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Abstract: The purpose of this paper is to report on our investigation about the feasibility of implementing a pure subsumption

architecture for controlling our team of Mirosot Robotic Soccer players, the RoboCoasters. This extends previous work on

subsumption by considering a highly dynamic and competitive environment where speed and accuracy are paramount.

The major finding of our study is that a rigid adherence to the incremental development concept of subsumption has proved

impractical when applied to our single architecture approach to Robotic Soccer. This finding has led us to propose two extensions

to subsumption that simplify the development process and address the need for continual improvement in lower level behaviours.
These are: (a) The creation of a chief behaviour as a permanent top layer for the architecture; and (b) the development of
modules that can be changed within a layer without changing the overall layer’s structure.
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1. Introduction

The subsumption architecture [1] is a substrate used to build
Behaviour-Based mobile robot control systems, which pos-
sesses the following main characteristics: (a) It decomposes
the problem into horizontal behaviour-producing layers, as
opposed to the Classical Al approach of decomposing the
problem into vertical functional modules; (b) The failure of
a higher level layer or an unexpected change in the world
should not cause the robot to collapse, since lower level layers
are continuously operating in parallel, and there is no cen-
tral control; and (c) It provides a modular and incremental
way to build a highly reactive mobile robot control system, a
characteristic also known as incremental development. The
subsumption architecture has the potential to create systems
that hold at least two desirable characteristics for a Robotic
Soccer architecture: Robustness, and incremental develop-
ment.

We begin by presenting an overview of our current system
in Section 2. In Section 3 we discuss a number of issues
which influenced the way we designed the final architecture.
In Section 4 we present our seven-level subsumption archi-
tecture. In Section 5 the results obtained from empirically
testing this architecture on a set of existing Robotic Soc-
cer benchmark problems are shown, along with a qualitative
evaluation of our implementation. Finally, Section 6 offers
some conclusive remarks for our study, and defines several
areas for further research.

2. System Overview

We have two teams consisting of three Mirosot compliant
[2] players each, plus a spare player. Our main team, the
RoboCoasters, is controlled by a Windows98 based 933 MHz
Pentium IIT PC with 512 Mb RAM. The player’s motors are
controlled by an Intel 80C296SA processor which is used to
translate velocity commands received by the onboard Ra-
diometrix RF module receiver. A corresponding RF module
transmitter is used to broadcast the velocity information to
the robots from the host computer [3].

The original software system used to control the Robotic Soc-
cer players is written in Microsoft’s Visual C++ 6.0. This
software provides a set of controlling functions that can be
called from a main control loop 60 times every second. This
repetition rate is dictated by the frame grabber’s field acqui-
sition rate.

We use a global vision system consisting of an overhead CCD
camera, a frame grabber, a PCI MGA video card and the
image processing algorithm. The Pulnix TMC-7DSP camera
captures a global 640 x 480 pixel picture of the pitch at the
full NTSC rate (60 Hz). These pictures are continuously
relayed by our Matrox Meteor II frame grabber to video
RAM.

The vision processing algorithm currently takes around 7
ms to accurately track and identify the seven objects (three
home robots, three opponent robots and the ball) by using
both shape and colour recognition. A set of positioning vari-
ables for the identified objects is then made available to the
strategic module of our system. These variables consist of
the Cartesian coordinates for the robots and the ball, as well
as the orientation for the robots.

3. Design Issues

In this section, a number of practical and theoretical design
issues raised during the development of our subsumption ar-
chitecture are briefly presented and discussed.

3.1. Central control

We decided that in order to increase the team’s effectiveness,
we would need to enable the players to swap their roles dy-
namically during a match, so we identified three roles for our
team: Goalkeeper, defender and attacker. Our problem then
became one of how to allocate roles to players without having
an explicit central controller within the architecture. Also,
given the importance of role assignment within our strategy,
we decided that these roles had to be assigned to the players
at the earliest possible stage in a given sampling period. In
subsumption terms, this meant that the dynamic assignment
of roles would have to be taken care of within the first be-



haviour producing layer of the architecture. To address this
problem, we implemented a ROLE DECIDER module in the
first layer (or level 0) of our subsumption architecture, as we
will later show in Section 4.

