
Applying Local Search to Temporal Reasoning

J. Thornton, M. Beaumont and A. Sattar
School of Information Technology,

Griffith University Gold Coast,
Southport, Qld, Australia 4215

{j.thornton, m.beaumont, a.sattar}@mailbox.gu.edu.au

Michael Maher
Dept. of Math. and CS,

Loyola University,
Chicago, IL 60626, USA

mjm@cs.luc.edu

Abstract

Local search techniques have attracted considerable in-
terest in the Artificial Intelligence (AI) community since the
development of GSAT [9] and the min-conflicts heuristic
[5] for solving large propositional satisfiability (SAT) prob-
lems and binary Constraint Satisfaction Problems (CSPs)
respectively. Newer SAT techniques, such as the Discrete
Langrangian Method (DLM) [10], have significantly im-
proved on GSAT and can also be applied to general con-
straint satisfaction and optimisation. However, local search
has yet to be successfully employed in solving Temporal
Constraint Satisfaction Problems (TCSPs).
In this paper we argue that current formalisms for rep-
resenting TCSPs are inappropriate for a local search ap-
proach, and we propose an alternative CSP-basedend-
point orderingmodel for temporal reasoning. In particu-
lar we look at modelling and solving problems formulated
using Allen’s interval algebra (IA) [1] and propose a new
constraint weighting algorithm derived from DLM. Using a
set of randomly generated IA problems, we show that our lo-
cal search outperforms Nebel’s backtracking algorithm [6]
on larger and more difficult consistent problems.

1. Introduction

Representing and reasoning with temporal information
is a basic requirement for many AI applications, such as
scheduling, planning and natural language processing [6].
In these domains temporal information can bequalitative
as well as quantitative. For instance, an event may need to
be before or during another event, but we may not be con-
cerned with actual durations, start times or end times. Such
information is not handled well using a simple linear time-
stamping model, and requires more expressive constructs
to capture the notion of events and the constraints between
them. To answer this need, various approaches have been
developed in the constraint satisfaction community under

the heading ofTemporal Constraint Satisfaction.
A Temporal Constraint Satisfaction Problem (TCSP) shares
the basic features of a standard CSP, i.e. variables with do-
mains and constraints that define the possible domain val-
ues that can be assigned to each variable [4]. However, in a
TCSP constraints are modelled asintensionaldisjunctions
of temporal relations [8] rather than as extensions of allow-
able domain value combinations. Finding a consistent sce-
nario is then a matter of searching for a consistent set of
temporal relations for each constraint. For harder problems
this usually means using a combination of backtracking and
a constraint propagation technique such as path-consistency
[8].
In this paper we look at applying local search to solving
TCSPs. Local search techniques such as GSAT [9] and
the min-conflicts heuristic [5] have already proved effective
both for propositional satisfiability (SAT) and in the gen-
eral CSP domain, particularly on problems beyond the reach
of standard constructive search methods. However, when
applied to a TCSP, a local search is unable to exploit the
constraint-propagation approach used with backtracking, as
it is an incomplete method thatnecessarilymoves through
inconsistent scenarios. Further, local search requiresexact
cost feedback when deciding between candidate moves. In
a binary CSP, a move changes a variable instantiation and
cost feedback is obtained from a simple count of violated
constraints. However, in a TCSP, a move consists of instan-
tiating a set of temporal relations for a particular constraint.
As no variables are actually instantiated, finding an exact
move cost becomes a significant search problem in its own
right [2].
Given these difficulties, our approach has been to reformu-
late temporal reasoning as a more standard CSP, i.e. search-
ing by instantiating variables with domain values rather than
instantiating constraints with temporal relations. Once in
this form, a local search can be applied in a straightforward
manner. The main task has been to develop a representa-
tion that does not cause an excessive increase in problem
size. Our work has resulted in theend-point orderingmodel

for temporal reasoning, described in Section 3.3. To eval-
uate the model we have used Allen’s Interval Algebra (IA)
[1] and have developed an efficienttemporal tree constraint
representation to capture the full set of IA relations. Addi-
tionally, we propose a new constraint weighting local search
algorithm for temporal reasoning, derived from a state-of-
the-art SAT technique (the Discrete Lagrangian Method or
DLM [10]). In Section 4.3 we give an empirical compar-
ison of this approach with Nebel’s backtracking algorithm
and finally discuss the future direction of our work.

