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Abstract Conjunctive normal forms (CNF) of structured satisfiability problems
contain logic gate patterns. So Boolean circuits (BC) by and large can be obtained
from them and thus structural information that are lost in the CNF can be re-
covered. However, it is not known which logic gates are useful for local search on
BCs or which logic gates in particular help local search the most and why. In this
article, we empirically show that exploitation of xor, xnor, eq, and not gates is a
key factor behind the performance of local search algorithms using single variable
flips when adapted to logic gate constraints. Moreover, controlled experiments
and investigations into the variables selected for flipping further elucidates these
findings. To achieve these conclusions, we have adapted the AdaptNovelty+ and
CCANr algorithms to cope with logic gate-based constraint models. These are two
prominent families of local search algorithms for satisfiability. We performed our
experiments using a large set of benchmark instances from SATLib, SAT2014, and
SAT2020. We have also presented techniques to eliminate cycles among logic gates
that are detected from CNF and to propagate equivalence of variables statically
through the logic gate dependency relationships.

Keywords Satisfiability · Constraints · Local Search · Logic Gates

1 Introduction

Propositional Satisfiability (SAT) is an NP-complete problem (Cook 1971). It is
of great interest both to the scientific and industrial communities. It is central to
many domains of computer science and artificial intelligence. It is widely studied
for its importance both in theory and applications.

Structured SAT problem instances in the conjunctive normal form (CNF) typ-
ically contain clausal patterns that represent logic gates. Logic gates comprise
output dependent variables whose values functionally depend on that of input
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variables (Ostrowski et al. 2002). Variables whose values do not functionally de-
pend on that of any other variables are called independent variables. Detection of
such logic gates essentially allows to obtain Boolean Circuits (BC). Consequently,
identified dependent variables are eliminated from the search space representation
and implicitly satisfied clauses representing those logic gates are also removed from
the search objective function. Values of dependent variables can be immediately
or transitively inferred from the values of the independent variables, leaving the
search exponential only in the number of independent variables. This is a great
advantage. However, removing the clauses badly affects the effectiveness of the
scoring functions used to differentiate the quality of the neighbouring solutions
in the search space, since the possible measurement of badness has fewer degrees
when such clauses are removed. There are two other drawbacks of recognising BCs.
Cyclic dependencies between variables can appear as a hindrance to the computa-
tion of the dependent variables. Also, computation of dependent variables under
any change in the independent variables can incur an overhead to the search. De-
pendency relationships identified from the CNF formulas can be nested to a large
depth. Deeply nested dependencies increase change propagation cost.

One way to efficiently simplify a given CNF formula is to detect logic gate
structures using a coprocessor (Manthey 2012). The simplified and reduced CNF
formula can then be used during search (Balint and Fröhlich 2010; Cai et al. 2015).
Such approaches have significantly boosted performance of systematic search solvers.
This is achieved first by identifying the dependent variables and then by run-
ning a version of the Davis-Putnam-Logemann-Loveland (DPLL) procedure (Davis
et al. 1962) on the remaining independent variables (Jeroslow and Wang 1990). In
this process, if any selection decision contradicts the output of an identified gate,
the selection is discarded and a backtracking move is made. Further research on
conflict-driven clause learning (CDCL) and input restricted branching (IRB) has
been reported (Järvisalo and Niemelä 2008; Järvisalo and Junttila 2009). Recent
SAT competitions are won by solvers (Manthey et al. 2016; Ryvchin and Nadel
2018; Biere et al. 2020) that are mostly CDCL based.

Over time, algorithms have been developed to detect various logic gates using
their clausal representations (Tseitin 1983; Plaisted and Greenbaum 1986; Os-
trowski et al. 2002; Roy et al. 2004). Other gate detection algorithms use pattern
matching techniques (Fu and Malik 2007; Seltner 2014) on CNF formulas, but
they find maximal acyclic circuits selecting maximum subsets of matching gates.
Yet other gate detection algorithms use connections between gate structures and
blocked sets (Järvisalo et al. 2012; Balyo et al. 2014; Iser et al. 2015), but on other
types of problem encoding than CNF. This work uses CNF encoding for input.

Stochastic local search (SLS) is known as the most effective approach for solving
random satisfiable problem instances. However, for structured satisfiable problem
instances, SLS solvers have not been as effective as systematic solvers, particularly
those that incorporate CDCL techniques. A potential reason for this is that the
best performing pure SLS solvers (which have not been hybridised with systematic
solvers), such as CCAnr (Cai et al. 2015) that uses configuration checking tech-
niques), do not directly exploit the structural properties that remain hidden in
CNF. The hybrid solvers e.g. CryptoMiniSat+CCAnr (Soos et al. 2020) and other
solvers that use CCAnr perform well in the satisfiability competitions (Heule et al.
2018; Balyo et al. 2020; Peng et al. 2020; Luo et al. 2020). Besides CCAnr, other re-
cent pure local search algorithms include probSAT (Heule et al. 2018) and YalSAT
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(Biere 2016) but they work in tandem with CDCL solvers. Further local search
algorithms that work on random satisfiability instances include BRASP(Fu et al.
2020) and EPEFV(Fu et al. 2021). This work considers only pure local search
solvers for structured satisfiable problem instances.

Following the work by Ostrowski et al. (2002) on extracting logic gates from
CNF formulas, Pham et al. (2007) in a landmark IJCAI best paper study, de-
veloped the notion of a dependency lattice—essentially a multi-layered directed
acyclic graph (DAG)—in order to dynamically calculate the cost of potential SLS
moves in CNF formulas from which logic gates had been extracted. Pham et al.
(2007) then adapted the AdaptNovelty+ (Hoos 2002) algorithm to cope with logic
gates and performed preliminary experiments to show that the new algorithm
could solve a small selection of hard structured benchmark satisfiability problem
instances significantly faster than its original CNF based counterpart. Unfortu-
nately, not much work has been done later in this direction, particularly on how
logic gates can be better exploited within local search taking their pros and cons
into account. Moreover, no extensive experimentation has been reported yet using
a large benchmark set or any other local search algorithm. As such the key lower
level technical reasons behind these performance boost are yet to be known.

In this article, we extend the work of Pham et al. (2007): (i) We describe the
solver system formally and in great details; (ii) We perform very extensive ex-
periments using a large number of benchmark instances from SATLib and SAT
competition 2014 and 2020 (SAT14 and SAT20); (iii) We analyse the effects of
various types of logic gates and their interactions, and identify useful logic gates for
local search. (iv) We develop procedures to detect and remove dependency cycles
between logic gates so that a DAG can still be obtained; (v) We develop proce-
dures to statically propagate through the DAG the equivalence relations detected
between variables by the gate identification procedures; (vi) Besides using Adapt-
Novelty+, we evaluate these extensions using another recent SLS solver named
CCAnr (Cai et al. 2015). These two actually represent two different prominent
families of local search algorithms for CNF based satisfiability problems. For this
work, both algorithms are adapted to cope with logic gate constraints. All imple-
mentations have been done on top of Kangaroo (Newton et al. 2011), a generic
Constraint-Based Local Search (CBLS) system that supports efficient incremen-
tal propagation of changes through the DAG during search. While we reaffirm
the basic conclusion of Pham et al. (2007) but we do that using a large set of
benchmark instances (SATLib, SAT14, and SAT20) and two different local search
algorithms (AdaptNovelty+ and CCAnr). However, our main and new contribution
in this paper is to identify the logic gates that are behind the performance boost of
the local search algorithms. We empirically show that exploitation of xor, xnor, eq,
and not gates is a key factor behind this performance. Presence of large numbers
of these gates in the aforementioned benchmark instances supports this. Moreover,
controlled experiments and investigations into the variables selected for flipping
further elucidates these findings.

The rest of the article is organised as follows: Section 2 provides preliminary
knowledge; Section 3 describes our search model; Section 4 describes our search
algorithms; Section 5 presents our experimental results and analyses; and finally,
Section 6 concludes this article.
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2 Preliminaries

We provide notations and terminologies for satisfiability problems using CNF and
BC. We also briefly overview local search algorithms for satisfiability, detection of
gates from clausal patterns, and propagation of gate constraints. Some parts of
these overviews could be skipped by an expert reader.

2.1 CNF Satisfiability

A variable v has its domain B ≡ {true, false} with only Boolean values. A
literal l is a variable v or its negation v with its involving variable v(l) ≡ v.
A literal l ≡ v is a positive literal with sign s(l) = true. A literal l ≡ v is a
negative literal with sign s(l) = false. Literals v and v are opposite to each
other. Moreover, literal l denotes the opposite literal of a given literal l.

A clause c ≡
∨

k lk is a disjunction of |c| literals. An empty clause Θ has
no literal and has a value false. A unit clause has only one literal and has the
same value as the literal has. A satisfied clause has a value true while a falsified
clause has a value false. We use l ∈ c to denote a literal l appears in a clause
c. We also use v @ c to denote a variable v appears in a clause c i.e. there is a
literal l ∈ c such that v(l) = v. We further use V (c) ≡ {v : v @ c} to denote the
set of involving variables of a clause c.

A CNF formula, or formula, F ≡
∧

j cj is a conjunction of |F | clauses.
An empty formula Ω has no clause and has a value true. A formula having one
clause has the same value as the clause has. A satisfied formula has a value
true while a falsified formula has a value false. We use c ∈ F to denote a clause
appears in a formula F and ‖c‖ = maxc∈F |c| to denote the maximum number
of literals in a clause in the formula F . We also use v @ F to denote a variable v
appears in a formula F i.e. there is a clause c ∈ F such that v @ c. We further
use V (F ) ≡ {v : v @ F} to denote the set of involving variables of a formula F .

Given a set V of variables and W ⊆ V , a partial assignment
−→
W ≡ {〈v,−→v 〉 :

v ∈ W} assigns a value
−→
W (v) = −→v to each variable v ∈ W just once, where

−→v ∈ B. Given a clause c : V (c) ⊆ W or a formula F : V (F ) ⊆ W , a satisfying

partial assignment (or falsifying partial assignment)
−→
W for c or F satisfies

(or falsifies) c or F respectively. A partial assignment
−→
W is called an assignment

−→
V if W = V ; we define satisfying and falsifying assignment analogously.

A CNF SAT problem instance S ≡ 〈V, F 〉 has a set V of variables and
a CNF formula F such that V (F ) ⊆ V . Given a CNF SAT problem instance

S ≡ 〈V, F 〉, the problem is to find a satisfying assignment
−→
V for the formula F . If

there exists such a satisfying assignment
−→
V of S, then

−→
V is a solution to S and

S is satisfiable; otherwise S is unsatisfiable.

Unit clause propagation (UCP) is a well-known method to simplify a SAT
formula (Davis et al. 1962). Given a formula F , for each unit clause c ∈ F with
literal l ∈ c, a value is assigned to the variable v(l) such that c is true. Each clause
c ∈ F having literal l ∈ c are the removed form F . Also, each literal l is removed
from each remaining clause c ∈ F with l ∈ c, leading to further unit clauses.
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2.2 Local Search for CNF SAT

A Local Search (LS) algorithm for SAT starts from an initial assignment
−→
V0. The initial assignment is typically obtained by assigning a random value to
each variable. In each iteration i ≥ 0, the search then moves from the current

assignment
−→
Vi to the next assignment

−−→
Vi+1 in quest of a ‘better’ assignment

until a satisfying assignment is found or a given termination criterion is met.
A local move, or move, is an operation that changes values of a number of

variables i.e. represents a partial assignment. In this work, we consider a flip move
that at a time changes the value of only one variable and changes it either from
true to false or vice versa, since the domain of each variable is B. The application
of a selected move in each iteration in local search is typically preceded by an
evaluation of a subset of potential moves to select one of the ‘best’ ones.

Local search algorithms for SAT typically uses three metrics to evaluate a po-

tential flip move. Given the current assignment
−→
V , make(

−→
V , v) (or break(

−→
V , v)) is

the number of falsified (or satisfied) clauses that will become satisfied (or falsified)

after flipping v, and score(
−→
V , v) is the difference make(

−→
V , v)− break(

−→
V , v).

LS algorithms are incomplete but are still embraced in SAT since they often
find solutions quickly. LS algorithms might suffer from revisitation of the same
assignment, face stagnation at plateaus, or get stuck at local optima. Various
approaches are taken to address these issues; a few of them are below.

• Using Stochasticity: Instead of adopting greedy strategies to generate
potential moves or to accept the selected move, decisions could be taken in-
corporating randomness. SLS does this.

• Random Restart: A full restart randomly assigns values to all variables. A
partial restart only to a subset of variables (Ryvchin and Strichman 2008).

• Tabu Technique: A variable flipped in the current iteration cannot be flipped
for the next τ iterations, where τ is the tabu tenure (Mazure et al. 1997).

• Configuration Checking (CC): A variable once flipped cannot be flipped
again until one of its neighbour is flipped, where the neighbour relation-
ship neighbour(v0, v1) : V × V 7→ B between each two variables v0 6= v1
are to be defined in a problem specific way such that neighbour(v0, v1) =
neighbour(v1, v0) (Cai et al. 2015). For a given SAT instance S ≡ 〈V, F 〉, we
define neighbour(v0, v1) to be true, if there is a clause c ∈ F such that v0 @ c
and v1 @ c; otherwise neighbour(v0, v1) is false. CC and tabu both help avoid
revisitation. While tabu is chronology based, CC is problem structured based.