3.2. Multi-agency versus single-agency

In so far as this implementation of the subsumption architec-
ture is concerned, we see our team as a single agent, sensing
the environment through its sensors (the CCD camera), and
acting upon the environment through a set of effectors (the
three robots on the pitch). Our agent has a number of goals,
of which the most relevant one is to place the ball inside the
opponent’s goal while not allowing the opponent to place the
ball inside our goal.

When we looked at having a separate subsumption archi-
tecture for each of the players, as opposed to our choice of
having a single subsumption architecture to control a team
of three players, the suitability of a subsumption architec-
ture to our domain came into question. This is mainly due
to the fact that, as already pointed out by others [4], it is not
possible to implement a subsumption architecture to control
a truly Multi-Agent team without some modifications to the
architecture’s original specifications.

As far as our domain is concerned, in order to accommodate
role-swapping in a truly Multi-Agent system, every player’s
architecture would have to be able to produce the behaviours
that are expected from the three different roles in our team,
which would result in what we refer to as redundant paral-
lelism. Furthermore, such approach would also require the
existence of a central controller to integrate the functional-
ity of the three single architectures. This idea is discussed
in more detail in Section 3.4, where we introduce the idea of
a subsumption of subsumptions.

3.3. Scalability

The exercise of adding a new layer to our system was not
complicated. We attribute this to the inherent simplicity
of the subsumption architecture, brought about by having
increasingly competent independent layers competing for the
right to output a certain behaviour during a given sampling
interval.

3.3.1 Evolutionary ceiling

We put forward the idea that a control system should be
expected to have its applicability and effective usage bound
by what we refer to as an evolutionary ceiling.

Our architecture is intended to efficiently control a three-a-
side Mirosot team, and not a five-a-side or even an eleven-
a-side team, if such a league existed. The experience gained
from the implementation part of this study has led us to
believe that our architecture is highly scalable, but like in
evolution, every system eventually needs to be fully replaced
when a completely new level of competency (one that we are
unable to either think of or make an allowance for at the
present) is to be achieved.

3.3.2 Improving existing behaviours

Another characteristic that assisted us to identify scalability
as one of the great strengths of the subsumption architecture
was the practical issue of having to modify existing modules
in order to improve their effectiveness. During our tests, it

became clear that the effectiveness of the overall team de-
pended significantly on the actual output of the modules
contained within the architecture. In the domain of Robotic
Soccer, we must be able to modify a module’s internal struc-
ture (its code) many times in order to achieve optimal per-
formance. This situation can take place during ongoing re-
search, or during a competition, in which case we must be
able to perform the necessary modifications to a module,
and then plug it back into the architecture as quickly and as
easily as possible.

We believe this would not contravene the incremental devel-
opment concept contained in the original subsumption archi-
tecture, as we would only be modifying (or adding to) a mod-
ule’s internal code, and not to any of its input/output lines
or inhibition /suppression nodes. Furthermore, this ability to
easily modify a given part of the controller provided for in
our proposed architecture is surely a highly desirable char-
acteristic within the Robotic Soccer domain.

3.3.3 Electing a chief behaviour

During our development, we found that in all circumstances
if a robot is about to hit a wall we would want a boundary
avoidance layer to subsume all other behaviours. This caused
us to elect boundary avoidance as the chief behaviour, and to
place it as the topmost layer in the architecture, rather than
implement a boundary avoidance behaviour in each layer,
which would be unnecessarily complex.

A problem arises whenever we need to add a new layer to
enhance the system’s performance, as according to subsump-
tion theory, such a layer should be placed on top of the exist-
ing architecture, thus demoting our former topmost layer to
the status of second topmost layer. This situation is unde-
sirable, as it is imperative that our chief behaviour remains
on the very top of the architecture if the system is to work
efficiently.

In practice, this problem can be circumvented by inserting
the new layer immediately below the topmost layer, as shown
in Figure 1. In the figure, step one represents an abstract
subsumption architecture with n layers, augmented with the
topmost layer representing the chief behaviour. In step two,
the need arises to introduce a new layer to the system, how-
ever, for efficiency reasons, the chief behaviour must be kept
as the highest level of competence (or on top of the architec-
ture). The new layer is inserted immediately below it. Step
three shows the resulting architecture with the new layer
placed as the second topmost layer.

This clearly violates the incremental development concept,
and it represents a serious limitation to the suitability of
implementing it to the domain of Robotic Soccer, where this
situation tends to arise frequently.

