithm that eliminates most

redundant tests. In Proceedings of the 5th International Joint Conference on Artifi-

cial Intelligence (IJCAI’77), page 457, 1977.

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of backtrack vs. Walz-type

vs. new algorithms for satisficing-assignment problems. In Proceedings of the 2nd

National Conference of the Canadian Society for Computational Studies of Intelli-

gence, 1978.

[Gendreau et al., 1994] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuris-

tic for the vehicle routing problem. Management Science, 40(10):1276-1290, 1994.

[Gent and Walsh, 1993] I. Gent and T. Walsh. Towards an Understanding of Hill-

climbing Procedures for SAT. In Proceedings of the 11th National Conference on

Artificial Intelligence (AAAI’93), pages 28-33, 1993

Bibliography 138

[Gent et al. 1999] I. Gent, H. Hoos, P. Prosser, and T. Walsh. Morphing: combining

structure and randomness. In Proceedings of the 16th National Conference on Arti-

ficial Intelligence (AAAI’99), 1999.

 [Glover, 1989] F. Glover. Tabu search - part 1. ORSA Journal on Computing,

1(3):190-206, 1989

[Glover, 1990] F. Glover. Tabu search - part 2. ORSA Journal on Computing, 2(1):4-

32, 1990.

 [Gomes et al., 1998] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial

search through randomization. In Proceedings of the 15th National Conference on

Artificial Intelligence (AAAI’98), pages 431-437, 1998.

[Haralick and Elliott, 1980] R. Haralick and G. Elliott. Increasing Tree Search Effi-

ciency for Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313,

1980.

[Hertz et al., 1995] A. Hertz, E. Taillard, and D. de Werra. A Tutorial on Tabu

Search. Technical Report, Dept. de Mathematiques, MA-Ecublens, Lausanne,

1995.

[Hogg, 1998] T. Hogg. Which search problems are random? In Proceedings of the

15th National Conference on Artificial Intelligence (AAAI’98), pages 438-443,

1998.

[Hogg and Williams, 1993] T. Hogg and C. Williams. Solving the Really Hard Prob-

lems with Cooperative Search. In Proceedings of the 11th National Conference on

Artificial Intelligence (AAAI’93), pages 231-236, 1993.

[Hoos and Stutzle, 1999] H. Hoos and T. Stutzle. On the empirical evaluation of Las

Vegas algorithms. In Proceedings of the Workshop on Empirical Artificial Intelli-

Bibliography 139

gence, 16th International Joint Conference on Artificial Intelligence, Stockholm,

Sweden, 1999.

[Jiang et al., 1995] Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard

and soft constraints using a stochastic algorithm for MAX-SAT. In Proceedings of

the 1st International Joint Workshop on Artificial Intelligence and Operations Re-

search, Timberline, Oregon, 1995.

[Kumar, 1992] V. Kumar. Algorithms for Constraint Satisfaction Problems: A Sur-

vey. AI Magazine, Spring:32-43, 1992.

[Kwan, 1997] A. Kwan. A framework for mapping constraint satisfaction problems to

solution methods, PhD Thesis, Department of Computer Science, University of Es-

sex, U.K., July, 1997.

[Lo and Bavarian, 1992] Z. Lo and B. Bavaraian. Optimization of job scheduling on

parallel machines by simulated annealing algorithms, Expert Systems with Applica-

tions, 4:323-328, 1992.

[Lui and Sycara, 1995] J. Lui and K. Sycara. Emergent constraint satisfaction through

multiagent coordinated interaction. In C. Castelfranshi and J. Muller, editors, From

Reaction to Cognition, pages 107-121, Springer, 1995.

[Mackworth, 1977] A. Mackworth. Consistency in networks of relations. Artificial

Intelligence, 8(1):99-118, 1977.

[Mackworth, 1987] A. Mackworth. Constraint Satisfaction. In S. Shapiro, editor, En-

cyclopedia of Artificial Intelligence, pages 205-211, Wiley, New York, 1985.

[Marriott and Stuckey, 1998] K. Marriott and P. Stuckey. Programming with Con-

straints: An Introduction. MIT Press, 1998.

Bibliography 140

[Mazure et al., 1997] B. Mazure, S. Lakhdar, and E. Gregoire. Tabu search for SAT.