2.3 Boolean Circuits

A logic gate, or gate, has a form v0 ←[ g(v1, v2, . . . , vn), where n is a positive
integer, g : Bn 7→ B is a function, v0 is g’s output variable, and v1, v2, . . . , vn
with vk 6= v0 for any 1 ≤ k ≤ n are g’s input variables or parameters. A
gate with n input variables is an n-ary gate. We say v0 has a definition v0 ≡
g(v1, . . . , vn) using a defining function g on variables v1, . . . , vn. We use v0 � vk
where 1 ≤ k ≤ n to denote v0 computationally immediately depends on vk.
Each gate essentially imposes a constraint of satisfying the functional consistency.
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The output variable of a gate can be an input variable of another gate. This
can go on, assumingly finitely, leading to a directed acyclic graph. Given a
set C of gates, we use Λ(C) to denote its set of in-out variables obtained by
accumulating the input and output variables of the gates.

Given a set C of gates and their in-out variables, for any two variables v0 6= v1,
we use v0 ≪ v1 to denote v0 computationally transitively depends on v1 i.e.
either v0 � v1 or there exists a variable v2 such that v0 � v2 and v2 ≪ v1.

Given a set C of gates and their in-out variables, a variable is called a depen-
dent variable if it is the output variable of any gate in the given set; otherwise, it
is called an independent variable. A dependent variable is called a nonterminal
variable if it is an input variable of any gate in the given set; otherwise, it is called
a terminal variable. Let I, D, N and T respectively be the sets of independent,
dependent, nonterminal, and terminal variables. So Λ(C) ≡ I ∪D and D ≡ N ∪T .

For a dependent variable v0, the involving variables of v0 or its defining
function g is a set I(v0) ≡ I(g) ≡ {v1 ∈ I : v0 ≪ v1} of independent variables that
v0 transitively depends on. A dependent variable v0 has a cyclic dependency
if there is another dependent variable v1 6= v0 such that v0 ≪ v1 and v1 ≪ v0.
A dependency cycle involving a dependent variable v0 is defined as a sequence
〈v0, v1, . . . , vn, v0〉, where vk � v(k+1) mod (n+1) for each 0 ≤ k ≤ n.

A Boolean circuit, or circuit, is a set C of gates such that (i) no two gates has
the same output variable (no multiple definitions) and (ii) no output variable
has a cyclic dependency (no cyclic dependency). Besides the essential proper-
ties, a circuit can have a desirable property to ensure there exists no two dependent
variables with the same defining function (no repeated computation).

A constrained circuit Σ ≡ 〈C,W 〉 comprises a circuit C and a subset W
of terminal variables such that each constrained variable v ∈ W has value
true. A constrained circuit is satisfied if each constrained variable has value true;
otherwise, the constraint circuit is falsified. Given a constrained circuit Σ ≡
〈C,W 〉, if there is an assignment

−→
I that results in satisfaction of Σ as values of

dependent variables are computed through the circuit, then
−→
I is a solution to Σ

and Σ is satisfiable; otherwise, Σ is unsatisfiable.
Given a circuit C, an independent variable v has a gate level L(v) = 0 and a

dependent variable v0 ≡ g(v1, . . . , vn) has L(v0) = max1≤k≤n L(vk) + 1.

2.4 Logic Gate Detection

Logic gates can be represented by formulas (Tseitin 1983; Plaisted and Greenbaum
1986; Ostrowski et al. 2002; Roy et al. 2004), which we show in (1)–(8) for eq, not,
xor, xnor, and, or, nand, and nor gates. Gates eq, not, xor, and xnor have 2n clauses
each while gates and, or, nand, and nor have n + 1 clauses each, where n is the
arity of the gates. Each formula essentially produces a clausal pattern that can
be used to identify unique subsets of clauses representing individual gates. As long
as the output of a gate is consistent with the functional value computed from the
input variables, the clauses in the clausal pattern representing the gate are all
satisfied and thus all such clauses can be removed from the formula.

v0 ←[ eq(v1) ≡ (v0 ∨ v1) ∧ (v0 ∨ v1) odd negative literals per clause (1)

v0 ←[ not(v1) ≡ (v0 ∨ v1) ∧ (v0 ∨ v1) even negative literals per clause (2)
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v0 ←[ xor(v1, . . . , vn) ≡
∧

m is odd

([∨
k

lk

]
: m of the lks are negative

)
n > 1 (3)

v0 ← [ xnor(v1, . . . , vn) ≡
∧

m is even

([∨
k

lk

]
: m of the lks are negative

)
n > 1 (4)

v0 ← [ and(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

vk

)
∧
[ ∧
k>0

(v0 ∨ vk)
]
n > 1 (5)

v0 ← [ or(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

vk

)
∧
[ ∧
k>0

(v0 ∨ vk)
]
n > 1 (6)

v0 ←[ nand(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

vk

)
∧
[ ∧
k>0

(v0 ∨ vk)
]
n > 1 (7)

v0 ← [ nor(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

vk

)
∧
[ ∧
k>0

(v0 ∨ vk)
]
n > 1 (8)

We generalise and and nor gates to a cg (conjunction generalised) gate, and
or and nand to a dg (disjunction generalised) gate. While and, or, nand, nor gates
use input variables directly, the cg and dg gates internally allow selective negation
of input variables before using them. To achieve this functionality, we define a
juxtaposition operator e.g. skvk ≡ (if sk then vk else vk). The cg and dg gates
use the juxtaposition operator along with the static parameters sks, which are
specified as part of the gate definition, and do not change during search. The
input variables vks, in contrast, take various values during search.

v0 ←[ cg〈s1,...,sn〉(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

skvk

)
∧
[∧
k>0

(v0 ∨ skvk)
]
n > 1 (9)

v0 ←[ dg〈s1,...,sn〉(v1, . . . , vn) ≡
(
v0 ∨

∨
k>0

skvk

)
∧
[∧
k>0

(v0 ∨ skvk)
]
n > 1 (10)

We define gate uniqueness and gate categories for the gates mentioned above.

Definition 1 (Gate Uniqueness) We uniquely identify each logic gate with its
clausal pattern and the variables in those clauses. For example, v0 ←[ eq(v1) ≡
(v0 ∨ v1) ∧ (v0 ∨ v1) and v1 ← [ eq(v2) ≡ (v1 ∨ v2) ∧ (v1 ∨ v2) are two different eq
gates, both having the same clausal pattern.

Definition 2 (Gate Types) Gate types are based on various properties of the
defining functions such as conjunction (c), disjunction (d), exclusion (x),
equivalence (e), parity (p), and aggregation (a).

ctype = {and, nor, cg} xtype = {xor, xnor} atype = ctype ∪ dtype
dtype = {or, nand, dg} etype = {eq, not} ptype = xtype ∪ etype

We refer to Ostrowski et al. (2002) and Roy et al. (2004) for gate detection
algorithms using (1)–(10). Below we summarise key aspects of gate detection.

atype: The output variable of an n-ary atype gate can be uniquely identified from
the clause having n+ 1 literals. From a formula F having no repeated literals
and no repeated clauses, using (5)–(10), we can detect all possible atype gates
uniquely in O(|F | × ‖c‖2) time taking O(|F | × ‖c‖) memory. Each such gate
is detected once. There could be at most 1

3 |F | atype gates; this happens when
each gate is a binary atype gate with 3 clauses.
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ptype: The output variable of a ptype gate cannot be uniquely identified from
its clausal pattern; each variable appearing the clausal pattern is a candidate.
Later, we discuss how in this work we determine output variables of ptype gates.
From a formula F having no repeated literals and no repeated clauses, using
(5)–(10), we can detect all possible ptype gates uniquely without determining
their output variable in O(|F |2×‖c‖) time taking O(|F | × ‖c‖) memory. Each
such gate is detected once. There could be at most 1

2 |F | ptype gates; this
happens when each gate is an etype gate with 2 clauses.

2.5 Gate Constraint Propagation

The definition of each dependent variable imposes an obligation that the out vari-
able of a gate must have a value equal to the functional value computed from the
input variables. Discharging this obligation requires propagation of changes from
the input variables of the gate to its output variables. One way to discharge this
obligation is to use the one-way constraint propagation, where the output vari-
able upon each query returns a value consistent with functional value computed
from the values of the input variables; the consistency could be maintained on de-
mand or upon any change in the input variables. An invariant in the constraint
paradigm implements a one-way constraint propagation mechanism. An invariant
engine provides the guarantee and as such updates the value of the dependent
variables as the values of the independent variables change. While one-way propa-
gation method is a dynamic technique that works during search, constraints can
be propagate statically before the search. The value of a constrained variable can
be replaced and the formula can be simplified. If a variable has the same or op-
posite value of another variable, the first can be replaced by the equivalent literal
involving the other variable and the formula can be simplified.

2.6 SLS for Boolean Circuits

SLS algorithms for Boolean circuits were introduced by Järvisalo et al. (2008b,a);
however, only justification of the circuit was sought rather than finding a satisfying
assignment. The justification based SLS is inspired by the justification frontier
heuristics by Kuehlmann et al. (2002)) for systematic search solvers. In justification
based SLS, search steps aim at correcting local inconsistencies within a circuit by
justifying unjustified gates that are selected from the justification frontier. The
CRSat algorithm by Belov and Stachniak (2010) incorporated Boolean constraint
propagation (BCP) (Belov and Stachniak 2009) technique in the SLS presented
by Järvisalo et al. (2008b). Then, the D-CRSat (Belov et al. 2011) algorithm
extended the CRSat algorithm by implementing structure-based heuristics and
limited reasoning by forward propagation. The forward propagation essentially
resembles to the dependency propagation through the DAG in this work.

This work is different from the research mentioned above since we do not have
gate structures beforehand. We find gates from CNF using existing algorithms.
Then, our main focus is to study which subsets (gate type wise) of those identified
gates better improve local search algorithms and why.
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3 Our Constrained Circuit for CNF SAT

We describe how to build constrained circuits from CNF SAT problem instances
using and not using logic gates. We then describe how we adapt and implement
state-of-the-art local search families to constrained circuits.

Given a formula, with our own implementation, we always perform certain
preprocessing steps typically used in SAT research. We eliminate repeated literals
from clauses keeping only one, eliminate clauses having opposite literals, eliminate
repeated clauses from the formula keeping only one, and perform UCP to eliminate
all unit clauses. These preprocessing steps need O(|F |×‖c‖) time and O(|F |×‖c‖)
memory. Henceforth, we assume a given SAT problem instance has no unit clause,
no repeated literal or opposite literals in the clauses, and no repeated clause in
the formula.

We first describe how a baseline constrained circuit is obtained directly from
CNF without detecting any gates. We then describe gate graphs that hold gate
information as gates are detected and are then processed before building a con-
strained circuit. Next, we describe the steps involved in the processing of the gates.
Finally, we describe building constrained circuits from processed gate graphs.

3.1 Baseline: CNF to Circuits without Gate Detection

Given a SAT instance S ≡ 〈V, F 〉, for each clause cj ≡ l1∨ . . .∨ ln, for convenience
abusing the clause symbol cj to treat as a variable symbol, we define a dg gate
cj ←[ dg〈s(l1),...,s(ln)〉(v(l1), . . . , v(ln)). Accumulating all these gates, we get a set
C of gates with I = V and D = T = {cj ∈ F} and so obtain a constrained circuit

Σ = 〈C, T 〉. It is easy to prove that
−→
I is a solution to Σ iff

−→
V is a solution to S. The

time and memory complexities of transforming S to Σ are both O(|V |+ |F |×‖c‖)
while that of transforming a solution I to a solution V is O(1) as I = V .

3.2 Gate Graphs: Data Structures to Hold Gates

We define a gate node to hold each individual gate and a gate graph to hold all gate
nodes. Gates are detected from the given formula of a SAT instance S. Also, gates
and their output variables are added to get a constrained circuit Σ that captures
S. Moreover, hypothetical null gates are added treating independent variables as
their output variables. Gate nodes help simply a circuit using known values of
some variables or equivalence relationships of some other variables.

Definition 3 (Gate Node) A gate node N ≡ 〈o, g, ρ, ψ, κ, ε, ν, φ, σ〉 has a num-
ber of components described below. Each component can be accessed by using a
dot operator. For example, N.o denotes the o component of a gate node N .

o denotes either the output variable of a gate or an independent variable. For
ptype gates, until the gate output is determined, o might be temporarily null.

g is the gate type (any type from atype∪ ptype) when o is the output of the gate
and so is a dependent variable. If o is an independent variable, g is null.
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ρ = {v : o � v} are the input variables of the gate if the value of o is not fixed.
When |ρ| = 1, instead of ρ, for convenience, we use i to denote the only input
of the gate g. Notice that ρ = ∅, if o denotes an independent variable.

ψ = {v : v � o} are the variables having o as an input in their defining functions,
if the value of o is not fixed. Notice that ψ = ∅, if o denotes a terminal variable.

κ ∈ {true, false} denotes whether o is a constrained (terminal) variable.

ε is either null or denotes the literal which o is equivalent to. If ε is not null, the
variable denoted by o is to be replaced by the literal denoted by ε.

ν is either null or the value true/false as is fixed for the variable denoted by o.

φ denotes the clauses representing the gate detected/added, when g is not null.

σ ∈ {true, false} denotes whether o is a SAT variable and is not an added one.

Some notes on gate nodes are below.

• N ≡ 〈o, null, ∅, ψ, false, null, null, Ω, σ〉 represents an independent variable o.
• Each gate node has a unique o if φ is Ω i.e. represented by an empty set of

clauses. If φ is not Ω, then g is not null as there is a corresponding gate.
• When a gate is detected, a gate node N is created with g, ρ, φ, and σ = true.

Moreover, ψ = ∅, κ = false, ε = null, and ν = null with o could be temporarily
null and is set as soon as is known. A gate node later undergoes changes.

Definition 4 (Gate Graph) A gate graph G is simply a set of gate nodes.

1. A gate graphG is completeG has a gate nodeN withN.o = v andN ′.o ∈ N.ψ
for each v ∈ N ′.ρ for each gate node N ′ 6= N . Each parameter of each gate,
as an independent variable or as an output of another gate, has a gate node in
the gate graph. Moreover, each gate node has its ψ computed.