This does not, however, represent a significant hindrance to
the use of the subsumption architecture in Robotic Soccer at
the practical level. As we discovered, the violation operation
described in Figure 1 can be performed quite easily to achieve
the goal of maintaining the chief behaviour on top, and to
improve the system’s performance by adding a new layer.
This situation would not be possible without the violation.
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Fig. 1. Violating the incremental development concept.

3.4. Alternative approaches

During our evaluation, we encountered two other approaches
that could represent alternatives to the implementation of a
subsumption architecture to our team. Behaviour selection is
based on the work of Ronald Arkin [5], and was successfully
implemented by the MASKARO team [6], the Mirosot league
champions of FIRA’s Robot World Cup 2001.

MASKARO’s approach consists of a number of predetermined
behaviours, which can be assigned to the robots in the team
according to the current state of the world, and with respect
to a given task. Central to this approach are the concepts
of actions and behaviours. Actions are the low level compo-
nents of the controller, while behaviours are made up of one
or more actions. The behaviour selector runs the algorithm
to, at every sampling interval, dynamically allocate one be-
haviour to each one of the robots on the team. This therefore
represents the central controller that is not permitted if one
is to implement a pure subsumption architecture. The ex-
istence of a central controller, together with the dynamic
role assignment are the main features of this approach. The
MASKARO team’s recent successful campaign in the Robot
World Cup 2001 serves to illustrate the desirability of dy-
namic role assignment for achieving success in the Mirosot
league.

‘We also investigated the possibility of having three subsump-
tion architectures (one for each robot) being controlled by a
master subsumption architecture. This means that we would
have a set of three robots, each controlled by a subsumption
architecture, along with a subsumption architecture to inte-
grate the single architectures; rather than a soccer system
controlled by a subsumption architecture. We refer to this
alternative as a subsumption of subsumptions. It soon be-
came apparent that it would not be possible to implement
this approach without adding some extensions to the orig-
inal subsumption architecture. This view is shared in [4].
To achieve dynamic role assignment under a subsumption
of subsumptions, we realised that every robot’s architecture
would need to compute the calculations required for the out-
put of each one of our team roles. This would mean that
having a subsumption architecture for each robot would re-
sult in redundant parallelism, which clearly represents an
undesirable characteristic of any software system.

4. Implementation
In this section we present a detailed description of the final
architecture, focusing on the incremental development pro-
cess of building one behaviour-producing layer at a time to
achieve higher levels of competence. The architecture pre-
sented here was implemented in C within the Microsoft Vi-
sual C++ environment. All concepts contained within the
original subsumption architecture description [1] were main-
tained in order to guarantee the scientific validity of our
study.
The architecture presents seven behaviour-producing lay-
ers, which correspond to the levels 0 (POSITION), 1
(GOALKEEPER), 2 (CHASE), 3 (DEFEND), 4 (ATTACK), 5
(pass), and 6 (avoIiD). This architecture is shown in Fig-
ure 2. We use the terms layer, level, and level of competence
interchangeably.
Each layer can have one or more modules. For example, layer
0 has five modules (namely VISION, PLACE, MOTOR, ROLE
DECIDER, and ROLE ENFORCER), layer 1 has two modules
(BALL PREDICTION, and GOALKEEPER CONTROL), and so on.
There are four main wires in the architecture: positions, ball
prediction, roles, and command. Also present are the wires
role history, and Broadcast(command). As shown in Figure
2, in compliance with subsumption architecture theory, a
lower level layer never modifies the state (or any variable
values) of any of the modules in higher level layers.
The ovals with an S inside their lower portion represent sup-
pression nodes. The dashed lines represent the end of one
layer and the beginning of a new one. ROBOTS represents the
physical robots on the pitch receiving the final wheel velocity
commands contained in command.
The positions wire represents the z and y coordinates for the
team robots and for the ball, as well as the orientation for
the robots. These are extracted by the vision system every
sampling interval (approximately every 16 ms). The wire is
implemented as two arrays, one of size 4 x 2 used for the
coordinates, and another of size 3 used for the orientations.
The ball prediction wire represents the predicted z and y
coordinates for the ball n fields ahead, where n is an integer
number representing the number of fields ahead we would
like to predict the position of the ball.
The roles wire carries the information that assigns mutually
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Fig. 2. The proposed architecture.

exclusive roles (either goalkeeper, defender, or attacker) to
each of the robots.

