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Abstract—Systems which fall within the domain of the Hi-
erarchical Predictive Coding principle and which have adopted
prediction as their primary goal, are heavily reliant on stable
sparse coding of sensory input. Furthermore, such systems will
require their spatial coding function to be adaptive and able
to reform to reflect changes within the environment. These
properties of stability and adaptiveness should be emergent
properties of the spatial coding system and not reliant on
additional control mechanisms. Hierarchical Temporal Memory
is a cortically inspired model that encapsulates both sparse coding
and temporal processing functions. We present an investigation
into the stability and adaptiveness of three alternative versions
of the spatial pooling function. Our results show that the SP
algorithm is able to form stable sparse distributed representations
of audio input, while still remaining adaptive to changes within
the input data.

I. INTRODUCTION

The predictive processing model is a current and highly
influential theory of brain function [1], [2]. It proposes that the
neocortex is engaged in predicting incoming sensory informa-
tion facilitated by the use of error message passing between its
layers [3]. By adopting prediction as the primary processing
objective, the emphasis in recent research has moved beyond
sensory encoding techniques towards investigating temporally-
based aspects of cortical function. However, for any temporal
processes to be performed, there remains the need for an
optimal process of sensory encoding.

The vast complexities of the dynamic environments in
which mammals exist demand that their neocortices process
incoming information in a timely and efficient manner. There-
fore, their cortical systems should be both self-organising
and adaptive, and not reliant on external control processes
which would impede the immediacy of cortical response to
changing external stimuli. Stable sensory encoding, which is
also able to adapt to the arrival of new data, is needed to
facilitate further processing in the temporal dimension, i.e. to
allow prediction-based functions to be optimally performed.
Furthermore, the emergent properties of self-organisation and
adaptiveness should promote system stability in both the
spatial and temporal dimensions so as to maximise survival
abilities.

After several decades of research into possible cortical
coding strategies, there remains little doubt that the fundamen-
tal principle is that of sparse distributed representation (SDR)
[4]. A sparse code is one in which only a small percentage of

the coding elements are active at any given time. Distribution
of the coding elements throughout the coding cohort expands
the range of code permutations possible. When employed
within a hierarchy, it permits abstraction of input that results
in re-useable components which further widen the range of
inputs that may be encoded. Following the seminal work of
Olshausen and Field [5], sparse coding gained popularity in
computational models of perception and learning. Their math-
ematically formalised approach provided a plausible account
of how such encodings may be realised in neocortex and
demonstrated its ability to process the complexities of the en-
vironment. The SDR principle has been widely demonstrated
and applied to a range of sensory input, initially with a focus
on visual data [6]. Early work on auditory encoding targeted
speech recognition [7] and was then expanded to include
bioacoustics, with birdsong being a popular choice in this
category [8].

The goal of this study is to observe the stability and
investigate the adaptiveness of the cortically inspired machine
learning model, Hierarchical Temporal Memory (HTM), when
applied to the task of encoding birdsongs. Amongst the various
proposals for AGI architectures [9], we consider HTM [10]
a promising approach due to its relatively simple structure
and functions. In comparison to other models at comparable
levels of abstraction, HTM encapsulates more aspects of the
neocortex. HTM is fundamentally based on temporal pre-
diction, making it a departure from mainstream AI research
where temporal concerns have typically been retro-fitted to
established models [11], [12], [13].

HTM is composed of two interdependent functions: Spatial
Pooling and Temporal Pooling (SP and TP resp.), using
a single structural model. Due to the demand of temporal
processing for stable spatial encoding, this study is focussed
on the behaviour of the SP during an encoding task. Specifi-
cally, we compare two alternative implementations of the SP
algorithm: Augmented SP (ASP) and nupicSP, in terms of their
stability and adaptiveness. This is the first time a comparison
of these algorithms, when applied to encoding auditory data,
has been undertaken. In addition, this is an initial, comparative
investigation of the stability and adaptiveness of ASP and
nupicSP.