2. Interval Algebra

Allen’s Interval Algebra (IA) provides a rich formal-
ism for expressing quantitative andqualitativerelations be-
tween interval events [1]. Additionally, reasoning with the
full set of IA relations is known to be NP-complete [12]. For
both these reasons (expressivity and difficulty) IA appeared
ideal for the implementation of our local search approach.
In IA, a time intervalX is an ordered pair of real-valued
time points orend-points(X−, X+) such thatX− < X+.
Hence we can map actual time values to(X−, X+) that sat-
isfy X− < X+. Such mappings are called interval- orI-
interpretations [6]. Allen further defined a setB of 13 basic
interval relations such that for any pair of time intervals the
combinedI-interpretation can be described by exactly one
basic relation. These relations capture thequalitativeaspect
of event pairs being before, meeting, overlapping, starting,
during, equal or finishing each other. As shown in Table 1,
each relation can be defined in terms of constraints on the
end-points of the constituent time intervalsX andY . Hence
we can say that anI-interpretationsatisfiesa relation iff it
satisfies these corresponding end-point constraints.
Indefinite information is expressed in IA as a disjunc-
tion of basic relations, known as aninterval formula:
X{B1..Bn}Y whereBi ∈ B. For example, the interval for-
mulaX{m, o}Y represents the disjunction (X meets Y) or
(X overlaps Y). Using this notation, an IA problem can be
simply represented as a finite set of interval formulasΘ.
Further, we can say thatΘ is I-satisfiable iff there exists an
I-interpretation such that at least one basic relation in each
interval formula is satisfied. ISAT is the problem of decid-
ing whetherΘ is satisfiable and is one of the basic tasks of
temporal reasoning [6].

3. Representing ISAT for Local Search

3.1. Current TCSP Approaches to ISAT

Current techniques for solving the ISAT problem fol-
low the general TCSP approach outlined in the introduction

Basic Relation Explanation End-point Relations

b :X beforeY X¾ - Y¾ - (X− < Y−) ∧ (X− < Y +)∧

bi :YafterX (X+ < Y−) ∧ (X+ < Y +)

m :X meetsY X¾ - Y¾ - (X− < Y−) ∧ (X− < Y +)∧

mi :Ymet byX (X+ = Y−) ∧ (X+ < Y +)

o :X overlapsY X¾ - (X− < Y−) ∧ (X− < Y +)∧

oi :Yolapped byX Y
¾ -

(X+ > Y−) ∧ (X+ < Y +)

d :X duringY X¾ - (X− > Y−) ∧ (X− < Y +)∧

di :Y includesX Y
¾ -

(X+ > Y−) ∧ (X+ < Y +)

s :X startsY X¾ - (X− = Y−) ∧ (X− < Y +)∧

si :Ystarted byX Y
¾ -

(X+ > Y−) ∧ (X+ < Y +)

f :X finishesY X¾ - (X− > Y−) ∧ (X− < Y +)∧

fi :Y finished byX Y
¾ -

(X+ > Y−) ∧ (X+ = Y +)

eq :X equalsY X¾ - (X− = Y−) ∧ (X− < Y +)∧

Y
¾ -

(X+ > Y−) ∧ (X+ = Y +)

Table 1. The 13 basic interval relations (note:
the relations (X− < X+) ∧ (Y − < Y +) are
implicitly assumed in each end-point relation)