2. A gate graph G is constrained if there is a gate node N with N.κ = true and
N.o is a terminal variable. Only terminal variables can be constrained.

3. A gate graph G is free from multiple definitions if there are no two gate
nodes N 6= N ′ such that N.o = N ′.o. Each o is unique in the gate graph.

4. A gate graph G is free from repeated computations if no two gate nodes
N 6= N ′ have N.g = N ′.g and N.ρ = N ′.ρ (assuming each possible g is
associative and commutative, which is the case for atype and ptype gates).

5. A gate graph G is free from dependency cycles if it is complete and there
is no gate node N such that N.o has a cyclic dependency.

Using the definitions, the connection between gate graphs and circuits is clear.

Lemma 1 (Gate Graphs Representing Circuits) A complete gate graph free
from multiple definitions and cyclic dependencies represents a circuit, and if the
gate graph is constrained then the circuit is also constrained.

3.3 CNF to Circuits with Gate Detection

Algorithm 1 shows how we get a constrained circuit from a SAT problem instance.
The first two mandatory steps are to detect the specified subsets of atype and/or
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ptype gates and to identify their output variables. The next mandatory steps in-
clude handling multiple definitions, adding variables for clauses not part of any
gates, considering independent variables, detecting and removing dependency cy-
cles, and computing list of variables dependent on other variables. The last two
steps are optional: statically propagate equivalence relationships between variables
and remove temporarily the variables that are not strictly needed during search.
Later, we describe all these steps in details in the next sections.

Algorithm 1 Build Σ from S using logic gates

1. Using clausal patterns, detect specified unique gates (a subset of atype ∪ ptype gates)
2. Identify the output variables of those gates and remove clauses in clausal patterns
3. Handle multiple definitions of dependent variables, if any, adding xnor constraints
4. Get a constrained variable in T for each clause left after removing gate clausal patterns
5. Get an independent variable in I for each non-dependent variable left out in V
6. Compute the list of variables that depend on each dependent and independent variable
7. Detect and remove dependency cycles, if any, among the dependent variables identified
8. Statically propagate equivalence relationships between variables identified through gates
9. Remove temporarily from the circuit the variables that are not strictly needed in search

3.4 Identify Gates and Output Variables

In Step 1 of Algorithm 1, we detect the gates specified using the clausal patterns
(1)–(10). In this work, we consider only subsets of atype and/or ptype gates. In
Step 2 of Algorithm 1, we identify the output variables of the detected gates.

As discussed in Section 2.4, output variables of atype gates are uniquely deter-
mined from their clausal patterns. However, after this, we could get dependency
cycles and multiple definitions. Example 1 shows an example of a dependency
cycle. Example 2 shows an example of multiple definitions of a variable.

Example 1 (Dependency Cycles) An and gate and an or gate detected from the
formula F shown below create a dependency cycle between variables v0 and v1.

Given Formula F Gates Detected Dependency Cycle

v0 ∨ v1 ∨ v2 v0 ∨ v1 v0 ∨ v2 v0 = and(v1, v2) v0 � v1
v1 ∨ v0 ∨ v2 v1 ∨ v0 v1 ∨ v2 v1 = or(v0, v2) v1 � v0

Example 2 (Multiple Definitions) An and gate and an or gate detected from the
formula F shown below create multiple definitions of variable v0.

Given Formula F Gates Detected Multiple Definitions

v0 ∨ v1 ∨ v2 v0 ∨ v1 v0 ∨ v2 v0 = and(v1, v2) v0 is defined once
v0 ∨ v3 ∨ v4 v0 ∨ v3 v0 ∨ v4 v0 = or(v3, v4) v0 is defined again

As discussed in Section 2.4, output variables of ptype gates cannot be uniquely
determined from their clausal patterns; any variable appearing in the clausal pat-
tern can be designated as the output. However, this approach could lead to de-
pendency cycles or multiple definitions, if not done carefully.
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Various approaches can be used to obtain an arrangement where all ptype gates
have their output variables identified and there is no dependency cycle, assuming
such an arrangement does actually exist. Contextual information such as which
variables are already made input or output of some other gates can be used to
determine or even to eliminate candidates for the output variable of a given gate.
Systematic search approaches such as breadth-first search may also be used (Roy
et al. 2004). Dependency cycles may exist any way as shown in Example 1 involving
even only atype gates. Moreover, no arrangement of ptype gates as mentioned above
might exist either. We will describe later how we ensure all dependency cycles are
eliminated. For the time being, very temporarily, we heuristically decide the output
variables of the detected ptype gates using Algorithm 2.

Algorithm 2 Determining the output variable of a ptype gate

foreach detected ptype gate with variables v0, v1, . . . , vn in the clauses
if there is a vk which is already the output of a ptype/atype gate

having vk′ (k′ 6= k) as an input // conservatively reuse vk
Make vk with the smallest k the output variable // multiple defs

else if there is a vk, not yet the output of any ptype/atype gate
Make vk the output variable for the smallest k // new definition

else make vn (or any vk) the output variable // multiple definitions

The heuristic in Algorithm 2 takes a conservative approach by making a first
attempt to select a variable vk that is the output of another gate with another
variable vk′(k 6= k′) as input. This creates another definition of vk but directly pre-
vents the way to have a dependency cycle by making vk′ the output. This reuse of
vk perhaps also leaves other variables available to be made output of other gates.
As a second attempt, Algorithm 2 selects a variable that is not the output of
any other gate and so gets its new definition. As a third attempt, when multiple
definitions is inevitable, arbitrarily variable vn is made the output. Nevertheless,
any decisions made at this stage are subject to change by the dependency cy-
cle elimination procedure described later. Algorithm 2 has a time complexity of
O(|F | × ‖c‖) and a memory complexity of O(|F | × ‖c‖).

Lemma 2 (Gates and Outputs) Detection of atype and ptype gates and their
output variables in Steps 1-2 of Algorithm 1 takes O(|F |2×‖c‖)+ |F |×‖c‖2) time
and O(|F | × ‖c‖) memory.

Proof Section 2.4 shows detection of atype gates and their outputs takes O(|F | ×
‖c‖2) time and O(|F | × ‖c‖) memory while just detection of ptype gates takes
O(|F |2 × ‖c‖) time and O(|F | × ‖c‖) memory. To identify outputs of ptype gates,
Algorithm 2 takes O(|F | × ‖c‖) time O(|F | × ‖c‖) memory. ut

3.5 Building Complete and Constrained Gate Graphs

We define terminologies for clauses and variables left out after gate detection.

Definition 5 (Core Clauses and Variables) Given a SAT problem instance
S ≡ 〈V, F 〉 and a gate graph G just obtained from Step 2 of Algorithm 1 (after gate
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detection in Step 1 and output variable identification in Step 2), a core clause
c ∈ F is such that c 6∈ N.φ for any gate node N in G and a core variable v ∈ V
is such that v 6= N.o for any gate node N ∈ G i.e. v is an independent variable.
Assume Cc is the set of core clauses and Cv is the set of core variables.

We now describe the details of Steps 3–6 of Algorithm 1.

• In Step 3 of Algorithm 1, we handle multiple definitions. For each two
gate nodes N 6= N ′ with N.o = N ′.o = v, make N ′.o = v′ where v′ is a new
dependent variable to denote the output of one of the gates, and add a gate
node N ′′ = 〈v′′, xnor, {v, v′}, ∅, true, null, null, Ω, false〉 to the gate graph G to
have a gate v′′ ←[ xnor(v, v′) with a constrained variable v′′. This ensures the
two definitions will produce the same value in a solution.

• In Step 4 of Algorithm 1, we deal with core clauses. For each core clause
c ∈ Cc having c ≡ l1 ∨ . . . ∨ ln, add to the gate graph G a gate node N =
〈o, g, ρ, ∅, true, null, null, c, false〉, where N.o = v is a new constrained variable
with N.κ = true, N.g = dg〈s(l1), . . . , s(ln)〉 denotes the gate type and the
static sign parameters, and N.ρ = {v(l1), . . . , v(ln)} the input variables.

• In Step 5 of Algorithm 1, we deal with core variables. For each core
variable v ∈ Cv, add a gate node N = 〈v, null, ∅, ψ, false, null, null, Ω, true〉 to
the gate graph G to denote an independent variable v.

• In Step 6 of Algorithm 1, we compute lists of dependent variables for each
variable. For each gate node N , compute N.ψ = {v : v � N.o}.

It is straightforward to show that the gate graph obtained from Step 6 of
Algorithm 1 is a complete and constrained gate graph, which is free from repeated
computations, free from multiple definitions, but could have dependency cycles.
Moreover, each gate node of the gate graph can be uniquely identified by the
output variable, since no variables has multiple definitions.

Lemma 3 (Complete and Constrained Gate Graph) Steps 3–6 of Algo-
rithm 1 altogether take O(|F |×‖c‖+|V |) time and memory. There are O(|F |+|V |)
gate nodes in the resultant gate graph and O(|F | × ‖c‖) edges among gate nodes.

Proof Below we analyse each of the four steps.

Step 3: There could be O(1
3 |F |) atype and O(1

2 |F |) ptype gates detected. So the
number of variables having multiple definitions is O(1

4 |F |), if two definitions
per variable is assumed and each such case takes only O(1) time and memory.

Step 4: There could be at most |F | core clauses. So the time and memory
complexities to add all core clauses to the gate graph both are O(|F | × ‖c‖).

Step 5: There could be at most |V | core variables. So the time and memory
complexities of adding all core variables to the gate graph both are O(|V |).

Step 6: This will visit at most each literal in each clause. So the time and memory
complexities for this are both O(|F | × ‖c‖).

We can sum the four steps to get the overall results. ut
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3.6 An Illustrative Example

In the following example, we show how a complete and constrained gate graph
free from multiple definitions is obtained and a DAG can be built, assuming no
dependency cycle exists in the gate graph. An expert reader can skip this example.

Example 3 (DAG) The formula F below has no unit clause, no repeated clause,
no repeated literal in any clause, and no clause with opposite literals.

g0 ∨ v1 ∨ v2
g0 ∨ v1
g0 ∨ v2

g0 ∨ v2 ∨ v3
g0 ∨ v2
g0 ∨ v3

g1 ∨ v3 ∨ v4
g1 ∨ v3 ∨ v4
g1 ∨ v3 ∨ v4
g1 ∨ v3 ∨ v4

g2 ∨ g0 ∨ g1
g2 ∨ g0
g2 ∨ g1

v0 ∨ g0

Gates g0 = and(v1, v2), g0 = or(v2, v3), g1 = xor(v3, v4), g2 = and(g0, g1) are
detected. So the gate graph G has 4 gate nodes for these four gates.

1. There are multiple definitions of g0. So we rename one of them as g′0 and add
a new gate e←[ xnor(g0, g′0) to G. We also make e a constrained variable.

2. The set of core clauses is Cc = {v0∨g0}. So we add to the gate graph G a gate
c←[ dg〈true,true〉(v0, g0). We also make c a constrained variable.

3. The set of core variables is Cv = {v0, . . . , v4}. So we add these as independent
variables to the gate graph G. All SAT variables are now in the gate graph.

After the three steps above, we obtain a complete and constrained gate graph
that has {v0, v1, v2, v3, v4} as independent variables, {g0, g′0, g1, g2, c, e} as depen-
dent variables, and {c, e} as constrained variables. There is no dependency cycle
among the dependent variables and there is no multiple definition. We draw a
DAG in Fig. 1 where g2 could be connected to g0 instead of g′0. Notice that g2,
g1, and v4 are not required during search as they can take any arbitrary values to
satisfy the constrained circuit and hence the CNF SAT problem instance.

v0 v1 v2 v3 v4

g0 g′0 g1

c e g2

and or xor

wor xnor and

Fig. 1 A DAG for a complete and constrained gate graph where c and e are constrained
variables; g0, g′0, g1 and g2 are depedent variables. Variables g2, g1, and v4 are not required
during search as they can take any arbitrary values to satisfy the constrained circuit.



Logic Gates in Local Search for Structured Satisfiability 15

3.7 Removing Dependency Cycles

Dependency cycles must be eliminated in Step 7 of Algorithm 1 before obtaining a
constrained circuit. Below we define the variables that have dependency troubles.

Definition 6 (Dependency Troubles) A dependent variable v has a depen-
dency trouble, if there is a dependency cycle involving v, or if there is another
dependent variable v′ 6= v such that v ≪ v′ and v′ has dependency troubles.
Fig. 2 shows an example, where v4 has a dependency trouble since v2 is involved
in a cycle, although v4 has no cyclic dependency.

v0 v1

v2

v3v4

Fig. 2 Variables v1, v2, v3, v4 have dependency troubles, but v0 has not. Solid lines are im-
mediate dependencies and dashed lines are transitive dependencies. Arrow directions are from
the input to the output.

Algorithm 3 identifies dependent variables that have dependency troubles. Pro-
cedure identifyVariablesInTrouble first assumes each dependent variable has depen-
dency troubles. So for each dependent variable v, InputsInTrouble[v] has the value
equal to the number of inputs to the gate. Then, a recursive visit starts from
each independent variable v to the dependent variables that immediately or tran-
sitively depend on v. In the recursive procedure visitDependentsRecursively, if no
input variable has dependency troubles, then the output variable has no depen-
dency trouble either. Also, if any input variable has dependency troubles, then
the output variable also has dependency troubles. At the end of Algorithm 3, we
have the dependent variables with non-zero InputsInTrouble as those having the
dependency troubles. We will clear the dependency troubles.

Algorithm 3 Detecting variables having dependency troubles

proc identifyVariablesInTrouble()
foreach dependent variable v

InputsInTrouble[v] = |{v′ : v � v′}|
foreach independent variable v

visitDependentsRecursively(v)

proc visitDependentsRecursively(v)
foreach v′ that immediately depends on v

decrease InputsInTrouble[v′] by 1
if InputsInTrouble[v′] = 0

visitDependentsRecursively(v′)

We analyse the complexities of detecting variables having dependency troubles.