The results of our experiments show that ASP is the better
performing encoder in terms stability and adaptiveness when
applied to birdsong data. We observed that it reaches a stable



equilibrium at low levels of noise, and remains adaptive as
more noise is introduced. Lastly, we implement a modification
to the algorithm which improves the quality of ASP’s output
for use in birdsong classification, without undue impact on its
stability and adaptiveness.

The next section provides a description of HTM and details
of ASP and nupicSP. Our experiments and results are then
described, and followed by a section discussing the outcomes.
The paper ends with our conclusions drawn from this work
and directions for future research.

II. HTM AND SP

Conceived as a high-level abstraction of neocortical struc-
ture, HTM provides an alternative synthesis of widely accepted
cortical principles. It fits within the free energy formulation
of Friston [14], as its primary goal is to learn and predict
sequences in incoming sensory information which is best
achieved by minimising unexpected interaction with the envi-
ronment. What sets HTM apart from other implementations in
the Hierarchical Predictive Coding (HPC) class is its unique
model structure which makes use of hierarchically arranged
networks of artificial mini-columns that are focussed on learn-
ing the sequences received from lower regions assisted by
feedback from higher regions.

Following its initial description by Hawkins and Blakesley
[15], the release of technical details for HTM [10] provided
pseudocode for implementing the two processing functions of
the model: Spatial Pooling (SP) and Temporal Pooling (TP).
An open source project was subsequently made available to
the research community under the name “nupic”1. It is from
this project that we sourced the nupicSP implementation for
this study. ASP is an extension to the SP algorithm which has
been previously investigated [25], and which we used as the
base for our algorithmic extension in this work.

Interest in HTM has steadily grown, with various re-
searchers now turning their attention to the model. The history
of HTM development and review of some of the HTM
research are discussed in the article by Awad and Khanna
[16]. Currently, much of the work is still focussed on the
SP [17], [18], with several mathematical formulations of SP
and its computational properties recently being published [19],
[20], [21]. However, some investigations have looked toward
incorporating feedback mechanisms [22], while others are
finding novel applications for HTM [23], [24].

1) HTM Structure: The distinguishing features of HTM’s
structure are based on its use of a more sophisticated model
of cortical cells than is typically used in neural network (NN)
models, where only a single type of connection is commonly
used. In contrast, an HTM neuron incorporates two distinctly
different types of connections to represent proximal and distal
dendrites (refer Figure 1). Columns of HTM cells are formed
to represent cortical mini-columns. These columns are the
fundamental processing unit of the model and are a unique
aspect of HTM structure and function.

1nupic. https://github.com/numenta/nupic

Fig. 1: Left: Biological cell. Right: HTM cell showing the
TP distal dendrites in blue, and the SP proximal dendrites in
green. Image taken from [10].

Another key difference in the structure of HTM is its use of
regions, which are grouped arrangements of HTM columns.
Like other approaches which have turned their attention to
hierarchical modelling, HTM also uses this architecture but
with the key difference that any given layer in the hierarchy
may be formed by multiple regions. According to HTM theory,
these regions would permit processing of different types of
sensory or contextual input which, when presented to the
next higher layer in the hierarchy, facilitate more refined
abstraction.

2) Temporal Pooling: HTM’s fundamental principle is
based on the premise that learning is essentially a task of
sequence identification and prediction. This function is per-
formed by the TP, which makes use of the distal dendrites
of HTM cells. These dendrites are composed of segments
which make individual lateral connections to cells in different
columns of the region as the system processes the feed-forward
temporal stream. Based on the state of the cells (i.e. inactive,
active or predicted) in the temporal context, these dendritic
connections permit predictions of further input. As this study
is focussed on the SP, we refer the interested reader to the
HTM literature [10] for more details on the TP function.

A. Spatial Pooling

Within any region of the HTM hierarchy, the first operation
to be performed is spatial processing of feed-forward input.
The SP is employed in this task with the singular goal of
forming SDRs of input such that the TP is best enabled
to perform its prediction objectives. Accordingly, the codes
produced by the SP should be temporally consistent; an output
which would naturally occur from an adapted and stable
function.