[6, 11], using a combination of specialised path-consistency
and backtracking algorithms. These techniques search for a
consistent solution byeliminatingbasic relations from each
disjunctive constraint (or interval formula). A significant
group of tractable sub-classes of IA have been identified
for which finding a path-consistent scenario is sufficient to
guarantee full consistency [7]. These sub-classes are sub-
sets of the213 possible interval formulas allowed in the full
IA. IA algorithms exploit this information by searching for
path-consistent scenarios that only contain formulas from a
given tractable subset. This is more efficient than search-
ing for a single basic relation from each formula. In ad-
dition, specialised ordering heuristics have been developed
that further improve the performance of backtracking on full
IA [11].

3.2. Local Search and TCSPs

Unfortunately, little of this work is of direct relevance in
applying local search to IA. The basic principle behind a
hill-climbing local search is to find the set of local moves
(changes of instantiation) that most improve the overall so-
lution cost [5]. In a TCSP approach to IA, a change of
instantiation means changing the status of a basic relation
contained in an interval formula: either it has currently been
removed from the formula, hence it can be re-included, or
it is currently included and can be removed. In either case
we need to calculate the change in the overall solution cost.

The standard CSP approach would be to treat each interval
formula as a constraint and to measure cost in terms of un-
satisfied constraints. However, in a TCSP, the time interval
end-points are not instantiated and so we cannot obtain a
direct measure of the number of unsatisfied constraints. In
fact, unless we infer information about end-point values, we
can only measure theconsistencyof a solution and so can
only distinguish between instantiations on the basis of con-
sistency. This means a local search will need to test for the
level of consistency of each competing instantiation to ob-
tain the cost guidance needed to select a move. As such con-
sistency checking would, at best, be equivalent to solving
a problem using existing consistency-enforcing techniques
[8], we can conclude that a local search of this sort will not
achieve any benefits over existing approaches.

3.3. End-Point Ordering

AsΘ can easily be expressed in conjunctive normal form
(CNF), an obvious alternative for representing the ISAT
problem is to translateΘ into a propositional satisfiabil-
ity (SAT) formula. This would enable the application of
existing SAT local search techniques without modification.
However, as Nebel has already pointed out [6], expressing
the implicit dependencies between time interval end-points
in CNF produces a cubic increase in problem size, making
it unlikely that a SAT approach will yield significant bene-
fits. Consequently, our work has focussed on finding a more
compact representation of the ISAT problem that still cap-
tures end-point dependencies. This has resulted in theend-
point orderingmodel:
End-point ordering translates the ISAT problem into a stan-
dard CSP, taking the IA interval formulas to be constraints
and the time interval end-points to be variables. The main
innovation of our approach is that we define the domain
value of each time interval end-point to be the integer val-
ued position or rank of that end-point within thetotal order-
ing of all end-points. For example, consider the following
solutionS to a hypothetical IA problem:

S = X{b}Y ∧ Y {m}Z ∧ Z{bi}X
Given the solution is consistent, a set of possibleI-
interpretations must exist that satisfyS. One member of
this set is given byIa = (X− = 12, X+ = 15, Y − = 27,
Y + = 30, Z− = 30, Z+ = 45). For eachI-interpretation,
In, there must also exist aunique ordering of the time-
interval end-points that corresponds toIn. For example,
the ordering ofIa is given by (X− < X+ < Y − < Y + =
Z− < Z+) and is shown in the following diagram:

X

¾ -

Y

¾ -

Z

¾ -

From this we can assign an integer ordering to each of the
end-points, i.e. (X− = 1, X+ = 2, Y − = 3, Y + = 4,

Z− = 4, Z+ = 5). As anyI-interpretation can be trans-
lated into a unique end-point ordering, it follows that the
search space of all possible end-point orderings will neces-
sarily contain all possible solutions for a particular problem.
The advantage of using end-point ordering is that we can
now directly determine the truth or falsity of any interval
formula whose end-points have been instantiated. For ex-
ample, consider the interval formulaX{m, o}Y and the in-
stantiation(X− = 2, X+ = 4, Y − = 3, Y + = 7). From
Table 1 it follows thatX{m, o}Y can be expanded to:

((X− < Y −) ∧ (X− < Y +) ∧ (X+ = Y −) ∧ (X+ < Y +))∨
((X− < Y −) ∧ (X− < Y +) ∧ (X+ > Y −) ∧ (X+ < Y +))

and substituting in the end-point order values gives:

((2 < 3) ∧ (2 < 7) ∧ (4 = 3) ∧ (4 < 7))∨
((2 < 3) ∧ (2 < 7) ∧ (4 > 3) ∧ (4 < 7))

resulting inX{m, o}Y evaluating to true (note, this repre-
sentation causes several redundant comparisons which are
eliminated using thetemporal tree constraintrepresentation
described in Section 4.2).
As an interval formula or constraint only contains ordering
comparisons of the formX{<, =, >}Y , it follows that an
end-point ordering is theminimal amount of information
required to evaluate such a constraint. This further implies
that an integer domain consisting of all feasible order val-
ues for a particular end-point is the smallest possible do-
main size for that variable that allows unambiguous con-
straint evaluation. Going back to our discussion in relation
to local search, this is exactly what we required, i.e. the
most compact model that also allows us to evaluate solution
cost in terms of violated constraints.
In general, it is not practical to find the smallest possible
domain size for each variable, as this would first involve
finding all feasible solutions. However, we can set an upper
boundE to the domain size, equal to the total number of
end-points in a problem, such that each end-point domain
is of the form(1, 2, .., E). Depending on the method of
constraint representation (i.e. binary or non-binary) we can
then further prune domains using standard pre-processing
techniques such as arc- and path-consistency.
In summary, the end-point ordering model expresses ISAT
as the problem of ordering the end-points of each time-
interval such that all the interval formulas in the problem
are satisfied. We define the problem of deciding whether
such an ordering exists as the OSAT problem and anO-
interpretation as a mapping of time order positions onto
time interval end-points. As everyI-interpretation has a
correspondingO-interpretation, it follows that iff a solution
exists to the OSAT problem (i.e. it isO-satisfiable) there
necessarily exists anI-interpretation that satisfiesΘ (i.e. it
is alsoI-satisfiable).

4. Solving OSAT using Local Search

4.1. Constraint Weighting Local Search

A local search differs from a constructive technique
(such as backtracking) as the search begins with a complete,
but inconsistent, instantiation of variables. It then proceeds
to repair the solution by making a series of local moves that
minimise the overall cost [5]. The crucial questions for a
local search are: how to measure solution cost, choosing a
local move operator and what to do when no local move ex-
ists that can reduce the overall cost. For OSAT the solution
cost has already been defined, i.e. it is a count of the number
of false interval formulas for a given variable instantiation.
However, the question of defining a local move is still open:
In a standard binary CSP, a move involves changing values
for a single variable. When applied to end-point ordering
this approach would search by changing single end-points.
Alternatively we can define a move in terms of intervals and
search by simultaneously changing the interval start and end
points. Thisinterval domainapproach tries every possible
position for a given interval, ensuring that the best domain
value pairs are found, but also performing a greater number
of comparisons. In preliminary tests the improved guidance
of the interval domain outweighed the comparison cost and
so we continued with this approach in our final algorithm.
To deal with situations where no improving move exists we
have adopted the general DLM SAT trap escaping strategy
proposed in [10]. We chose DLM as it represents the cur-
rent state-of-the-art for SAT problems and can be simply
adapted to the general CSP domain. DLM escapes traps
by adding weight to all currently violated constraints. Cost
is measured as the sum of weights on violated constraints,
hence adding weight changes thecost surfaceof the prob-
lem, producing alternative cost reducing moves. In addi-
tion, DLM periodically reduces constraint weights to avoid
losing sensitivity to local search conditions. The TSAT al-
gorithm (see Figure 1) applies the basic DLM heuristics to
the temporal reasoning domain, and is controlled by three
parameters: MAXFLATS (set to 4) which specifies how
many consecutive non-improving (flat) moves can be taken
before constraint weights are increased, MAXWEIGHTS
(set to 10) which specifies how many constraint weight
increases can occur before the weights are reduced and
MAX FLAT WEIGHTS (set to 50) which specifies how
many consecutive weight increases can occur without an
improving move before the search is randomly restarted1.