The command wire carries the left and right wheel velocities
for each of the three robots on the pitch. It is interesting
to note that the architecture is finally only concerned with
modifying (or not) the contents of command. Regardless of
the amount of computations, predictions, or planning done
within a given sampling interval, the strategic exercise is
reduced to updating the contents of command, which is im-
plemented as an 8-byte array. The first and last bytes are
used for delimiting the RF message, while every other pair
of bytes is used to store a left and a right wheel velocity to
be broadcasted to the robots. This allows us to only modify
the part of command we are interested in, leaving the other
portions of the array unchanged.

The role history wire carries the ten previous role assign-
ments for each of the robots in the team, while Broad-
cast(command) represents the function that takes command
as a parameter, and is used to broadcast the RF signal to
the robots on the pitch at the end of every sampling interval.
For a thorough explanation on the subsumption theory, in-

cluding inter-module communication and diagram notations,
please refer to [1].

When the system is at the POSITION level of competence, we
expect the robots to move to predetermined positions on the
pitch.

When the system is at the GOALKEEPER level of competence,
we expect that the robots assigned with the roles of defender
and attacker will remain in the same position as they were
when the system was at the first level of competence. The
robot assigned with the goalkeeper role, however, will now
display a complete goalkeeper behaviour, moving up and
down in front of the home goal’s mouth, attempting to stop
the ball from being placed inside the goal. Also at this level,
the system utilises for the first time a predicted position for
the ball, to enable the goalkeeper to more efficiently track a
fast moving ball.

When the the system is at the CHASE level of competence, we
expect it to display a slightly more elaborate behaviour than
the one demonstrated at the GOALKEEPER level of compe-
tence. The robot assigned with the goalkeeper role remains
operating as the goalkeeper, while the robot assigned with



the attacker role chases the ball around the pitch. At this
level of competence, the system displays the emergent be-
haviour of moving the ball around the pitch, without any
human intervention (i.e. the ball is constantly being pushed
around by the attacker robot). The third robot (assigned
with the role of defender) remains standing in its position,
just as it was in the POSITION level of competence.

When at the DEFEND level of competence, the system’s be-
haviour is improved by having not only an active goalkeeper
and a ball chaser, but also by now having the robot assigned
with the role of defender displaying a defending behaviour.
This behaviour consists of vertically tracking the ball up and
down the pitch, attempting to prevent it from approaching
the defense line. The system is now manifesting a cooper-
ation behaviour, by having some of its parts (the robot as-
signed with the goalkeeper role, and the robot assigned with
the defender role) working towards the same overall goal of
stopping the ball from being placed inside the home goal.
Also at this level, we start to see the swapping of roles more
often than before, due to the more dynamic environment.

When the system is at the ATTACK level of competence, it is
for the first time able to pursue its main goal of placing the
ball inside the opponent’s goal, while not allowing the op-
ponent to place the ball inside its own goal. This is achiev-
able by having the DEFEND level of competence improved
by enabling the robot assigned with the role of attacker to
proactively kick the ball towards the opponent’s goal, while
avoiding hitting the ball towards its own goal.

When the system achieves the pass level of competence, we
expect it to improve on ATTACK, by enabling the attacker
robot to kick the ball towards the defender robot whenever
a certain predetermined scenario takes place. For instance,
one of these scenarios occurs whenever the defender is in a
better position to kick the ball towards the opponent’s goal
than the attacker is. This behaviour is crucial for performing
the Mirosot benchmark problem that deals with passing the
ball between players, and then shooting the ball towards
the opponent’s goal. However, this level is only relevant
(or efficient) when we are recognising the position of the
opponent robots on the pitch. Otherwise, our attacker may
well end up passing the ball to the enemy instead.

The AvOID layer corresponds to the seventh level of compe-
tence of our system. The behaviour expressed by this layer
has been previously referred to as our chief behaviour. This
level improves on the previous one by enabling the robots
to turn away from any of the pitch’s boundaries, should
the issuing of the current content of command (as modified
by the lower level layers) cause any of the robots to collide
with these boundaries. One of the reasons why we consider
boundary avoidance to be our chief behaviour is the prac-
tical matter of having to maintain the physical integrity of
our players. We cannot afford to have our robots slamming
into the walls frequently as this may cause serious damage
to them.