In Proceedings of the 14th National Conference on Artificial Intelligence

(AAAI’97), pages 281-285, 1997.

[McAllester et al., 1997] D. McAllester, B. Selman and H. Kautz. Evidence for in-

variants in local search. Proceedings of the 14th National Conference on Artificial

Intelligence (AAAI-97), pages 321-326, 1997.

[Minton et al., 1992] S. Minton, M. D. Johnston, A. B. Philips and P. Laird. Minimiz-

ing conflicts: a heuristic repair method for constraint satisfaction and scheduling

problems. Artificial Intelligence, 58:161-205, 1992

[Minton, 1996] S. Minton. Automatically configuring constraint satisfaction pro-

grams: a case study. Constraints, 1(1-2):7-43, 1996.

[Mitchell et al., 1992] D. Mitchell, B. Selman and H. Levesque. Hard and easy distri-

butions of SAT problems. Proceedings of the 10th National Conference on Artifi-

cial Intelligence (AAAI’98), pages 459-465, 1992.

[Mitchell, 1998] D. Mitchell. Hard problems for CSP algorithms. Proceedings of the

15th National Conference on Artificial Intelligence (AAAI’98), pages 398-405,

1998.

[Morris, 1993] P. Morris. The breakout method for escaping from local minima. In

Proceedings of the 11th National Conference on Artificial Intelligence (AAAI’93),

pages 40-45, 1993.

[Papadimitriou, 1994] C. Papadimitriou. Computational Complexity. Addison-

Wesley, 1994.

[Papadimitriou and Steiglitz, 1982] C. Papadimitriou and K. Steiglitz. Combinatorial

Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs, New

Jersey, 1992.

Bibliography 141

[Poole et al., 1998] D. Poole, A. Mackworth and R. Goebel. Computational Intelli-

gence: a Logical Approach. Oxford University Press, Oxford, 1998.

[Prosser, 1996] P. Prosser. An empirical study of phase transitions in binary con-

straint satisfaction problems. Artificial Intelligence, 81(1-2):81--111, March 1996

[Rossi et al., 1990] F. Rossi, C. Petrie, and V. Dhar. On the Equivalence of Constraint

Satisfaction Problems, In Proceedings of the European Conference on Artificial

Intelligence (ECAI’90), pages 550-556, 1990.

[Sabin and Freuder, 1997] D. Sabin and E. Freuder. Understanding and improving the

MAC algorithm. In Proceedings of the 3rd International Conference on the Princi-

ples and Practice of Constraint Programming (CP’97), Springer, 1997.

[Schaerf, 1996] A. Schaerf. Tabu Search Techniques for Large High-School Time-

tabling Problems. In Proceedings of the 13th National Conference on Artificial In-

telligence (AAAI-96), pages 363-368, 1996.

[Selman and Kautz, 1993] B. Selman and H. Kautz. Domain-Independent Extensions

to GSAT: Solving Large Structured Satisfiability Problems. In Proceedings of the

13th International Joint Conference on Artificial Intelligence (IJCAI’93), pages

290-295, 1993.

[Selman et al., 1992] B. Selman, H. Levesque, and D. Mitchell. A New Method for

Solving Hard Satisfiability Problems. In Proceedings of the 10th National Confer-

ence on Artificial Intelligence (AAAI-92), pages 440-446, 1992.

[Selman et al., 1994] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local

search. In Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI’94), pages 337-343, 1994.

Bibliography 142

[Selman et al., 1997] B. Selman, H. Kautz, and D. McAllester. 1997. Ten Challenges

in Propositional Reasoning and Search. In Proceedings of the 15th International

Joint Conference on Artificial Intelligence (IJCAI’97), pages 50-54, 1997.

[Stergiou and Walsh, 1999] K. Stergiou and T. Walsh. Encodings of non-binary con-

straint satisfaction problems. In Proceedings of Proceedings of the 16th National

Conference on Artificial Intelligence (AAAI’99), pages , 1999.

 [Tabachnick and Fidell, 1989] B. Tabachnick and L. Fidell. Using Multivariate Sta-

tistics. Harper Collins, New York, 1989.