4.2. Temporal Tree Constraints

Although there are213 possible disjunctions of the 13
basic IA relations, evaluating these disjunctions as interval

1DLM does not use a random restart strategy

procedureTSAT
Randomly instantiate every event(e−

i
, e+

i
) ∈ Events

Cost ← number of unsatisfied constraints inEvents
F latMoves ← FlatWeights ← WeightIncreases ← 0
while(Cost > 0)

StartCost ← Cost
Moves ← ∅
for each(e−

i
, e+

i
) ∈ Events do

let Di be the domain of(e−
i

, e+
i

)

for each domain pair(d−
ij

, d+
ij

) ∈ Di do
TestCost ← cost of(e−

i
← d−

ij
, e+

i
← d+

ij
)

if TestCost < Cost then
Cost ← TestCost
Moves ← ∅

end if
if TestCost = Cost then add(d−

ij
, d+

ij
) to Moves

end for
Randomly select and instantiate(d−

ij
, d+

ij
) ∈ Moves

end for
if Cost < StartCost then FlatMoves ← FlatWeights ← 0
else if(++FlatMoves) > MAX FLATS then

increment weight on all unsatisfied constraints
increaseCost by the number of unsatisfied constraints
FlatMoves ← 0
if (++WeightIncreases) > MAX WEIGHTS then

decrement weight on all constraints with weight> 1
decreaseCost by number of decremented constraints
WeightIncreases ← 0

else if(++FlatWeights) > MAX FLAT WEIGHTS then
Randomly instantiate every event(e−

i
, e+

i
) ∈ E

Cost ← number of unsatisfied constraints inE
FlatWeights ← WeightIncreases ← 0

end if
end if

end while
end

Figure 1. The TSAT Local Search Algorithm
for Temporal Reasoning

end-point constraints is relatively easy. This is because all
constraints involve four basic evaluations:

((X−{r}Y −), (X−{r}Y +), (X+{r}Y −), (X+{r}Y +))

wherer = {<,=, >} and any fully instantiated pair of in-
tervalsmustsatisfy a single basic relation [6]. This is il-
lustrated in the comparison tree of Figure 2: here all con-
straints that evaluatetrue follow a single path from root to
leaf, skipping the bracketed comparisons (as these are im-
plied byX− < X+ or Y − < Y +). For example, the short-
est path tob (assuming the best ordering) is given by:

(X− < Y −) ∧ (X+ < Y −)

as (X− < Y −) → (X− < Y +) and (X+ < Y −) →
(X+ < Y +). Similarly, the longest path tooi (assuming
the worst ordering) is given by:

¬(X− < Y −) ∧ ¬(X− = Y −) ∧ ¬(X− = Y +)∧
¬(X− > Y +) ∧ ¬(X+ < Y +) ∧ ¬(X+ = Y +)

Using interval formulas, we can construct comparison trees
for eachmember of the subset of the213 possible disjunc-
tions that appear in a particular problem. We term this type