In contrast to the TP which makes use of the distal den-
drites of HTM cells, the SP uses the proximal dendrites.
These connections are not segmented, instead forming single
synapses to input in a manner similar to other NN models.
However, the distinguishing difference of HTM synapses is
the use of their permanence value together with the system’s
permanence threshold parameter. Synapses with permanences



greater than the threshold are deemed connected, while those
with permanences lower than the threshold are considered
potential and inactive. An active synapse is one that is
connected and synapses to non-zero input. It is only connected
and active synapses that transmit their (unmodified) input.
During the learning phase of SP, synapse permanences are
either positively or negatively reinforced, thereby fulfilling
Hebbian learning principles. Mnatzaganian et al. [19] describe
the synapse permanence as a probability of connection, which
differs from classical NNs where the connection weight is used
to alter the signal being transmitted.

SP output is the learned pattern of columnar activations for
any given input. In order to determine a column’s activation
level, the input passed by the active synapses of all cells of
the column is summed (termed the column overlap) and then
multiplied by the column’s boost factor. Boosting is used to
ensure all columns meet minimum participation levels, and
together with an inhibition process, ensure distribution of the
sparse codes. As the synapses of each cell within a column
contribute to the total activation of the column, the model
structure makes no distinction between the individual cells
in the context of the SP. Accordingly, each SP column is
represented simply by the set of proximal dendrites for all
its cells. The internal processes of SP are performed in four
sequential stages:

1) Calculate overlap determines the activation level of the
columns (described above).

2) Inhibit columns determines the active and inactive
columns (described below).

3) Synaptic learning increments synapse permanences of
active columns and decrements synapse permanences of
inactive columns.

4) Column boosting increases the boost factor of inactive
columns.

1) Inhibition: Within the SP, the use of inhibition between
the columns ensures distribution of the coding columns in the
output SDRs. This capacity of the system is self-organising
and allows it to adjust itself to the structure of the input data.

In order to determine which columns will participate in
the inhibition process, an inhibition area (termed the neigh-
bourhood) is calculated first. For each column of the SP, a
receptive field is calculated as the area of the input spanned
by its connected synapses. Taking the mean of all columns’
receptive fields produces the size of the neighbourhood, which
is then used by each column during inhibition. Algorithm 1
describes the inhibition process.

The desiredActivity is a system parameter that determines
the number of active columns within each column’s neighbour-
hood. In order for a column to be set active, there must be
less than the desired number of active columns amongst that
column’s neighbours. When counting the number of existing
active columns within a neighbourhood, a neighbouring col-
umn’s overlap must be greater than the overlap of the column
being processed. If the number of active columns within a
column’s neighbourhood meets the desired activity level, the
column is effectively inhibited by failing to be set active. The

desiredActivity parameter has a direct impact on the density
of coding columns in the learned SDRs. For example, if this
value is set high, more columns will pass the inhibition test
and result in the SDR having a denser proportion of active
columns. However, if this value is set lower, less columns will
pass the inhibition test and therefore undergo further synaptic
learning and column boosting. This parameter is one of the
few system variables that requires tuning for any given dataset
to ensure the desired sparsity of the SDRs produced by the
system.

Algorithm 1 Inhibit Columns in ASP

for each column c do
active(c) = false and activitySum = 0
for each neighbour n of c within neighbourhood do

if overlap(n) > overlap(c) then
activitySum = activitySum+ 1

if activitySum < desiredActivity then
active(c) = true

2) ASP vs nupicSP: The most significant difference in ASP
when compared to nupicSP is the introduction of a more robust
learning strategy aimed at addressing the premise that the
system should attain equilibrium in order to produce stable
SDRs which are needed to facilitate sequence learning. The
SP boosting process often fails to sufficiently alter the pattern
of connected synapses, despite elevating inactive columns into
activity. Consequently, nupicSP can fail to converge, especially
on complex (high entropy) input. In contrast, ASP adopts
a more conservative method for assigning new synapses to
columns while allowing more boosting to occur which results
in better convergence properties of the system [25].