The architecture at this level of competence can be used to
further exemplify the limitation for the application of a pure
subsumption architecture to Robotic Soccer. This limita-
tion is represented by having the necessity to elect a chief

behaviour. It is not possible to simultaneously expand the
architecture further than the AvoID level of competence and
maintain AVOID as the chief behaviour without violating the
rule of incremental development.

5. Results and Evaluation

In this section we present the results obtained by our archi-
tecture on the three Mirosot benchmark problems [7], along
with some qualitative evaluation of our implementation.
The hardest problem (problem C) was attempted by having
the pass layer suppressing the output of the ATTACK layer
by replacing ATTACK’s output with a new command (mod-
ified with a pair of new right and left wheel velocities for
the attacker). This new pair of velocities was used to direct
the attacker robot (the passing robot) to kick the ball to-
wards the z and y coordinates of the receiving robot. Table
1 shows a summary of the results obtained by our subsump-
tion architecture while performing the Mirosot benchmark
problems.

Table 1. Owverall results for benchmark problems.

Benchmark Maximum Score Success
problem score achieved rate (%)
A 10 10 100.00
B 20 14 70.00
c 20 11 55.00
Overall 50 35 70.00

As expected, the architecture displayed the highest level of
success (100.00 %) for the easiest of the problems (problem
A). The performance deteriorated, however, as the problems
got harder (70.00 % for problem B), and involved some ex-
plicit cooperation between robots (55.00 % for problem C).
The concept of incremental development had, in our case,
a positive impact in the development of a Robotic Soccer
architecture. We found, however, that the benefits provided
by the incremental development concept are weakened by
the presence of two characteristics in the Robotic Soccer do-
main. First, there is the need to elect a chief behaviour for
the team. Whenever the chief behaviour is identified, its
layer must always remain on top, as previously discussed in
Section 3.3.3. Second, Robotic Soccer is a domain where ex-
isting behaviours must be revisited many times, if the overall
performance of the team is to be improved. Addressing these
characteristics either by inserting new layers into the exist-
ing architecture, or by changing existing behaviours would
clearly contravene the incremental development rule.

The team cooperation achieved through the dynamic role
assignment to the players is a positive outcome of our imple-
mentation. Team cooperation is also enhanced by the PAss
layer, which enables the team to capitalise on certain passing
opportunities that may arise during a match.

6. Conclusion and Future Research
In this paper we have evaluated the feasibility of implement-
ing a pure subsumption architecture to control our Robotic
Soccer team. We began by presenting an overview of our



current system in Section 2. In Section 3 we presented and
discussed a number of issues which influenced the way the
final architecture was designed. In Section 4 we introduced
our seven-level subsumption architecture. Finally, in Section
5 the results obtained from empirically testing this architec-
ture on a set of existing Robotic Soccer benchmark problems
were shown, along with a qualitative evaluation of our imple-
mentation. In this section we present our conclusive remarks
regarding this study, along with some areas that are open for
future research.

The major finding of this paper is that strict observance
of the incremental development concept within the Robotic
Soccer domain is possible, although it leads to unnecessary
and avoidable complexity. Our major contribution is the pro-
posal of a new design methodology that improves on the sub-
sumption’s incremental development concept and eliminates
its inheriting complexities by allowing for: (a) The election
of a chief behaviour as the topmost layer of the architecture;
and (b) the modification of existing control modules within
a layer without having to concurrently modify other parts of
the architecture.

We believe it is only feasible to continue the work on the
architecture presented here if the rule of incremental devel-
opment is paid no regard to, and our new methodology is
adopted.

As future research issues, we believe it is worthwhile to eval-
uate the feasibility of implementing a behaviour selection
approach to control our team for two reasons. First, the ap-
proach has been proved successful by its implementation to
the current world champion team of FIRA’s Mirosot league.
Second, the use of a behaviour selector accommodates the
need for a chief behaviour, which cannot be done with a pure
subsumption architecture. We would also like to formally de-
fine the subsumption approach to Robotic Soccer presented
in this paper, if this development paradigm is adopted. This
could be done through the development of a framework for
automating the design and deployment of new behaviour-
producing layers and low level control modules.
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