»»»»»»»9
?
XXXXXXXz

X− < = > Y −

? ? ©©©¼ ?@R
X− (<) (<) < = > Y +

¡ª ?HHHj ? ? ? ?
X+ < = > (>) (>) (>) (>) Y −

? ? ¡ª ?@R ¡ª ?@R ¡ª ?@R ? ?
X+ (<) (<) < = > < = > < = > (>) (>) Y +

b m o fi di s eq si d f oi mi bi

Figure 2. End-point Comparison Tree for the
13 Basic Relations

»»»»»»»9
XXXXXXXz

X− < > Y −

? ©©©¼ @R
X− (<) < > Y +

¡ª HHHj ? ?
X+ < > (>) (>) Y −

? ¡ª @R ?
X+ (<) < > (>) Y +

b m o fi di s eq si d f oi mi bi

Figure 3. The Temporal Tree Constraint for
X{b, bi, o, oi}Y

of constraint representation atemporal tree constraint. Pro-
cessing these trees we can then detectfailure with fewer
comparisons, leaving the best and worst cases for success
unchanged. The tree in Figure 2 represents the temporal
tree constraint for all 13 possible disjunctions betweenX
andY and so is redundant (i.e.X andY are unconstrained).
Figure 3 shows the more useful temporal tree constraint for
X{b, bi, o, oi}Y . Here we can see that an instantiation of
X− = Y − will fail at the first level and no further process-
ing of the tree will occur.
An alternative method of constraint representation would
be to express the problem as a true binary CSP, developing
binary constraint extensions representing all possible com-
binations of end-points for a given pair of intervals. In such
a model a constraint could be evaluated in a single look-up.
However, we rejected this approach due to the large space
overhead required.

4.3. Results

The TSAT algorithm is specifically intended to solve
problems which are too large or difficult for a standard
backtracking and path-consistency approach. To address
this we set out to create a problem set on which backtrack-
ing has difficulty. Using Nebel’s generator [6], we firstly
created two large sets of random, consistent problems. The

first set was made up of 40 node problems with degree=
75% and label size= 9.5. In the second set the num-
ber of nodes was increased to 80. We then ran both test
sets on Nebel’s backtracking-based problem solver [6] until
100 problems were found in each set that backtracking had
failed to solve (the 40 node problems were timed out after 5
minutes and the 80 node after 10 minutes). We then solved
each of these problems 10 times using the TSAT algorithm
(all experiments were conducted on a Intel Pentium Celeron
450MHz machine with 160Mb of RAM running FreeBSD
4.2).
The graphs in Figures 4 and 5 show the proportion of prob-
lems solved against the average run-times for TSAT. Each
problem is considered solved if an answer is found in at
least one of the 10 runs of TSAT. The graph run-times
are then calculated by dividing the total time taken for all
10 runs by the number of successful runs (in parallel with
Nebel’s algorithm, TSAT was timed out at 5 minutes for
the 40 node problems and 10 minutes for 80 nodes). As
TSAT solved all problems in less than 10 runs, both graphs
show 100% success, whereas the % solved value in Table
2 reports theoverall success rate for the 1000 runs on each
problem set.
The 40 node problem results indicate that TSAT finds these
instances relatively easy, with 100% of problems solved
within 20 seconds and a median run-time of 4.11 seconds.
This is in contrast to Nebel’s algorithm which failed to solve
any of these problems after 300 seconds. As would be ex-
pected, the 80 node problems proved harder for TSAT, with
18% failure at 600 seconds and a median run-time of 215
seconds. However, on average, TSAT is still able to solve
any of the randomly generated 80-node instances in less
than the 600 second time-out at which Nebel’s algorithm
was terminated.
While it can be argued that we have chosen just those prob-
lems on which Nebel’s algorithm has difficulty, and hence
that our comparison is biased, our intention is not to show
that TSAT is superior to backtracking in all situations, just
in those cases where backtracking has difficulty. If the
lessons from SAT are carried across to the temporal rea-
soning domain, we would expect backtracking to be bet-
ter on smaller/easier problems and always to be used when
the objective is to prove inconsistency. The current TSAT
algorithm represents a first pass at using local search for
temporal reasoning and so has not been optimised for the
temporal reasoning domain. For instance, the TSAT param-
eter settings were taken directly from the SAT algorithm
from which it was developed. Also, given the relatively
small number of average moves taken during the search
(224 for 40 nodes and 1235 for 80 nodes), it is unlikely
the TSAT weight reduction heuristic is having a significant
effect. Finally, TSAT is performing many redundant con-
sistency checks, which we anticipate can be eliminated us-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pe
rc

en
t s

ol
ve

d

time (sec.)