Lemma 4 (Dependency Trouble Complexity) Algorithm 3 runs in O(|F | ×
‖c‖+ |V |) time and memory to detect variables having dependency troubles.

Proof The complete gate graph obtained from Step 6 of Algorithm 1 has O(|F |+
|V |) gate nodes and O(|F | × ‖c‖) edges (can be understood from ρ or ψ of the
gate nodes). The recursive procedure visits the gate nodes via the edges. ut
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To break dependency cycles, we first take a preferred approach of changing the
output variables of the ptype gates. If there still exist dependency cycles then we
take a guaranteed approach of separating the output of a gate from its input. We
describe these approaches below.

Preferred Approach: Rearranging ptype Gate Outputs

Figure 3 shows an example of breaking a dependency cycle where the output
variable of an xor gate is swapped with an independent variable. At the left side
of the figure, notice that v2 is the output of an xor gate with inputs v0 and v1.
Variable v3 immediately depends on v2 but variable v0 transitively depends on
v3. Therefore, there is a dependency cycle 〈v0, v2, v3, . . . , v0〉. This cycle could be
easily broken as shown in the right side of the figure if an input v1, which is an
independent variable in the left side figure, becomes the output of the xor gate
and v2 becomes an input.

v0 v1

v2

v3

xor

v0

v1

v2

v3

xor

Fig. 3 Breaking a cycle (left) by swapping an input and the output of an XOR gate (right).
Solid lines are immediate dependencies and dashed lines are transitive dependencies. Arrow
directions are from the input to the output.

In Fig. 3, we make an independent variable v1 the new output of the gate so
that multiple definitions of v1 cannot happen, and v2 becomes the new indepen-
dent variable. This keeps the numbers of dependent and independent variables
unchanged. Unfortunately, the output of a gate can be involved in more than one
cycle. So it might be swapped back to break another cycle. In order to avoid back
and forth swapping, we allow only one swapping for each variable. Algorithm 4
describes the procedures required to break cycles in this way. Notice that be-
fore changing the output of the gate, we need to call unvisitDependentsRecursively,
which essentially reverts the effects of procedure visitDependentsRecursively de-
scribed in Algorithm 3. Moreover, we need to call visitDependentsRecursively again
after changing the output of the gate. Procedure changeGateOutput in Algorithm 4
changes the gate graph by removing the old input-output relation between the two
variables swapped, making changes to the other inputs of the gate, and adding the
new input-output relation of the two variables swapped.

We analyse the complexities of breaking the dependency cycles by the preferred
method of rearranging outputs of the ptype gates.

Lemma 5 (Preferred Cycle Breaking) Algorithm 4 in its main loop condi-
tionally break cycles taking O((|F |+ |V |+ ‖c‖)× |V |) time and O(|V |) memory.
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Algorithm 4 Break dependency cycles by changing outputs of ptype gates

proc changeOutputsToBreakCycles()
foreach variable v in the gate graph,

markedAsSwapped[v] = false
foreach v having InputsInTrouble[v] > 0

and v is the output of a ptype gate
if v′ : v � v′ is an independent variable

and markedAsSwapped[v′] = false
unvisitDependentsRecursively(v′)
changeGateOutput(v, v′)
markedAsSwapped[v′] = true
visitDependentsRecursively(v)

proc unvisitDependentsRecursively(v)
foreach v′ � v // v′ is a dependent of v

increase InputsInTrouble[v′] by 1
if InputsInTrouble[v′] == 1

unvisitDependentsRecursively(v′)

proc changeGateOutput(v,v′) // v to v′

remove v � v′ from the gate graph
swap inputs of v and v′ in gate graph, so

o, ρ, ψ of related gate nodes change
add v′ � v to the gate graph

Proof The cycle is broken since an independent variable, if not tried before, is made
the output of the gate. Each of the O(|V |) variables can be swapped once in Algo-
rithm 4, provided they are inputs or outputs of the ptype gates. For each swapping,
the recursive procedures visit variables that (immediately or transitively) depend
on the variables swapped. In general, it is difficult to ascertain the size of the tran-
sitive closure of each variable, but at the worst case it is O(|F |+|V |). Changing the
output and the dependency relations take O(||c||) time. The memory complexity
comes from the flags to denote whether a variable is swapped. ut

Guaranteed Dependency Cycle Removal

An extreme but guaranteed way to break all cycles is to bring the clausal rep-
resentations back and then to treat them as core clauses. We do not take this
approach. In this article, we show a new technique in Fig. 4 to separate the output
variable of a gate from the input variables and thus break cycles. Assume v2 is a
dependent variable that is part of two dependency cycles 〈v2, v3, . . . , v0, v2〉 and
〈v2, v4, . . . , v1, v2〉. We replace v2 with two variables v2 and v′2. As we see before
separation, we have v3 � v2, v4 � v2, v2 � v0, and v2 � v1, but after separation
we get v3 � v′2, v4 � v′2, v2 � v0 and v2 � v1. We need a constrained variable e
with a gate e←[ xnor(v2, v′2) to ensure v2 and v′2 have the same value in case of a
satisfying assignment.

v0 v1

v2

v3 v4

any

v0 v1

v2 v′2

v3 v4e

any

xnor

Fig. 4 Breaking cycles (left) by separating output v2 from inputs v0 and v1 (right). Solid lines
are immediate dependencies and dashed lines are transitive dependencies. Arrow directions are
from the input to the output.
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Algorithm 5 Break cycles by separating the output from the inputs

proc separateInputOutputsToBreakCycles()
while there exists a dependent variable v′ having InputsInTrouble[v′] > 0

Select the variable v involved in the maximum number of cycles
Create an independent variable v′ with

a gate node 〈v′, null, ∅, ∅, false, null, null, Ω, false〉
foreach v′′ � v, remove v′′ � v and make v′′ � v′

Add a gate e← [ xnor(v, v′) with a new output variable e and
a gate node 〈e, {v, v′}, ∅, true, null, null, Ω, false〉

Algorithm 5 describes the required procedure that breaks all the remaining
cycles after running Algorithm 4. Separation of the output of a gate from the
inputs cause addition of one independent and one dependent variable. One way
to minimise the number of variables to be added is to select for separation an
output variable that is involved in the maximum number of cycles. This is what
is done in the algorithm. We use Algorithm 6 to find the variables involved in the
maximum number of cycles. A recursive depth-first visit starts from a variable
having dependency troubles. If a cycle is detected, it is counted for all variables
in the cycle. To ensure uniqueness of the cycles, every recursive visit starts from
a variable that is not part of any previously detected cycle.

Algorithm 6 Finding variables involved in the maximum number of cycles.

proc findVarInMostCycles()
foreach dependent variable v having InputsInTrouble[v] > 0

VarInCycleCount[v] = 0 // initially not in any cycle
foreach dependent variable v having InputsInTrouble[v] = 0

findCyclicPath(v, P) // P is an empty list of variables on the path
return a variable v having the maximum value of VarInCycleCount[v]

proc findCyclicPath(v, P)
if v is already in the list P // cycle detected

Increase VarInCycleCount[v] by one // v is in the cycle
Increase VarInCycleCount[v′] by one foreach v′ that is after v in P

else // no cycle detected yet
Append v to path P traversed so far
foreach v′ that v depends on and InputsInTrouble[v′] > 0

findCyclicPath(v′, P)

Lemma 6 (Breaking Dependency Cycles) Algorithms 5 and 6 do remove
all dependency cycles. Assume there are ‖F‖ variables involved in the dependency
cycles in the complete gate graph obtained from Step 6 of Algorithm 1. Algorithm 6
takes O(‖F‖2) time and O(‖F‖) memory. So Algorithm 5 takes O(‖F‖3 + ‖c‖ ×
|F |2) time and O(‖F‖+ ‖c‖) memory.

Proof The removal of each dependency cycle is guaranteed since a new independent
variable is created and the variables that immediately depended on the output of
the gate now immediately depends on the new variable. Algorithm 6 starts finding
a cycle from each such variable v and recursively visits the other variables but
once for each v. So it takes O(‖F‖2) time and O(‖F‖) memory. Algorithm 5 in
each iteration calls Algorithm 6 once and use O(‖c‖) time and O(‖c‖) memory to
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break the cycle. Assuming at least two variables are needed to create a cycle, there
could be at most 1

2‖F‖ cycles. So the time complexity of breaking all cycles by

Algorithm 5 is O(‖F‖3 +‖c‖×‖F‖2). Additional memory needed is O(‖F‖+‖c‖)
to detect cycles and to break them. ut

3.8 Constrained Circuits for CNF SAT

The gate graph G obtained from Step 7 of Algorithm 1 represents a constrained
circuit. It essentially captures all necessary properties of a SAT problem instance.
Below we describe various types of gates in such a gate graph.

Definition 7 (Gate Node Types) Assume G be a gate graph obtained from
Step 7 of Algorithm 1. Since there is no multiple definitions, each gate node N in
G is uniquely identified by the output variable N.o. We define the following types
of gate nodes and as such corresponding types of variables.

1. Independent Variables: VI = {N.o : N.g = null} that do not depend on any
other variables. In Fig. 1, the independent variables are VI = {v0, v1, v2, v3, v4}.

2. Constrained Variables: VC = {N.o : N.g 6= null ∧ N.κ = true ∧ N.ψ = ∅}
that are terminal variables and are flagged as constrained variables. In Fig. 1,
such constrained variables are VC = {c, e}. Their values must be true.

3. Unconstrained Variables: VU = {N.o : N.g 6= null ∧ N.κ = false} that are
either terminal variables without being flagged as constrained or are intermedi-
ate variables. In Fig. 1, such unconstrained variables are VU = {g0, g′0, g1, g2}.

4. Imported SAT variables: VS = {N.o : N.σ = true} that are the SAT
variables coming as the core variables or as the output of the gates detected.
In Fig. 1, the imported SAT variables are VS = {v0, v1, v2, v3, v4, g0, g1, g2}.

5. Required Variables: VR = {N.o 6∈ VC : ∃N ′.o∈VC
[N ′.o ≪ N.o]} that are

such that some constrained variables depend on them. In Fig. 1, VR = {g0, g′0}.
6. Deferrable Variables: VD = {N.o 6∈ VC : ¬∃N ′.o∈VC

[N ′.o ≪ N.o]} that are
such that no constrained dependent variable depends on them. In Fig. 1 of
Example 3, such variables are VD = {g1, g2, v4}.

The following summarised change log of various types of gate nodes is useful.

1. Core variables are first made the independent variables in Step 5 of Algorithm 1
with σ = true. During changing the outputs of the ptype gates to eliminate
dependency cycles, Algorithm 4 might change some independent variables with
σ = true to unconstrained variables with σ = true and vice versa. Then, to
break remaining dependency cycles in a guaranteed way, Algorithm 5 might
add some independent variables with σ = false.

2. Constrained variables are initially obtained from the core clauses. Then, to
handle multiple definitions, some new constrained variables might be created.
Also, during breaking the dependency cycles in a guaranteed way, further con-
strained variables are created by Algorithm 5.

3. Unconstrained variables are obtained with σ = true from the output variables of
the gates detected. Some unconstrained variables are obtained with σ = false by
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renaming the output variable of a gate while handling the multiple definitions.
During changing the outputs of the ptype gates to eliminate dependency cycles,
Algorithm 4 might change some unconstrained variables with σ = true to
independent variables with σ = true and vice versa.

We prove the correctness of the constrained circuits for CNF SAT instances.

Theorem 1 (Correctness of Constrained Circuit) Assume Σ ≡ 〈C,W 〉 is
a constrained gate graph obtained by Steps 1–7 of Algorithm 1 for a given SAT

instance S ≡ 〈V, F 〉. There is a solution
−→
I to Σ iff there is a solution

−→
V to S.

Proof We address all related issues of the proof point by point below:

1. Each SAT variable v ∈ V is either an independent variable in I or a dependent
variable in D. Initially, SAT variables that become the output of the detected
gates are in VU and that are not output of any gates are in VI as core variables.
Only Algorithm 4 then moves some variables from VI to VU or vice versa,
but these changes happen only among the imported SAT variables that have
σ = true. This proves the inclusiveness of all SAT variables.

2. For each SAT clause c ∈ F , either there is a logic gate having c in the gate’s
clausal pattern or there is a constrained variable in VC as, not being an out-
put of any gate, c is a core clause. For each constrained variable, the search
algorithm ensures it’s value is true in the solution (if any) i.e. the clause is
satisfied. For a clause in the clausal representation of a detected gate, the in-
variant engine ensures the functional value of the gate is equal to the value
of the output variable upon all queries and as such all clauses in the clausal
pattern are satisfied. This proves the inclusiveness of all SAT clauses.

3. While clauses are part of the clausal patterns representing detected gates,
outputs of two gates can be the same SAT variable and so the value of the two
outputs must be the same in a solution. As we handle the multiple definitions,
we make sure it does happen in the solution as we define an xnor gate with
the two outputs, renaming one of them. The renamed variable is in VU and a
newly created constrained variable for the output of the xnor is in VC.

4. After gates are detected, cyclic dependencies might arise as shown in Exam-
ple 1. The dependency cycles hinder computation of the gate outputs by the
invariant engine and so must be eliminated. Algorithm 5 as per Lemma 6 does
eliminate all cycles. An xnor gate and a constrained variable in VC ensure the
new variable created to break the cycle and the output variable of the gate
involved in the cycle have the same value in a solution.

These prove each solution of the SAT problem instance is captured by the con-
strained circuit, or vice versa. If a solution is found for one, we can get a solution

for the other. The back and forth translations from
−→
I to

−→
V and vice versa are

trivial because dependent variables have their definitions. ut

We now analyse the time and memory complexities of Steps 1–7 of Algorithm 1.