The second significant difference between the two SP al-
gorithms is the limitation of nupicSP being able to process
only binary-valued input, whereas ASP was altered to permit
handling of grey-scale images. ASP’s ability to process real-
valued input allows both a wider range and more biologically
plausible sensory input, without the need to perform a data
conversion to binary-values.

Further development of ASP provided an alternative method
of initialising synapse permanences, which was shown to
produce lower classification error when applied to handwritten
digits [26]. Where nupicSP uses an unweighted random selec-
tion of initial synapse locations and permanences, ASP uses
a Gaussian-biased random selection (centred on each column)
that results in initial connected synapses more likely to be
located closer to their respective column.

3) Restricted Neighbourhood ASP (rnASP): As described
above, the effect of the desiredActivity parameter during the
inhibit columns stage of SP processing is to control the number
of columns that will win the inhibition competition. Columns
that fail to win the competition will undergo further learning
in subsequent stages of the SP process. In this study we
introduce an extension to the inhibit columns stage by adopting
an additional outputActivity parameter that allows us to set
different levels of activity during the learning and output



processes. By specifying less activity during learning (which
may be considered as restricting the activity of the neighbour-
hood), we are able to cause more columns to undergo further
learning. However, as the activity parameter also has a direct
impact on the density of the final output SDRs, the additional
outputActivity parameter is required to ensure that the final
learned codes meet the desired sparsity levels. This addition
is detailed in Algorithm 2, and the experimental results from
this extension are presented in the next section.

Algorithm 2 Inhibit Columns in rnASP

for each column c do
active(c) = false and activitySum = 0
for each neighbour n of c within neighbourhood do

if overlap(n) > overlap(c) then
activitySum = activitySum+ 1

if sp = learning then
if activitySum < desiredActivity then
active(c) = true

else
if activitySum < outputActivity then
active(c) = true

III. STABLE SPARSE CODING

Our focus in this work was to compare the behaviour of
ASP, nupicSP and rnASP, in terms of their ability to reach an
equilibrium and produce stable encodings of auditory input,
yet remain able to adapt to significantchanges in the input. We
chose to use the birdsong dataset from the ICML 2013 Bird
Challenge2, which comprises song recordings of 35 species of
birds. The recordings are 150 seconds in duration, sampled at
44.1 kHz and 16 bits, and contain ambient noise for which no
attempt to remove was undertaken. Additionally, no technique
was used to identify the onset and conclusion of the birdsongs
within the files, as we consider this ability would be performed
by a temporally-focussed neocortical function.

A. Preprocessing

The first stage of preprocessing involved converting the raw
sound files into a data format that would preserve salient qual-
ities of the bioacoustics. For this task we used a gammatone
wavelet transform as it has been shown to be a well-performing
model of the mammalian cochlea’s basilar membrane dynam-
ics [27]. By following the procedure described in [28], we
generated wavelet outputs of 100 coefficients as our starting
point for this work.

Our next consideration was the limitation imposed by
nupicSP’s inability to process real-valued input, i.e. it accepts
only binary-valued input. As part of the supplementary tools
provided with nupic, a range of scalar encoders are available
to perform data conversion to binary format. Accordingly, we
used the Scalar Encoder (SE) and Random Distributed Scalar
Encoder (RDSE) which transform real-valued input into a bit

2Kaggle. https://www.kaggle.com/c/the-icml-2013-bird-challenge

mapped representation. Both scalar encoders output bit arrays
that preserve the ordering of real-values by varying the bit
patterns by at most one ‘on’ bit. While the SE encodes the
real-value as a contiguous block of 1s set within the larger bit
array of 0s, the RDSE randomly distributes the 1s throughout
the bit array. We set the size of the output arrays to 100
bits. Consequently, for each of the 100 real-values of the
wavelet transforms, we obtain an output of 100 bits, which
we concatenated to form a 100× 100 pixel matrix, where the
each column of pixels is the scalar encoded real-value (see
Figure 2). While this preprocessing step is counter-intuitive
and biologically implausible in this context, it was necessary
to allow comparison between ASP and nupicSP.