Figure 4. TSAT plot for 40 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 150 190 230 270 310 350 390 430 470

pe
rc

en
t s

ol
ve

d

time (sec.)

Figure 5. TSAT plot for 80 nodes

ing simple domain skipping heuristics. We are currently
addressing all these areas and expect to present a more de-
tailed empirical study of the relative merits local search for
temporal reasoning in our future work.

5. Conclusion

In conclusion, the paper has demonstrated that an end-
point ordering local search approach to temporal reasoning
is both feasible and practical. The TSAT algorithm is a first
indication that local search can outperform the traditional
TCSP backtracking approach on larger, more difficult prob-
lems. Our work opens up several avenues for further re-
search. Firstly, we have not explored alternative local search
heuristics, such as tabu search or random walk. Also the
TSAT algorithm can be further improved with the use of do-
main skipping techniques that avoid redundant tests and we
have yet to perform an exhaustive search for the optimum
TSAT parameter settings. Finally, local search appears es-

CPU Time Number of Moves

Problem % Mean Median Std Mean Median Std
Size Solved Dev Dev

40 nodes 100.0 6.38 4.11 8.43 339 224 418.14
80 nodes 82.0 244.21 215.10 116.48 1415 1235 666.81

Table 2. Average TSAT results for 1000 runs
on each problem set

pecially promising for over-constrained temporal reasoning
problems, where standard consistency-checking techniques
become ineffective [2, 3].

References

[1] J. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[2] M. Beaumont, A. Sattar, M. Maher, and J. Thornton. Solving
over-constrained temporal reasoning problems. InProceed-
ings of the 14th Australian Joint Conference on Artificial In-
telligence (AI 01), pages 37–49, 2001.

[3] E. Freuder and R. Wallace. Partial constraint satisfaction.
Artificial Intelligence, 58(1):21–70, 1992.

[4] A. Mackworth. Constraint satisfaction. Technical re-
port, TR-85-15, University of British Columbia, Vancouver,
Canada, 1985.

[5] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimiz-
ing conflicts: a heuristic repair method for constraint sat-
isfaction and scheduling problems.Artificial Intelligence,
58:161–205, 1992.

[6] B. Nebel. Solving hard qualitative temporal reasoning prob-
lems: Evaluating the efficiency of using the ORD-Horn
class.Constraints, 1:175–190, 1997.

[7] B. Nebel and H. B̈urckert. Reasoning about temporal rela-
tions: A maximal tractable subclass of Allen’s interval alge-
bra. Journal of the ACM, 42(1):43–66, 1995.

[8] E. Schwalb and L. Vila. Temporal constraints: A survey.
Constraints, 3:129–149, 1998.

[9] B. Selman, H. Levesque, and D. Mitchell. A new method for
solving hard satisfiability problems. InProceedings of the
Tenth National Conference on Artificial Intelligence (AAAI-
92), pages 440–446, 1992.

[10] Y. Shang and B. Wah. A discrete Lagrangian-based global
search method for solving satisfiability problems.J. Global
Optimization, 12:61–99, 1998.

[11] P. van Beek and D. Manchak. The design and an experimen-
tal analysis of algorithms for temporal reasoning.Journal of
AI Research, 4:1–18, 1996.

[12] M. Vilain and H. Kautz. Constraint propagation algorithms
for temporal reasoning. InProceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), pages 377–
382, 1986.