Theorem 2 (Complexities of Model Building) Steps 1–7 of Algorithm 1
altogether take O(|F |2 + |V |2) time and O((|F |+ ‖c‖+ |V |) memory, where ‖F‖
is the number of dependency cycles in the gate graph obtained from Step 6 and we
assume ‖F‖ and ‖c‖ are very small compared to |F |.
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Proof Below we show the time and memory complexities of key steps.

Steps Lemma Time Memory

1–2 2 O(|F |2 × ‖c‖) + |F | × ‖c‖2) O(|F | × ‖c‖)
3–6 3 O(|F | × ‖c‖+ |V |) O(|F | × ‖c‖+ |V |)
7 4 O(|F | × ‖c‖+ |V |) O(|F | × ‖c‖+ |V |)
7 5 O((|F |+ |V |+ ‖c‖)× |V |) O(|V |)
7 6 O(‖F‖3 + ‖c‖ × ‖F‖2) O(‖F‖+ ‖c‖)

The total complexities are obtained by adding the complexities of the steps. ut

3.9 Propagate Equivalence Relationships

This is optional Step 8 of Algorithm 1. In the gate graph obtained after running
Steps 1–7 of Algorithm 1, if there is a gate v0 ←[ eq(v1), every occurrence of v0
as input of any other gates can then be replaced by v1. Also, such replacement
of v0 with v1 is possible when there exist two gates such that v0 ←[ not(v2) and
v2 ←[ not(v1). Simplification is also possible just for v0 ←[ not(v1). These simplifica-
tions are done in Procedures propagateEqRels and propagateNotRels in Algorithm 7.
Procedures replaceEq and replaceNot perform the replacement in each gate. How-
ever, as these replacements take place, some simplification could be obtained using
the semantic of the gate. For example, if v0 and v1 are both inputs of an and or
an or gate, then one of v0 and v1 could be safely removed, while they can both be
removed from an xor or xnor gate with more than 4 inputs.

When one variable is replaced by another variable in the inputs of a gate, the
functional value of the gate might be fixed. For example, replacement of v0 by v1
in the gate v2 ← [ xor(v1, v0) will result into v2 = false. As v2’s value is now known,
this could be propagated through the gate graph and Procedure propagateValue
in Algorithm 8 does this. In Procedure propagateValue, we actually show how this
value propagation can lead to fixation of values of some other variables and also
how a particular type of gate can change to another type of gate.

Below we show the soundness and complexities of the above simplification.

Lemma 7 (Equivalence Simplification) Algorithms 7 and 8 are satisfiability
preserving. For each pair of variables that are equivalent or opposite, the time
complexity is O(|F | × ‖c‖) with no additional memory.

Proof The simplifications are based on the specific semantics of the logic gates.
These constraint based simplifications are very similar to the UCP and equivalence
literal elimination in CNF SAT. For each pair of equivalent variables v0 and v1,
v0 is replaced by v1 in the definition of each variable v2 that depends on v0. This
could trigger a chain of replacements and the chain effect propagates through the
DAG. So the number of gate nodes that could be visited is O(|F |), which is the
number of dependent variables. Now to perform the reasoning based on the specific
gate semantic, we may need to visit each input in the gate. So the time complexity
becomes O(|F |×‖c‖) for each pair of equivalent variables. The same analysis holds
when v0 and v1 are opposite of each other. ut
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Algorithm 7 Propagate equivalence of variables on a gate graph.

proc propagateEqRels()
while true

if exists v0 ←[ eq(v1)
foreach v2 � v0

replaceEq(v0, v1, v2)
else if exists v0 ← [ not(v2)

if exists v2 ←[ not(v1)
foreach v3 � v0

replaceEq(v0, v1, v3)
else break

// Replace v0 with v1 in v2
proc replaceEq(v0, v1, v2) // in v2

if v1 not an input of v2 already
Replace v0 with v1

else if v2 ← [ cg/dg〈s1,...,sn〉(. . .)
and s for v0 and v1 are opposite

propagateValue(v2, false/true)
else if v2 ←[ xor/xnor(v0, v1)

propagateValue(v2, false/true)
else if v2 ← [ xor/xnor(. . .)

Remove v0 and v1 from v2’s input
if v2 has only one input v3

Make v2 ← [ eq/not(v3)
else // and/nand/or/nor/cg/dg

Remove v0 from v2’s input
if v2 has only one input v3

if and/or/cg/dg
Make v2 ← [ eq(v3)

else if nand/nor
Make v2 ← [ not(v3)

proc propagateNotRels()
while exists v0 ←[ not(v2)

foreach v3 � v0
replaceNot(v0, v1, v3)

// Replace v0 with v1 in v2
proc replaceNot(v0, v1, v2)

if v1 not an input of v2 already
Assume v2 ←[ g(. . . , v0, . . .)
if g = xor/xnor

Replace v0 with v1
g ← xnor/xor

else if g = cg/dg
Replace v0 with v1, flip s

else if g = and/nor/or/nand
g ← cg if g = and/nor
g ← dg if g = or/nand
Replace v0 with v1, flip s

else if g = and/or/nand/nor
b← false/true/true/false
propagateValue(v2, b)

else if g = xor/xnor with 2 inputs
propagateValue(v2, true/false)

else if g = xor/xnor
Remove v0 and v1 from g
if g has one input, g ← not/eq

else if g = cg/dg
if v0 and v1 has the same sign

propagateValue(v2, false/true)
else // has opposite sign

remove v0 from g
if v2 has one input, g ← eq

The variables that are replaced by their equivalent literals are marked as re-
placed in the gate graph using ε of a gate node. Moreover, the variables whose
values are fixed are marked so using ν of a gate node. These replaced and fixed
variables are not needed during search. The values of the replaced variables can
be computed from the equivalent literals once a solution is found.

3.10 Removing Variables from DAG

This is optional Step 9 of Algorithm 1. Look at the variables g1, g2, and v4 in
Fig. 1. These variables are not strictly required during search. Explicit constraints
are defined only on c and e. We need their values during search and for that we
also need to compute the other variables such as v0, v1, v2, v3, g0, and g′0, since
c and e depend on them. Once we satisfy the constraints on c and e, we can have
any value for v4 and then g1 and g2 can just be computed using the gate functions.
Below we formally define the variables that are not strictly needed during search.

Lemma 8 (Remove Deferable Variables) Given a gate graph obtained from
Step 7 or 8 of Algorithm 1, we can temporarily remove any gate node N such that
N.o is a deferrable variable. We do not need these variables during search.
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Algorithm 8 Propagate fixed value of a variable on a gate graph.

proc propagateValue(v, b) when b = true
Mark v to be fixed with true
foreach v0 ← [ g(. . . , v, . . .)

if g = and/nand
Remove v from v0’s input
if v0 has only one input

g ← eq/not if g = and/nand
else if g = or/nor

b′ ← true/false if g = or/nor
propagateValue(v0, b′)

else if g = xor/xnor
Remove v from v0’s input
if v0 has only one input

g ← not/eq if g = xor/xnor
else // more than one input

g ← xnor/xor if g = xor/xnor
else if g = eq/not

b′ ← true/false if g = eq/not
propagateValue(v0, b′)

else if g = cg/dg〈s1,...,sn〉
if s = true/false for v in cg/dg

Remove v from v0’s input
if v0 has only one input v1

if s is true/false for v1
g ← eq/not

else// s = false/true for v in cg/dg
b′ ← false/true if g = cg/dg
propagateValue(v0, b′)

proc propagateValue(v, b) when b = false
Mark v to be fixed with false
foreach v0 ←[ g(. . . , v, . . .)

if g = or/nor
Remove v from v0’s input
if v0 has only one input

g ← eq/not if g = or/nor
else if g = and/nand

b′ ← false/true if g = and/nand
propagateValue(v0, b′)

else if g = xor/xnor
Remove v from v0’s input
if v0 has only one input

g ← eq/not if g = xor/xnor
else // more than one input

g ← xor/xnor if g = xor/xnor
else if g = eq/not

b′ ← false/true if g = eq/not
propagateValue(v0, b′)

else if g = cg/dg〈s1,...,sn〉
if s = false/true for v in cg/dg

Remove v from v0’s input
if v0 has only one input v1

if s is true/false for v1
g ← eq/not

else// s = true/false for v in cg/dg
b′ ← false/true if g = cg/dg
propagateValue(v0, b′)

Proof These variables only have the constraints that their values must be equal to
the functional values of the respective gates. There is no constraint that their values
must be true to obtain a solution. Once the constrained variables all have their
values true, the values of these variables could be computed from other variables
that they depend on or from random selection if these are independent variables.
Removal of these variables thus improve the model efficiency. ut

3.11 More Simplification Before Gate Graphs

Even before Step 1 of Algorithm 1, we detect cg or a dg gates only from the clauses
that opposite literals. This is because v∧ false = false and v∨ true = true. Once we
can fix the value of a dependent variable in this way, we perform UCP with that
on the formula. This is not discussed before for clarity.

4 Our Adaptation of CNF Local Search to Circuits

4.1 Local Search Algorithms

To test the effectiveness of the gate based constraint circuit models, we use the local
search framework described in Algorithm 9. Starting from a random assignment,
in each iteration of the search, it flips a variable selected by a given variable
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selection heuristic. To avoid recently made flips, it uses a tabu metaheuristic. It
keeps track of the length of the run of non-improving moves (plateau scenario)
compared to the global best assignment, and performs restart from scratch if the
run length exceeds a given threshold. So The main issue in the algorithm is the
variable selection heuristic to be used to select a variable for flipping.

Algorithm 9 Local Search Framework

Initialise all independent variables in I = VI randomly
Compute dependent variables D = VC ∪ VU using the DAG
currViolation = Number of variables in VC with value false
bestViolation = currViolation, plateauLength = 0
while not timeout

if currViolation =0 then return solution found
if currViolation ≥ bestViolation then ++plateauLength
else bestViolation = currViolation, plateauLength = 0
if plateauLength > maxPlateauLength //restart from scratch

Assign random values to all variables, plateauLength = 0
else // using a heuristic, select a variable to flip

Select and flip a non-tabu variable according to
AdaptNovelty+ or CCAnr variable selection heuristic

Propagate changes using the DAG and compute currViolation

Exploring the literature of local search for CNF SAT, we found representatives
of two prominent families of local search algorithms namely AdaptNovelty+ (Hoos
and Tompkins 2007) and CCAnr (Cai et al. 2015). We adapt the AdaptNovelty+ and
the CCAnr variable selection heuristics to cope with our constrained circuit models.
There exists other solvers that use hybridisation of local search and systematic
search algorithms. In this work, our scope is to evaluate local search algorithms
with constrained circuits. So we choose these two solvers since they are solely based
on local search algorithms. Below we briefly discuss these two solvers.

AdaptNovelty+ can be considered as a representative of the WalkSAT family
of SLS algorithms for SAT. The walk probability used in a WalkSAT algorithm
has an important impact on the performance (Hoos and Tompkins 2007; Hoos
et al. 2002; Hoos and Stützle 2000) and the optimal value of walk probability is
different for each problem (Hoos and Stützle 2000). Moreover, the performance of
a WalkSAT algorithm can fluctuate significantly even with a minor change in the
walk probability and this sensitivity increases proportionally with the size and the
hardness of the problem (Hoos et al. 2002). For these reasons, different approaches
have been proposed to automatically adjust the value of the walk probability prior
to perform or during a WalkSAT search (Hoos et al. 2002; McAllester et al. 1997;
Patterson and Kautz 2001). The most successful attempt is an adaptive mechanism
introduced by Hoos et al. (2002). The idea of the adaptive mechanism is closely
related to the work by Battiti and Tecchiolli (1994) and is to use a high walk
probability value in situations where the search cannot escape local optima.

CCAnr is a recent SLS solver by Cai et al. (2015) for non-random SAT. It uses
the CC technique to avoid revisitation scenarios. In CCAnr, each variable has a
configuration that comprises its neighbouring variables and the time when they
have been flipped most recently. In CCAnr, a variable is not flipped again until at
least one of its neighbouring variables has been flipped. CCAnr has two local search
mode: an overall one mostly based on greediness and a focussed one mostly based
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on controlled diversification. CCAnr performs better than the other state-of-the-art
SLS solvers on the combinatorial and application benchmarks instances.

While adapting the CNF-based local search algorithms to gate-based con-
strained circuit models, we deal with a number of issues. Below we discuss these
issues and describe how we address these.

Clauses Replaced by Constrained Variables. To replace the concept of se-
lection of a falsified clause in SAT, in constrained circuits, we use the constrained
variables that are false. Also, we use the constrained variables to compute the
make, break, and score for each potential assignment.

Redefining Neighbour Variables. Variables appearing in the same clause are
neighbours in the CNF-based CCAnr (Cai et al. 2015). In constrained circuits, for
CCAnr, we define two independent variables become neighbours if there exists a
constrained dependent variable that transitively depends on both of the indepen-
dent variables i.e. neighbour(v, v′) = v ∈ VI∧v′∧VI∧∃v′′∈VC

[v′′≪ v∧v′′≪ v′′].
For an independent variable v, we use neighbour(v) = {v′ : neighbour(v, v′)} to
denote the set of neighbouring variables of v. Under this definition, the number
of neighbours of a variable could be much larger in constrained circuits than in
CNF SAT. Because of this, the CC heuristic may loose its effectiveness in tackling
the revisitation issue of a local search as a variable can soon become available for
selection.