Fig. 2: Left: Scalar Encoder (SE). Right: Random Distributed
Scalar Encoder (RDSE). Binary input data with a resolution
of 100 × 100 pixels where each column of pixels is a single
real-value from the gammatone wavelet transforms encoded
using nupic binary encoders.

B. Learning Sparse Codes

The need to perform data conversion to binary format raised
questions regarding the saliency of the transformed data. In
order to assess the degree to which the altered data may have
been impacted, we chose to perform classification tests on the
column codes from ASP, nupicSP and rnASP.

The ICML 2013 Bird Challenge dataset, having been cre-
ated for use in an open competition, does not provide ground-
truths for the test set. To overcome this restriction, we used
only the training set and employed 10-fold cross validation
during classification. We applied an SVM classifier as the final
step in the processing pipeline and manually tuned the SVM
C parameter (i.e. the penalty factor which must be set to avoid
over or under-fitting).

1) Stability of nupicSP: The three alternative variations
of SP were repeatedly applied to both the SE and RDSE
transformed data using 10 different random seeds. During this
process, we monitored the dynamic behaviour of the systems
by capturing metrics of changes (e.g. average number of
connected synapses across all columns) occurring during each
cycle through the dataset. While both ASP and rnASP were
able to attain stable equilibriums where no further changes
occurred (i.e. converged to solutions), nupicSP did not. In
the absence of clear convergence of the nupic system, the
most likely indication of movement towards a stable state was
demonstrated by the average number of connected synapses



at the end of each cycle steadily declining until it reach a
stable value. Accordingly, we implemented a method which
used this information to identify what we deemed as ‘pseudo-
convergence’ and stopped the learning process.

For all three systems, the final output was a set of 100
values, where each value represented the activation level of the
learned columns when re-encountering the input instance. It
should be noted however, as the scalar encoders increased the
input resolution of the data (from 100 real-values to 10,000
bits), the learning process in this context is performing di-
mension reduction, in addition to learning a sparse distributed
representation.

We produced two variations of output: the first being
composed of real-values for active columns calculated as the
column overlap× boost; and the second variation composed
of binary activations, where ‘on’ is emitted from coding (i.e.
active) columns and ‘off’ from non-coding columns. We report
the results, summarised for both output variations from both
SPs using SE and RDSE transformed data, as the average
classification accuracy obtained by the SVM classifier as
averaged across the ten SP seeds, and across ten SVM random
seeds. (Refer Table I.)

Overlap x Boost Binary
SE Data RDSE Data SE Data RDSE Data

nupicSE 68.4 % 66.8 % 64.1 % 62.1 %
ASP 72.6 % 72.3 % 70.3 % 70.2 %
rnASP 75.8 % 73.3 % 73.2 % 71.9 %

TABLE I: nupicSP, ASP and rnASP SVM classification ac-
curacies using SE and RDSE binary transformed data. SDR
output produced in two formats: column overlap × boost and
binary column codes.

2) ASP vs rnASP: To complete the investigation regarding
the retained saliency of the binary transformed data, we
performed classification on the real-valued wavelet output
using ASP and rnASP using the same methodology described
above. These tests also allowed us to determine if the ad-
dition of different activity level parameters implemented in
rnASP provided improved learning which would lead to better
classification accuracies on audio input. Firstly, using the real-
valued input and the previously identified desiredActivity level
for ASP (that produced SDRs at an average of 10% sparsity),
we reduced that value in rnASP by 25%, 50% and 75% and
increased the corresponding outputActivity level to ensure an
average output sparsity of 10% from rnASP. We executed
these tests using ten random seeds and then performed SVM
classification as described earlier. The averaged results are
listed in Table II.