[Thornton, 1995] J. Thornton. An enhanced cyclic descent algorithm for nurse roster-

ing. Honours Thesis, Faculty of Engineering and Applied Science, Griffith Univer-

sity Gold Coast, Australia, 1995.

[Thornton and Sattar, 1996] J. Thornton and A. Sattar. An integer programming-based

nurse rostering system. In Proceedings of the 2nd Asian Computing Science Con-

ference (ASIAN ’96), pages 357-358. Springer, 1996.

[Thornton and Sattar, 1997] J. Thornton and A. Sattar. Applied partial constraint sat-

isfaction using weighted iterative repair. In Proceedings of the 10th Australian

Joint Conference on Artificial Intelligence (AI’97), pages 57-66. Springer, 1997.

[Thornton and Sattar, 1998a] J. Thornton and A. Sattar. Using arc weights to improve

iterative repair. In Proceedings of the 15th National Conference on Artificial Intel-

ligence (AAAI’98), pages 367-372, 1998.

[Thornton and Sattar, 1998b] J. Thornton and A. Sattar. Dynamic constraint weight-

ing for over-constrained problems. In Proceedings of the 5th Pacific Rim Interna-

tional Conference on Artificial Intelligence (PRICAI-98), pages 377-388, Springer,

1998.

Bibliography 143

[Thornton and Sattar, 1999] J. Thornton and A. Sattar. On the behaviour and applica-

tion of constraint weighting. In Proceedings of the 5th International Conference on

the Principles and Practice of Constraint Programming (CP’99), pages 446-460.

Springer, 1999.

[Voudouris and Tsang, 1995] C. Voudouris and E. Tsang. Function Optimization us-

ing Guided Local Search. Technical Report CSM-249, Department of Computer

Science, University of Essex, U.K. September 1995.

[Voudouris and Tsang, 1996] C. Voudouris and E. Tsang. Partial Constraint Satisfac-

tion Problems and Guided Local Search. In Proceedings of Practical Application

of Constraint Technology (PACT'96), pages 337-356, 1996.

[Wah and Shang, 1997] B. Wah and Y. Shang. Discrete Lagrangian-based search for

solving MAX-SAT problems. In Proceedings of the 15th International Joint Con-

ference on Artificial Intelligence (IJCAI’97), pages 378-383, 1997.

[Wallace and Freuder, 1995] R. Wallace and E. Freuder. Anytime Algorithms for

Constraint Satisfaction and SAT Problems. SIGART Bulletin, 7(2):7-10, 1995.

[Walser et al., 1998] J. Walser, R. Iyer and N. Venkatasubramanyan. An integer local

search method with application to capacitated production planning. In Proceedings

of the 15th National Conference on Artificial Intelligence (AAAI-98), pages 373-

379, 1998.

[Walsh, 1999] T. Walsh. Search in a small world. In Proceedings of the 16th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’99), pages 1172-1176,

1999.

[Walsh, 2000] T. Walsh. Reformulating propositional satisfiability as constraint satis-

faction. Proceedings of SARA-2000 (to appear), Springer-Verlag, 2000.

Bibliography 144

[Warner, 1976] D. Warner. Scheduling nursing personnel according to nursing prefer-

ence: A mathematical programming approach. Operations Research 24(5):842-

856, 1976.

[Watts and Strogatz, 1998] D. Watts and S. Strogatz. Collective dynamics of ‘small-

world’ networks. Nature, 393:440-442, 1998.

[Wu and Wah, 1999] Z. Wu and B. Wah. Trap escaping strategies in discrete Lagran-

gian methods for solving hard satisfiability and maximum satisfiability problems.

In Proceedings of the 16th National Conference on Artificial Intelligence

(AAAI’99), 1999.

[Yugami et al., 1994] N. Yugami, Y. Ohta, Y., and H. Hara. Improving repair-based

constraint satisfaction methods by value propagation. In Proceedings of the 12th

National Conference on Artificial Intelligence (AAAI’94), pages 344-349, 1994.