Using Tabu Technique. The tabu technique (Mazure et al. 1997) is the older
alternative of the CC technique. Algorithm 9 uses the tabu technique with tabu
tenure 5 in our experiments. This common tabu tenure was selected after some
preliminary runs although tabu tenure is often decided in an instance specific way.
In a gate based constrained circuit model, the number of independent variables
is smaller than that in a CNF based model. So the revisitation problem is more
likely to happen. The tabu technique might be effective when the CC technique in
CCAnr is less effective because of the large numbers of neighbours of each variable.
The tabu technique might help AdaptNovelty+ as well.

Performing Search Restarts. In the gate-based constrained circuit model, the
number of variables in VC is in general much smaller than the number of clauses in
the CNF-based model. Thus, the granularity level (the number of distinct values
the function could take for all possible input combinations) of the score function
is significantly smaller in the constrained circuit. This essentially affects the ac-
cessibility of the search space to the search algorithm as plateaus are more likely
in the constrained circuit model than in the CNF-based model. To deal with that,
we use restarts (Ryvchin and Strichman 2008) from scratch in Algorithm 9. If the
search reaches the local minima 10, 000 times, the algorithm resorts to the restart
procedure. Since our focus is more to study the constraint models, in this work,
we do not try any other restart strategies or other criteria to trigger the restarts.
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Defining Impact Variables. In CNF-based models, flipping a variable v from a
falsified clause c makes c satisfiable. In gate-based constrained circuit models, be-
cause of the layered DAG, flipping an independent variable v ∈ I might not change
the value of v′ ∈ VC even if v ∈ I(v′). We, therefore, have to find a mechanism to
maintain a set of independent variables that can consequently change the value of

v′, given the current assignment
−→
I . We will call such independent variables the

impact variables for v′ w.r.t. the current assignment
−→
I and will denote the set of

those variables by I(v′,
−→
I ). A variable selection heuristic will only consider the

impact variables. Fig. 5 shows the set of impact variables for the dependent vari-
ables in the DAG, given the current assignment v0 = true, v1 = false, v2 = true,
v3 = false, v4 = false. We see e = false, which could be changed to true if either
g0 or g′0 changes. However, g0 will change if v1 changes and g′0 will change if v2
does. So the set of impact variables for g0, g′0, and e are respectively the sets {v1},
{v2}, and {v1, v2}. Notice that given the current assignment, changing v3 will not
change e although e≪ v3.

v0 true v1 false v2 true v3 false v4 false

g0 false g′0 true g1 false

c true e false g2 false

and or xor

wor xnor and

{v1} {v2} {v3, v4}

{v0} {v1, v2} {v3, v4}

Fig. 5 List of variables that could change gate outputs, given a current assignment. For each
gate, the list of such variables is shown as a set under the gate type name.

Computing Impact Variables. We provide the recursive definitions to compute
the sets of impact variables for the output variables of various types of gates. These
definitions are used in Kangaroo to compute the impact variables incrementally
as variables are flipped during local search. Note that we use bitmaps to represent
sets of inputs that are in the impact variables. In the definitions below, v is the
output of a gate while v′ is an input.

1. Independent Variables: For recursion basis, I(v,
−→
I ) = {v} for any v ∈ I

and any
−→
I .

2. Outputs of and gates: When the output is true, any change in any input
will change the output. When the output is false, it will be true if all inputs

that are false change but no input that is true does. So we have I(v,
−→
I ) =⋃

v′=true I(v′,
−→
I ) if v = true and I(v,

−→
I ) =

⋂
v′=false I(v′,

−→
I )\

⋃
v′=true I(v′,

−→
I )

if v = false.
3. Outputs of or gates: When the output is false, any change in any input

will change the output. When the output is true, it will be false if all inputs
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that are true change but no input that is false does. So we have I(v,
−→
I ) =⋃

v′=false I(v′,
−→
I ) if v = false and I(v,

−→
I ) =

⋂
v′=true I(v′,

−→
I )\

⋃
v′=false I(v′,

−→
I )

if v = true.
4. Outputs of atype gates: The impact variables for nand, nor, cg, and dg gates

can be easily computed from that for and and or gates considering negation of
the inputs and outputs.

5. Outputs of etype gates: The output changes as the input changes. So

I(v,
−→
I ) = I(v′,

−→
I )

6. Outputs of xtype gates: The output of a binary gate will change when one

input changes but not both. So we have I(v,
−→
I ) =

⋃
I(v′,

−→
I ) \

⋂
I(v′,

−→
I ).

For an n-ary gate with n > 2, each independent variable that appears in the
set of impact variables of an odd number of inputs can change the output. So

I(v,
−→
I ) = {v′′ : odd(|{v′ : v′′ ∈ I(v′,

−→
I )}|)}.

4.2 Implementation on Kangaroo

As discussed before, an invariant engine is required to discharge the obligation of
maintaining the consistency between the input variables and the output variable
of each logic gate. For this, we use Kangaroo (Newton et al. 2011) a generic CBLS
system that supports invariants implementing algebraic and combinatorial expres-
sions. It has an invariant engine that incrementally and so efficiently propagates
changes form independent variables to the dependent variables; however, it could
be slower than an invariant engine developed for a specific problem. Kangaroo
allows to take a declarative approach to problem modelling and quick implemen-
tation of CBLS algorithms using off-the-shelf methods from its library. Also, new
invariants and methods can be added to Kangaroo for future users.

We implement our algorithms on top of Kangaroo. Given the gate graph ob-
tained after Algorithm 1, we calculate the gate level of each variable in the gate
graph. Then, the independent variables are created in Kangaroo, which is a C++

library. Next, invariants are created for the dependent variables and their defin-
ing functions in the increasing order of their gate levels. The invariants not only
do compute the functional values but also compute the impact variables for each
gate. The score for each potential flip move is calculated incrementally by invari-
ants as well. All our algorithms are implemented in C++ on top of the invariants
and variables created in Kangaroo.

5 Experimental Results

We run all experiments on the High Performance Computing Cluster Gowonda
at Griffith University, Australia. Each cluster node is equipped with Intel Xeon
CPU E5-2650 processors @2.60 GHz. We evaluate our gate-based constraint circuit
models and algorithms using the following two sets of experiments.

Detailed Experiments: We run a number of versions of our solvers on satlib
(http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html) and sat14 (SAT Com-
petition 2014 http://www.satcompetition.org/) problem instances. We use
4GB memory for these experiments. We perform a wide range of analyses of
the results. These are presented in Sections 5.2–5.10.
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Additional Experiments: We run a number of selected versions of our solvers
on sat20 (SAT Competition 2020 http://www.satcompetition.org/) problem
instances. To obtain an understanding about where our solvers stand with
respect to the current state of the art, we also compare our algorithms with
kissat (Biere et al. 2020), which is a CDCL based solver and the winner of the
SAT Competition 2020. We use 32GB memory for these experiments and the
results are presented in Section 5.11.

5.1 Performing Statistical Tests

To check whether there exist significance differences in the performances of various
solver versions, wherever possible, with 95% level of significance, we perform pair-
wise t test on the solution times. For multi-comparison among more than two solver
versions, instead of performing t tests, we perform one-way analysis of variance
(ANOVA) plus Tukey’s honestly significant difference (HSD) test on the solution
times with 95% level of significance. Later, in our analysis wherever appropriate,
we just mention the statistical test names assuming the level significance to be
95%. Nevertheless, to check whether performances of two solvers correlate with
each other, we also compute Pearson’s correlation coefficient on the solution times
and use that in our analysis. Since not all solver versions could solve all instances,
with the missing data, sometimes these statistical tests might not lead to mean-
ingful conclusions in which case we consider the number of problems solved or
some other criteria, mentioned where appropriate, to make a selection.

5.2 Detailed Experiment Benchmarks

From satlib, we use 4 ssa (single-stuck-at fault), 10 qg (quasigroup), 5 p32 (parity
32), 5 p16 (parity 16), 4 log (logistics), 7 bw (blockworld), and 13 bmc (bounded
model checking) satisfiable instances. From sat14, we use 9 app (application) and
12 hc (hard combinatorial) instances. We actually tried other app and hc instances
but none of the solver versions that we have used could solve them within the
resource (time and memory) limits; so we do not show them in our results. As
shown in Table 1, for convenience, we rename the instances by using single letter
names. In total 69 instances used in our detailed experiments.

5.3 Before Gate Detection

As mentioned earlier, before detecting gates, with our own implementation, we
clean up the CNF formula using mostly SAT based simplification techniques
(mainly removing repeated clauses, unit clause propagation). Tables 2 and 3 show
the numbers of variables that have been fixed and the numbers of clauses that
have been deleted respectively against the numbers of variables and the numbers
of clauses in the problem instances. No cleaning up was possible in the log and bw
problem instances. In the hc, app, and ssa problem instances, the percentages of
variables fixed and the percentages of clauses deleted are small while in the p16,
p32, bmc, and qg problem instances, the percentages are noticeable.
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Table 1 Satisfiable benchmark problem instances from satlib and sat14

p16 satlib
A par16-1.cnf
B par16-2.cnf
C par16-3.cnf
D par16-4.cnf
E par16-5.cnf

p32 satlib
A par32-1.cnf
B par32-2.cnf
C par32-3.cnf
D par32-4.cnf
E par32-5.cnf

bmc satlib
A bmc-ibm-1.cnf
B bmc-ibm-2.cnf
C bmc-ibm-3.cnf
D bmc-ibm-4.cnf
E bmc-ibm-5.cnf
F bmc-ibm-6.cnf
G bmc-ibm-7.cnf
H bmc-galileo-8.cnf
I bmc-galileo-9.cnf
J bmc-ibm-10.cnf
K bmc-ibm-11.cnf
L bmc-ibm-12.cnf
M bmc-ibm-13.cnf

ssa satlib
A ssa7552-038.cnf
B ssa7552-158.cnf
C ssa7552-159.cnf
D ssa7552-160.cnf

qg satlib
A qg1-07.cnf
B qg1-08.cnf
C qg2-07.cnf
D qg2-08.cnf
E qg3-08.cnf
F qg4-09.cnf
G qg5-11.cnf
H qg6-09.cnf
I qg7-09.cnf
J qg7-13.cnf

app sat14
A atco enc1 opt1 03 56.cnf
B atco enc1 opt1 04 32.cnf
C atco enc1 opt1 05 21.cnf
D atco enc1 opt1 10 15.cnf
E atco enc1 opt1 10 21.cnf
F atco enc1 opt1 15 240.cnf
G atco enc2 opt1 05 21.cnf
H atco enc2 opt1 10 21.cnf
I atco enc2 opt2 05 9.cnf

bw satlib
A bw large.a.cnf
B bw large.b.cnf
C bw large.c.cnf
D bw large.d.cnf
E huge.cnf
F medium.cnf
G anomaly.cnf

log satlib
A logistics.a.cnf
B logistics.b.cnf
C logistics.c.cnf
D logistics.d.cnf

hc sat14
A Chvatal-k5.cnf
B rnd-v25-e13-k3.cnf
C Composite-024BitPrimes-1.used-as.sat04-861.cnf
D instance n8 i8 pp ci ce.cnf
E instance n8 i9 pp.cnf
F jkkk-one-one-10-34-sat.cnf
G prime2209-98.cnf
H SAT instance N=31.cnf
I SAT instance N=33.cnf
J toughsat factoring 155s.cnf
K toughsat factoring 958s.cnf
L toughsat factoring inf.cnf

Table 2 Average effect of cleaning up before gate detection over satlib and sc14 problem
instance types

Problem Instances p16 p32 bmc ssa qg log bw app hc
Variables Fixed (%) 38.8 24.8 36.3 7.3 44.8 0 0 1.3 5
Clauses Deleted (%) 42.8 27.8 45.2 9.5 72.8 0 0 4.8 6

5.4 Detected Gate Statistics

Table 4 shows the numbers of gates detected from the satlib and sat14 benchmark
problem instances. The cg and dg gates are when both positive and negative literals
are present as inputs, not just variables as in the and, or, nand, and nor gates. The
bmc problem instances have all types of gates, although 6 problem instances have
no xor gate. The ssa problem instances have all but and, dg, and xor gates. The qg
problem instances all have large numbers of nor gates and small numbers of not
gates, with some of the problem instances having significant numbers of eq gates,
while 2 problem instances having significant numbers of and gates. The log problem
instances have mostly nor and not gates except one problem instance having or,
cg and eq gates as well. The p16 and p32 problem instances have and, cg, xor, eq,
and not gates. The bw problem instances have mostly and, nor, cg, and eq gates
with 3-4 not gates as well. The app problem instances mostly have and, or, nand,
cg, eq and not gates except one problem instance that has nor gates as well. The
hc problem instances have mostly and, xor, and xnor gates with different problem
instances having different types of gates as well, but no problem instance has nand
gates. Overall the problem instances include various types of gate distributions.
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Table 3 Effect of cleaning up before gate detection on satlib and sc14 problem instances

id vars fixed % clauses deleted %
p16

A 1015 408 40 3310 1466 44
B 1015 383 38 3374 1416 42
C 1015 395 39 3344 1440 43
D 1015 396 39 3324 1442 43
E 1015 388 38 3358 1426 42

ssa
A 1501 40 3 3575 220 6
B 1363 186 14 3034 511 17
C 1363 132 10 3032 376 12
D 1391 25 2 3126 97 3

qg
A 343 175 51 68083 61324 90
B 512 231 45 148957 128373 86
C 343 164 48 68083 60518 89
D 512 216 42 148957 126431 85
E 512 239 47 10469 7093 68
F 729 294 40 15580 9327 60
G 1331 507 38 64054 36639 57
H 729 340 47 21844 14507 66
I 729 395 54 22060 16332 74
J 2197 785 36 97072 51710 53

app
A 43998 552 1 276198 14195 5
B 57220 720 1 582308 31762 5
C 59517 324 1 561784 24818 4
D 46759 552 1 261059 11232 4
E 46993 552 1 270831 11232 4
F 61642 1004 2 644099 32318 5
G 56533 324 1 526872 24818 5
H 44854 535 1 239768 11474 5
I 14912 472 3 390488 24966 6

id vars fixed % clauses deleted %
p32

A 3176 758 24 10277 2817 27
B 3176 784 25 10253 2869 28
C 3176 781 25 10297 2863 28
D 3176 791 25 10313 2883 28
E 3176 791 25 10325 2883 28

bmc
A 9685 2600 27 55870 20571 37
B 2810 1666 59 11683 8413 72
C 14930 2990 20 72106 16235 23
D 28161 14793 53 139716 83332 60
E 9396 4533 48 41207 24641 60
F 51639 26426 51 368352 203504 55
G 8710 4844 56 39774 25493 64
H 58074 14111 24 294821 112560 38
I 63624 14223 22 326999 118689 36
J 59056 26679 45 323700 169675 52
K 32109 9397 29 150027 58909 39
L 39598 6881 17 194778 45977 24

M 13215 2784 21 65728 18142 28
hc

A 4104 364 9 31868 4810 15
B 26575 1544 6 442285 34780 8
C 1199 96 8 11158 1124 10
D 21640 0 0 257551 6272 2
E 24336 0 0 287938 7056 2
F 11607 995 9 73804 8056 10
G 118482 6174 5 349076 17934 5
H 7808 608 8 25725 1437 6
I 8912 644 7 29422 1520 5
J 1824 55 3 9776 328 3
K 1824 55 3 9776 328 3
L 2878 67 2 15516 426 3

5.5 Solvers, Options, Settings, and Runs

Henceforth, we use the following terminologies for solvers, options, and settings:

Solvers: A solver is a broad class of runnable complete systems that are used
to solve satisfiability problems given as CNF formulas. We use two solvers
anp and cca, where they respectively use the AdaptNovelty+ and the CCAnr
variable selection heuristics. A solver can have many characteristics, such as a
restart method, a tabu technique, and detection of atype gates. Every solver
characteristic is by default deactivated and needs to be explicitly activated.