C. Stability of ASP and rnASP

Our initial and primary goal in this work was to assess
the relative stability and adaptiveness of the SP algorithm.
However, following the results of the previous experiments
and due ot ASP’s ability to process real-valued input (which
is a more biologically plausible input format for auditory data),

Output Overlap x Boost Binary

ASP 80.0 % 79.4 %

rnASP
-75% desiredActivity 73.6 % 74.6 %
-50% ” 80.6 % 80.3 %
-25% ” 80.1 % 80.4 %

TABLE II: Classification accuracies obtained on real-valued
data. SDR output produced in two formats: column overlap×
boost and binary.

and nupicSP’s inability to converge on a stable state (without
learning being artificially halted), we focussed our attention on
observing the behaviour of ASP and rnASP during the learning
process.

These experiments were started by first training both sys-
tems until they reached a stable equilibrium (i.e. converged
to a point attractor). We then systematically added random
noise to the data to represent varying degrees of unpredictable
changes in the environment to determine whether the systems
began to learn again in this context. If, in the event that the
systems subsequently did find a second stable state in the
noisy environment, we reintroduced the uncorrupted data to
investigate whether the second state had resulted in a more or
less strongly adapted system.

For the real-valued data (previously normalised to values
between 0 and 1), noise was introduced by randomly selecting
a percentage of the 100 coefficients which were then adjusted
by a randomly selected value in the range ±0 to 0.5 (and
ensuring the new values did not exceed the normalisation
limits). We introduced noise in 10% increments up to a
maximum of 100% and repeatedly executed the experiments
using 20 different random seeds.

In the case of the binary encoded data, we elected to use
the RDSE encoded set, and introduced noise to the data by
randomly flip bits in the binary matrix. Noise was introduced
in increments of 5% up to a maximum of 30%, and the
experiments were again conducted using 20 different random
seeds.

To capture the systems’ responses to the noise, we recorded
the average number of changed synapses over all columns
during each cycle of learning, and as averaged over the set
of random seed executions. Because the dimensions of the
real-valued and binary-valued data are disproportionate, the
available number of synapses is vastly different. Consequently,
we report the average changed synapses as the percentage of
total available synapses for each data format. Figures 3, 4 and
5graph the stability results from ASP, 6, 7 and 8 report results
from rnASP.

IV. DISCUSSION

The intention in this study was to focus on investigating
the stability and adaptiveness of three variations of HTM’s
Spatial Pooler. However, due to nupicSP’s inability to process
real-valued input, we elected to also undertake a small series
of classification tests to assess the saliency of the input data
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Fig. 3: ASP stability test on binary-valued input.
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Fig. 4: ASP stability test on real-valued input.
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Fig. 5: ASP stability test on real-valued input, detailed view.

once it had been transformed into suitable binary format
for nupicSP. The results of these tests showed that recoding
the birdsong wavelet data into a binary format reduced the
classification accuracy that may be obtained as compared to
results obtained using real-valued input.

The comparison undertaken using the binary encoded ver-
sion of the birdsong data, where two different types of output
encodings were produced (refer Table I), showed that higher
classification accuracies obtained when the output was real-
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Fig. 6: rnASP stability test on binary-valued input.
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Fig. 7: rnASP stability test on real-valued input.
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Fig. 8: rnASP stability test on real-valued input, detailed view.

valued (i.e. column overlap X boost) compared to output
that was composed of simple binary patterns of the active
columns. We believe this is due to the learned synaptic patterns
capturing subtle distinguishing characteristics of the input
which are preserved by the boosting factor during output.
In contrast, the binary output effectively discards that fine
detail, providing only a generalised encoding of the data. The
best classification result of 75.8% was achieved by ASP on



the SE binary encoding, and generally ASP performed more
consistently compared to both rnASP and nupicSP. These
result suggests that ASP is more responsive to subtle changes
in the input structure.