	Constraint Weighting Local Search for
	Constraint Satisfaction
	by
	John Thornton
	A thesis submitted in fulfillment
	of the requirements of the degree of
	Doctor of Philosophy
	January 2000
	PhDContents.pdf
	Abstract
	Contents
	Introduction 1
	Constraint Weighting for Constraint Satisfaction
	Constraint Satisfaction 1
	Constraint Satisfaction Algorithms 2
	Constraint Weighting 3
	Research Problems 4
	Contributions 5
	Outline . 6
	Constraint Satisfaction Techniques 7
	Definitions 7
	Constructive Techniques 9
	Local Search Techniques 11
	Restart Strategies 15
	Local Minimum Random Restart 15
	Fixed Iteration Restart 15
	GSAT 16
	Value Propagation 17
	Stochastic Strategies 18
	Simulated Annealing 18
	WSAT 20
	Memory Strategies 21
	Tabu Search 21
	HSAT, NOVELTY and RNOVELTY 23
	Weighting Strategies 25
	Developments in Constraint Weighting 27
	Constraint Weighting and Tabu Search 28
	Summary . 29
	Modelling Realistic Problems 30
	Specific and General Solutions 30
	Problem Descriptions 31
	Binary vs. Non-Binary Representation 3
	Transforming Non-Binary CSPs 33
	Domain Size Issues in Non-Binary Transformations 35
	Partial Non-Binary to Binary Transformation 36
	Defining Constraints for Tupled Domains 38
	Lessons for General Problems 40
	Representing Complex Move Operators 41
	Making a Move in a Timetabling Problem 41
	Defining Array-based Local Search Constraints 43
	Summary 49
	Constraint Weighting 51
	Background and Motivations 51
	Constraint Weighting Algorithms 53
	WSAT and Tabu Search Algorithms 55
	Experimental Results 56
	Satisfiability Results 56
	CSP Results 60
	Constraint Weight Curves 62
	Constraint Trajectories 66
	Measuring Constancy 70
	Measuring Problem Structure 71
	Analysis . 75
	Constraint Weighting Behaviour 75
	Identifying Hard Constraint Groups 76
	Scaling Effects 80
	Overall Behaviour 81
	Summary . 84
	Improving Constraint Weighting 85
	Background and Motivations 85
	Hybrid Techniques 86
	Arc Weighting 88
	An Efficient Network Representation 89
	Modifications to the Weighting Algorithm 91
	Arc Weighting Experimental Results 92
	Arc Weighting on Specialised and General Problem Domains
	Arc Weighting Performance 94
	Analysis of Arc Weighting 95
	Distinguishing Moves 95
	Arc Weighting Costs 96
	Effects of Problem Size 98
	Divergence 99
	Applicability to Other Domains 99
	Hybrid Experimental Results 100
	Analysis of Hybrid Algorithm Performance 10
	Summary 102
	Over-Constrained Problems 104
	Background and Motivations 104
	Constraint Weighting for Over-Constrained Problems
	Weighting with Hard and Soft Constraints 107
	Dynamic Constraint Weighting 110
	Experiments 112
	Control Algorithms 112
	Comparison Algorithms 113
	Test Problems 114
	Results 116
	Analysis . 117
	Nurse Rostering 117
	Timetabling 119
	RLFAPs 120
	Overall Comparison 122
	Summary 126
	Conclusion 127
	Summary 127
	Future Work 130
	Appendix: Zero One Block Constraints 133
	Bibliography 135

	List of Figures
	List of Tables
	Definitions of Abbreviations and Terms
	AIM refers to satisfiability problems created using an AIM g
	Acknowledgments

	PhDChap1.pdf
	Introduction

	PhDChap2.pdf
	Chapter 2
	Constraint Satisfaction Techniques

	Following on from Averaging-In, Yugami et al. [1994] proposed a more sophisticated restart strategy that involves moving from a local minimum using value propagation (called Escapi

	PhDChap3.pdf
	Chapter 3
	Modelling Realistic Problems

	with a domain size of:

	PhDChap4.pdf
	Chapter 4
	Constraint Weighting

	The figure 4.14 plots correspond well with the performance r

	PhDChap5.pdf
	Improving Constraint Weighting
	5.5.4 Divergence

	PhDChap6.pdf
	Over Constrained Problems

	PhDChap7.pdf
	Conclusion

	PhDAppendix.pdf
	Appendix
	Zero-One Block Constraints

	PhDBibliography.pdf
	Bibliography
	[Schaerf, 1996] A. Schaerf. Tabu Search Techniques for Large