Options: An option is a single parameter that can be used to activate a certain
characteristic of a given solver. For example, we respectively use t and r as two
options to enable using the tabu technique and the restart method within a
given solver. We use a concatenation of multiple options (e.g. tr or rt) ignoring
their order to mean they are used simultaneously.

Settings: Given a number of options available for a solver, each unique combina-
tion or subset of the available options is called a setting of the solver. Certain
combinations of options may not be supported by the solver and hence such
a setting is invalid. Given two options {r, t} of a solver anp, we have {rt, r, t,
-} as four settings of anp, where - denotes an empty subset. We may respec-
tively use anp-rt, anp-r, anp-t, and anp– to represent these settings. To discuss
a number of settings conveniently, we might mention the shared subsetting
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Table 4 Numbers of gates detected from the satlib and sat14 benchmark problem instances

id and or nand nor cg dg xor xnor eq not
p32

A 125 0 0 0 61 0 1158 0 1073 30
B 125 0 0 0 61 0 1146 0 1052 37
C 125 0 0 0 61 0 1168 0 1036 34
D 125 0 0 0 61 0 1176 0 1010 42
E 125 0 0 0 61 0 1182 0 1010 36

p16
A 31 0 0 0 30 0 270 0 273 17
B 31 0 0 0 30 0 302 0 265 18
C 31 0 0 0 30 0 287 0 272 14
D 31 0 0 0 30 0 277 0 278 17
E 31 0 0 0 30 0 294 0 268 18

log
A 0 0 0 89 0 0 0 0 0 46
B 0 0 0 76 0 0 0 0 0 62
C 0 0 0 98 0 0 0 0 0 64
D 0 256 0 201 122 0 0 0 211 22

bw
A 72 0 0 18 32 0 0 0 12 3
B 110 0 0 27 70 0 0 0 16 3
C 210 0 0 42 161 0 0 0 24 3
D 342 0 0 54 280 0 0 0 31 4
E 72 0 0 18 32 0 0 0 12 3
F 20 0 0 11 9 0 0 0 5 3
G 6 0 0 7 3 0 0 0 3 4

bmc
A 1057 888 224 122 1027 1768 0 0 722 37
B 192 167 0 35 57 155 0 0 348 84
C 3227 2637 198 67 1483 1692 72 984 1303 196
D 1788 1891 221 72 2725 2254 61 356 3088 227
E 944 627 18 15 416 441 0 26 1298 202
F 3046 2650 127 240 5777 4285 164 650 5915 1030
G 801 757 13 161 255 511 0 24 911 124
H 18754 8566 507 61 1022 1922 0 670 10417 966
I 21061 9598 570 67 1212 2211 0 766 11560 1071
J 4803 6451 231 461 8887 4489 112 29 5800 705
K 4533 4206 489 304 2721 2897 1202 1807 3735 266
L 6194 5862 688 505 5348 5127 1370 2319 4452 265

M 2253 2173 212 27 1510 928 300 950 1540 352

id and or nand nor cg dg xor xnor eq not
ssa

A 0 23 41 42 40 0 0 15 921 95
B 0 7 23 23 34 0 0 3 804 87
C 0 11 25 26 34 0 0 8 838 86
D 0 19 41 35 38 0 0 15 909 92

qg
A 0 0 0 110 0 0 0 0 0 4
B 0 0 0 152 0 0 0 0 0 4
C 0 0 0 116 0 0 0 0 0 4
D 0 0 0 158 0 0 0 0 0 4
E 20 0 0 152 0 0 0 0 0 4
F 24 0 0 200 0 0 0 0 0 4
G 0 0 0 306 0 0 0 0 76 6
H 0 0 0 193 0 0 0 0 18 5
I 0 0 0 180 0 0 0 0 28 6
J 0 0 0 433 0 0 0 0 48 5

hc
A 649 0 0 100 0 0 0 0 77 10
B 7040 0 0 535 0 0 0 0 160 25
C 0 0 0 0 0 9 0 0 14 9
D 64 448 0 0 448 0 0 448 3652 28
E 72 504 0 0 504 0 0 504 3160 28
F 2105 954 0 1 2775 5 80 4550 0 0
G 29008 1 0 55762 23029 0 0 0 2254 588
H 3591 858 0 0 0 47 2642 0 51 49
I 4155 980 0 0 0 37 3030 0 87 37
J 596 0 0 0 0 6 75 24 52 6
K 597 0 0 0 0 5 77 22 53 5
L 959 0 0 0 0 2 148 24 61 2

app
A 108 382 720 0 0 0 0 0 6779 3108
B 108 396 720 0 36 0 0 0 8642 3300
C 120 430 720 0 36 0 0 0 9176 3468
D 126 416 744 0 26 0 0 0 7509 3398
E 126 416 744 0 26 0 0 0 7509 3398
F 186 464 744 0 0 0 0 0 8891 3398
G 120 430 0 0 36 0 0 0 6192 3468
H 126 416 0 0 26 0 0 0 5386 3398
I 120 146 36 14 36 0 0 0 288 344

separately and then the disjoint subsetting of each setting separately. For
example, to discuss a set of settings {rt, r}, we separate the shared subsetting r
from the disjoint subsettings t and -. In some charts, to show the performance
of a particular subsetting r regardless of its accompanying subsettings t or -,
we put t and - in the x-axis and r in the legend, and plot the performance of
rt and r on the chart as points and draw a line between the two points.

We perform two types of running of the solver settings on the satlib and sat14
benchmark problem instances.

Pilot Runs: A solver setting is run 5 times on a problem instance, each with
1-hour timeout.

Final Runs: A solver setting is run 25 times on a problem instance, each with
25-hour timeout.

The pilot runs are to perform various analyses and the final runs to show final
results. We consider a problem instance is solved by a solver setting if (#successful-
run/#total-run) i.e. the success rate is at least 50%, and we take the median solu-
tion times of the successful runs as the representative solution time and use it in
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further analyses. The reason to consider at least 50% success rate is to perform a
robust analysis. Because of stochasticity, local search algorithms all on a sudden
can perform too good or too bad in a single run. So with low success rates (e.g.
solved just in a few runs), the likelihood of having outliers is high and the statis-
tical central measures might not be very reliable. Yet for the sake of analysing the
best performance of the solver settings over the number of runs attempted, later
we show a chart (e.g Fig. 11) only for the best performing settings.

5.6 Pilot Runs: Option Effects

The following aspects can be studied for the anp and cca solvers that we have
developed for the constrained circuit models for SAT. These relate to the gate
types and search algorithms.

1. Use various combinations of the 10 types of gates to see their interaction during
search.

2. Simplify the equivalent variables from the constrained circuit model, if eq and
not gates are detected.

3. Use the tabu technique to address the revisitation problem of the local search
algorithm.

4. Use the restart method to address the local minima and plateaus encountered
during search.

Besides the above aspects, we can also remove deferrable variables from each
constrained circuit model. However, instead of considering this as a solver option,
we perform this as a mandatory step, since this does not affect the search be-
haviour. So we could have in total 13 options, each of which can be on or off.
However, trying 213 = 8192 settings for each solver is impractical. Therefore, we
consider grouping them and thus get 5 options with 25 = 32 settings for each
solver.

1. c to use the ctype gates i.e. and, nor, and cg gates
2. d to use the dtype gates i.e. or, nand, and dg gates
3. p to use the ptype gates i.e. xor, xnor, eq, and not, plus equivalence simplication
4. t to use the tabu technique during search with tabu tenure 5
5. r to use the restart method with maximum plateau length 10, 000

In the analysis of these runs, we mainly consider the numbers of problem
instances solved by each solver setting although we have tacitly considered t or
ANOVA plus HSD test results on the solution times. Fig. 6 in the Top-Left chart
shows that regardless of combinations of r, t, c, and d, both solvers solve almost
twice the numbers of problem instances with subsetting p (i.e. anp-p and cca-p)
than with subsetting - (i.e. anp– and cca–). Henceforth, we decide to use ptype
gates in further analysis. The Top-Right chart of Fig. 6 shows that both solvers
solve more or equal numbers of problem instances when using the tabu technique
(i.e. anp-tp and cca-tp) than when not using (i.e. anp-p and cca-p), regardless of
the combinations of r, c, and d. Henceforth, we decide to use the tabu technique
along with ptype gates in further analysis. The Bottom-Left chart of Fig. 6 shows
both solvers solve almost the same numbers of problem instances when using the
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restart method (i.e. anp-rtp and cca-rtp) and when not using (i.e. anp-tp and cca-
tp), regardless of the combinations of c and d. Henceforth, we decide to use the
restart method, because it helps solve slightly more problems with the best settings
tp and tpd of anp and cca solvers respectively. Fig. 6 Bottom-Right chart shows the
numbers of problem instances solved by the two solvers when various combinations
of c and d are used along with rtp. Both solvers perform worse with cd than with
c or d. Even not using c and d both can achieve almost the best performance.

Fig. 6 Various solver settings (x-axis) vs numbers of satlib and sc14 problem instances solved
(y-axis) when various other settings (legend) are also used along with. Top-Left: when ptype
gates are used and not used (respectively presence and absence of p in the legend). Top-
Right: when with ptype gates (presence of p in the legend), tabu technique is used and not
used (respectively presence and absence of t in the legend). Bottom-Left: when with ptype
gates and tabu technique (presence of tp in the legend), restart method is used and not used
(respectively presence and absence of r in the legend). Bottom-Right: when with ptype gates,
tabu technique, and restart method (rtp in the x-axis), atype gates are used and not used (all
possible subsettings of {c, d} in the legend).

To study the mutual interaction between options c and d, we compute Pearson
correlation coefficients among settings cd, c, d, and - of both anp and cca solvers,
where all settings have rtp in common. These coefficients are in Table 5. Because of
the common rtp, some positive correlations are expected among the four settings
and we have to consider the differential effects. As we observe, comparatively high
correlations between cd and c or d show that both options c and d need not be
used together. Also, comparatively low or moderate correlations between - and c
or d show the importance of using options c or d separately.

5.7 Pilot Runs: Generalised vs Specialised Gates

The cg and dg gates as defined in (9)–(10) can have both positive or negative
literals as inputs. As such, these gates generalise over the specialised gates and, nor,
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Table 5 Pearson’s correlation coefficients among settings cd, c, d, - of both anp and cca
solvers, where all settings have rtp in common. Only coefficients larger than 0.66 are shown.

anp-rtp
setting cd c d

c 0.92
d 0.67
- 0.68 0.89

cca-rtp
setting cd c d

c 0.98
d 0.94 0.79
- 0.69

or, and nand that can have only variables as inputs. We however detect cg and dg
gates only when both positive and negative literals are inputs. When only variables
are involved, the gate is detected as a specialised gate rather than a generalised
gate. The specialised gets are more efficient than the generalised gates in that the
specialised gates do not check the signs of the inputs while the generalised gates
do. We investigate whether this difference in efficiency is significant to ponder
further. For this, we design the two following paired runs for each solver setting
for each problem instance.

1. g to detect cg gates instead of and and nor gates, and dg gates instead of or
and nand gates

2. s to detect and, nor, or, and nand gates as they are usually, and not as the
generalised gates

In terms of Table 4, for s runs, the numbers of and, nor, nand, or, cg, and dg
gates are the same as shown in the table. In g runs, the numbers of cg gates will
be the sum of the columns and, nor, and cg of the table. Similarly, the numbers
of dg gates in g runs will be the sum of the columns or, nand, and dg of the
table. We change the gate detection algorithm accordingly to detect the gates as
per the design of g runs. We use the same random number seed for each pair
of corresponding g and s runs, and we run 5 such paired runs with 5 distinct
random number seeds. We consider using rtp setting along with as we decided in
Section 5.6, but we vary settings on combinations of c and d. Figure 7 shows that
there is no significant difference between g and s runs. The reason could be that in
each iteration of the search, only a few inputs in each gate actually change because
of each single variable flip move. With incremental propagation of changes from
the independent to the dependent variables, the efficiency in not checking the signs
of the inputs in the specialised gates are not much (statistically not significant as
per t test) compared to the sign checking in the generalised gates. Henceforth, we
will only consider g runs. So all atype gates will be either cg or dg gates.