The main failing of nupicSP, however, is its inability to
converge to a stable equilibrium state without some form of
external intervention that switches off its learning capabilities.
This means it is unable to respond to subsequent changes in in-
put without having its learning capabilities switched on again.
While such approach is feasible for controlled experiments on
benchmark problems, it does not represent the kind of sensory
encoding required for a genuine adaptive system. In contrast,
ASP is able to converge on equilibrium states on all the data
sets considered here, and is further able to reinitiate learning
without supervision when the input is sufficiently perturbed.

The use of an additional activity parameter in rnASP
appears to afford the system better learning in comparison to
ASP. The results of applying rnASP to the binary encoded data
are particularly interesting as the same trend in classification
rates across the range of SE encoder sizes is closely matched
for both ASP and rnASP, with the main difference being that
rnASP performs better for both output types. We consider
this a strong indication that the restricted neighbourhood
approach does successfully enforce more learning without
altering the more general behaviour of the system. However,
the difference in classification accuracy on the real-valued data
is less significant, with rnASP only managing to achieve a
minor improvement in the overlap X boost output codes. This
is most likely due to ASP already being able to maximise
the information contained within the real-valued input, and
therefore leaves little remaining information to be extracted
by more intensive learning. In contrast, the use of the more
constrained neighbourhood does improve the classification
accuracy that may be obtained from the binary encoded output
and again confirms the technique is a valuable one when
applied in this context.

Initial investigation into the adaptivity of ASP and rnASP
using the binary encoded data showed that both systems
become well adapted to this form of input. Both ASP and
rnASP remained stable for noise percentages up to 15%, and
above that level both systems were able to adapt to the changed
input. The significant difference between the two systems on
noise levels from 20% is that rnASP responds more strongy
with a higher percentage of synapses changing, and requires
significantly more cycles to attain stability. This would be
a direct consequence of the restricted neighbourhood forcing
more columns to undergo further synaptic learning.

A similar trend is see again when using real-valued input,
where rnASP responds with greater numbers of changing
synapses. However, two points of difference are seen: firstly,
ASP is still stable at low levels of noise as compared to rnASP
which begins to adapt from the initial introduction of noise
at 10%. Secondly, both systems demonstrate noticeable phase
transitions, occuring at approximate noise level increases of
20%. Despite these distinctive transitions in the number of
synapses changing, both systems are still able to adapt to the

arrival of changed input. Lastly, for both systems, neither has
become fully adapted to the corrupted information, such that
upon reintroduction of the original, uncorrupted data, they are
both able to again commence learning and re-adapt, and in line
with the generally observed behaviour of rnASP, its recovery
requires more synapses to adapt and the system again takes
significantly more cycles to reach the new stable state.

V. CONCLUSION

In this study we compared two alternative versions of the
HTM Spatial Pooler, ASP and nupicSP, in terms of their ability
to produce SDRs of birdsongs. The results showed that ASP
was able to better capture significant features of the input for
the purposes of classification. To the best of our knowledge,
this is the first evaluation of nupicSP when applied in the
domain of auditory processing.

The failure of nupicSP to display clear convergence be-
haviour casts some doubt on the degree to which its current
implementation adequately models pertinent aspects of the
neocortex for sensory encoding. ASP’s demonstrated ability
to self-organise convergence allows us to consider it a more
biologically more plausible model of neocortical function.

As an extension to ASP, we introduced an enhanced ap-
proach to the inhibition processes in the rnASP algorithm that
increases the learning capacity of the system, without undue
impact on its ability to self-organise and find stable attractors
on binary data.

Additional contributions of this work include an initial
evaluation of ASP from an adaptive systems perspective,
where we identified the conditions under which the system
remains stable to environmental perturbation. We further eval-
uated the relative adaptivity and stability of both ASP and
rnASP on binary and real-valued data, and determined that
their behaviour tends to remain adaptive as more noise is
introduced.

As ASP (and by extension rnASP) are only the first step of
the process performed within a region of the HTM model,
which should function within a hierarchy with contextual
feedback from higher levels, we consider the model worthy
of further investigation. We look towards incorporating the
new rnASP into the larger HTM model to further investigate
its behaviour in that wider context. Further work would
also include investigating the TP from the adaptive systems
perspective.
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