5.8 Pilot Runs: Using ptype Gates

Fig. 6 has already showed that the ptype gates make big differences in the perfor-
mances of both the solvers. To further analyse, we divide the ptype gates into xtype
and etype gates as shown in Definition 2. For the etype gates, we have a choice to
simplify equivalent variables as per Step 8 of Algorithm 1 and Algorithm 7 or not
to simplify. Below we list the options and in the experiments, we consider each
possible combination of these options.

1. x to detect the xtype gates
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Fig. 7 Paired comparison of time performance of g runs (x-axis) vs s runs (y-axis) for anp
(left) and cca (right) solvers with the fixed setting of rtp, but varied on c and d combinations.
Differences are not significant.

2. n to detect the etype gates, but not to perform equivalence simplification
3. e to detect the etype gates and then perform equivalence simplification

Fig. 8 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for anp (left)
and cca (right) solvers, when various settings are used for ptype gates but along with the same
setting of rt.

We run these solver settings along with the same rt setting. Like Fig. 6 Top-Left,
Fig. 8 also shows ptype gates lead to significantly better performances than using
no ptype gates (as per ANOVA plus HSD tests). Nevertheless, we notice from Fig. 8
that setting e of both anp and cca solvers obtains the best performance, where the
equivalence simplification makes significant difference from setting n. Setting x
performs the second followed by setting xe that combines x and e. In terms of
Fig. 8, Fig. 6 actually shows performance of the xe setting. Interestingly, setting
xn performs the worst and its performance difference from xe setting shows the
usefulness of equivalence simplification again. To analyse the correlation between
solver options statistically, we compute Pearson correlation coefficients among the
top three settings e, x, and xe. The coefficient between e and xe is above 0.9 while
that between x and xe and also between x and e are below 0.2. These coefficients
confirm option e is dominant over options x while both options are useful.

5.9 Final Runs: Final Experiments

From Fig. 8, we see the three settings {x, e, xe} are the best performers when used
along with the same setting rt. From Fig. 6 bottom-right, we see the three settings
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{c, d, -} are the best performers along with the same setting rtp. So we run our final
experiments using the same setting rt i.e. with the restart method and the tabu
technique, but varying on the combinations of gate types {c, d, -} × {x, e, xe}. We
further include a setting rt where no gate is detected, but just the restart method
and the tabu technique are used. We also include an additional setting o to run the
original AdaptNovelty+ and CCAnr solvers implemented by the respective authors.
We include another setting denoted by l, where equivalence literals are eliminated
from the CNF formula using equivalence literal elimination technique Manthey
(2012) and then the original AdaptNovelty+ and CCAnr solvers are run on the
obtained CNF formula. Setting l is included because option e is just equivalence
simplification statically performed on gate graphs before search and we want to
see how these two differ in performance. The solution times reported for setting l
include the time needed for equivalence literal elimination.

So we have the following 12 settings for each of the two solvers anp and cca.

({rt}×{c, d, -}×{x, e, xe})∪{rt, o, l} = {rtcx, rtce, rtcxe, rtdx, rtde, rtdxe, rtx, rte, rtxe, rt, o, l}

We use gtype setting to mean any of the settings {rtcx,rtce,rtcxe,rtdx,rtde,rtdxe,rtx,rte,rtxe}
that have c, d, x or e in it. Setting rt is considered as a baseline setting, and o and
l as original settings.

Table 6 Average of various statistical data over problem instance of the same types

(a) Average numbers of gates detected
- e xe de dxe ce cxe x dx cx

ssa 0 958 968 1006 1016 1026 1036 10 58 78
qg 0 22 22 22 22 226 226 0 0 204
p32 0 1079 2241 1079 2241 1265 2427 1162 1162 1348
p16 0 288 574 288 574 349 635 286 286 347
log 0 101 101 168 168 247 247 0 66 146
hc 0 867 1836 1197 2165 11867 12835 969 1298 11968
bw 0 18 18 18 18 246 246 0 0 228
bmc 0 4355 5267 10438 11351 12234 13147 912 6996 8792
app 0 9739 9739 10620 10620 9892 9892 0 880 153

(b) Average of maximum L(v) : v ∈ Λ(C)
- e xe de dxe ce cxe x dx cx

ssa 3 5 5 9 9 8 8 4 5 5
qg 3 6 6 6 6 23 23 3 3 22
p32 3 3 103 3 103 66 165 66 66 68
p16 3 3 51 3 51 34 81 34 34 35
log 3 5 5 5 5 5 5 3 4 5
hc 3 4 7 5 8 14 17 6 7 18
bw 3 4 4 4 4 8 8 3 3 6
bmc 3 4 22 4 22 22 40 15 15 23
app 3 4 4 5 5 4 4 3 4 4

(c) Average numbers of independent variables |I|
- e xe de dxe ce cxe x dx cx

ssa 1309 351 341 304 294 283 273 1299 1251 1231
qg 459 438 438 438 438 281 281 459 459 290
p32 2395 1323 157 1323 157 1138 33 1229 1229 1104
p16 621 333 47 333 47 273 17 335 335 304
log 1881 1782 1782 1718 1718 1642 1642 1881 1816 1737
hc 9023 8430 7461 8118 7156 6229 5431 8055 7736 6414
bw 1644 1626 1626 1626 1626 1405 1405 1644 1644 1423
bmc 19919 15561 14649 9604 8808 7820 6979 19009 12945 11136
app 47488 37749 37749 36869 36869 37596 37596 47488 46608 47335

(d) Average size of neighbour(v) : v ∈ I
- e xe de dxe ce cxe x dx cx

ssa 4 6 6 9 9 8 9 2 2 2
qg 111 112 112 112 112 279 279 111 111 289
p32 4 2 130 2 130 31 32 16 16 4
p16 4 2 46 2 46 14 16 9 9 3
log 22 22 22 22 22 34 34 21 22 34
hc 21 15 22 19 33 82 110 31 43 40
bw 26 26 26 26 26 47 47 26 26 45
bmc 12 10 13 26 33 37 49 13 22 21
app 19 2 2 2 2 2 2 18 20 19

(e) Average numbers of constrained dependent variables |VC|
- e xe de dxe ce cxe x dx cx

ssa 2891 934 934 772 772 706 706 934 772 706
qg 15291 15248 15248 15248 15248 13914 13914 15247 15247 13902
p32 7430 622 622 622 622 126 187 622 622 186
p16 1904 184 184 184 184 32 62 184 184 61
log 11682 11482 11482 11264 11264 10522 10522 11480 11261 10515
hc 94057 55615 55615 54713 55528 47542 47234 88921 87571 79578
bw 29495 29459 29459 29459 29459 28554 28554 29459 29459 28554
bmc 90611 51569 51570 31022 31139 21565 21636 78248 43055 36743
app 396288 15173 15173 14928 14928 15173 15173 376810 370879 375999

(f) Average of average |V (v)| : v ∈ VC

- e xe de dxe ce cxe x dx cx
ssa 2 3 3 3 3 3 3 3 3 3
qg 3 3 3 3 3 37 37 3 3 38
p32 3 2 30 2 30 5 32 27 27 34
p16 3 2 17 2 17 5 16 15 15 18
log 2 2 2 2 2 2 2 2 2 2
hc 3 3 4 3 5 8 7 6 4 8
bw 2 2 2 2 2 4 4 2 2 4
bmc 3 3 4 6 7 17 17 3 5 5
app 4 2 2 2 2 2 2 4 4 4
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Table 6 shows various statistical data over problem instances of the same type,
e.g. (a) the average numbers of gates detected, (b) the average of maximum gate
levels, (c) the average numbers of independent variables, (d) the average size of
the neighbourhood of the independent variables, (e) the average numbers of con-
strained dependent variables, and (f) the average numbers of involving variables
of the constrained dependent variables. Detecting more gates could result into an
increase in the number of gate levels in the DAG, a decrease in the number of
independent variables, a decrease in the number of dependent variables, and an
increase in the number of dependency cycles. The more the number of gates and
the bigger the number of gate levels, the bigger the cost of the change propagation.
The smaller the number of independent variables, the smaller the search space in
terms of the search combinatorics, but for a local search the revisitation problem
might be more likely. The smaller the number of constrained dependent variables,
the less informative the comparative evaluation of the current and the next poten-
tial assignments will be. The bigger the number of dependency cycles, the bigger
the number of variables added to break the cycles. Overall detecting more gates
has both advantages and disadvantages.

Tables 7 and 8 show the detailed results for each solver setting for each problem
instance. Fig. 9 shows the numbers of problem instances solved by various solver
settings vs time in seconds. Table 10 shows the total numbers of problem instances
solved by each solver setting. Table 10 also shows the total numbers of problem
instances with the best time performance by each solver setting among other
settings of the same solver and among all settings of both solvers. Fig. 10 shows
the performances of the best settings of both solvers along with their baseline and
original settings. Below we discuss the results presented in Tables 7 and 8.

1. ssa: These problem instances are all solved by each solver setting in fractions of
a second. For anp solver, all gtype settings are faster than the orignal settings
o and l, which are faster than the baseline setting b. For cca solver, setting
o is faster than all gtype settings, which are faster than the baseline setting
rt. Setting l with its cost of equivalence literal elimination is slightly slower
than setting o. The best performing settings for these problem instances are
anp-rtcx, anp-rtdx, cca-o, anp-rtxe and anp-rte.

2. qg: Problem instances B, D, G, and J are comparatively harder for both anp and
cca settings, and are not solved by rtce, rtcxe, rtx, rtdx, and rtcx settings of cca.
In 8 out of 10 problem instances, cca-o is the fastest and solves instances within
fractions of seconds, but anp settings taking up to several seconds perform
better than other cca settings that take tens of seconds. Setting l is somewhat
better than setting o for anp but not for cca, where o is faster than l.

3. p32: Settings o, l and rt of anp and settings o, l, rt, rtxe, rtdxe, rtcxe, rtcx of
cca could not solve any p32 problem instances. Settings rtxe, rtdxe, and rtcxe
of anp struggle to solve these problem instances. Settings rte, rtde, and rtce
of both solver solve these problem instances in fractions of seconds and are
comparatively faster than settings rtx and rtdx.

4. p16: Settings o, l, and rt of anp could solve p16 problem instances each in
thousands of seconds. Original settings o and l of cca could solve those problem
instances each in tens of seconds while the baseline setting rt cannot solve any
of them. Settings rte, rtde, rtce, rtx, rtdx, rtcx of both solvers solve these problem
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Table 7 anp success rates (%s) and solution times (sec). Blank %s means 100. Blank sec
means %s < 50

o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx
%s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec

A 0.24 0.13 2.39 0.03 0.02 0.19 0.06 0.03 0.03 0.01 0.01 0.01
B 0.32 0.08 4.94 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0

ssa C 0.07 0.06 1.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
D 0.06 0.08 1.51 0.01 0.01 0.07 0.06 0.1 0.08 0.01 0.01 0.01

A 8.6 7.2 1.52 1.21 0.8 1.04 0.94 5.87 8.67 1.1 2.17 28.04
B 629 173 1186 828 435 396 628 92 13488 96 17828 1119 830 88 34164
C 0.86 1.2 0.97 0.63 0.81 0.85 0.82 5.52 5.44 2.2 1.79 26.8
D 673 981 2890 2042 921 1458 1413 56 34305 60 53317 15740 11925 20

qg E 5.27 4.1 0.17 0.27 0.32 0.32 0.28 0.82 0.46 0.28 0.36 1.8
F 19.6 28.2 0.73 1.24 0.94 1.11 1.72 14.07 12.65 2.43 2.23 32
G 9966 7498 28.5 13.3 20.1 16.6 18.6 136 168 482 564 12393
H 67 58.3 1.22 3.06 2.25 1.76 2.22 1.87 0.94 2.11 2.27 7.89
I 8.63 6.6 0.09 0.1 0.11 0.1 0.13 0.22 0.27 0.12 0.14 0.93
J 28 55 30813 444 135 117 78 86 56 22811 68 44214 2678 3569 0

A 0 0 0 0.04 8 0.04 0 0.04 76 25515 0.06 0.06 0.07
B 0 0 0 0.04 24 0.04 16 0.03 68 37362 0.07 0.07 0.06

p32 C 0 0 0 0.04 4 0.04 4 0.03 4 0.06 0.06 0.06
D 0 0 0 0.04 4 0.04 12 0.04 20 0.06 0.06 0.06
E 0 0 0 0.04 12 0.04 12 0.04 44 0.06 0.06 0.07

A 488 679 2646 0.01 0.58 0.01 1.12 0.01 0.16 0.01 0.01 0.01
B 1307 1067 8189 0.01 0.62 0.01 0.4 0.01 0.16 0.01 0.01 0.01

p16 C 234 886 5851 0.01 0.67 0 0.61 0 0.25 0.01 0.01 0
D 1038 1082 96 4705 0.01 0.9 0 1.01 0.01 0.51 0.01 0.01 0.01
E 136 1027 3569 0.01 1 0.01 1.02 0 0.37 0.01 0.01 0.01

A 0.1 0.12 106 122 121 138 165 89 152 0.13 0.16 0.06
B 0.18 0.09 643 651 284 648 731 498 428 0.27 0.24 0.08

log C 0.34 0.41 19330 15476 96 15833 11332 92 10418 1369 1611 0.52 0.62 0.21
D 2.34 4.05 263 187 138 18 14 110 80 0.42 0.39 0.52

A 137 156 4 12 4 4 12 96 15711 96 8926 10 7 0.59
B 0 0 0 0 0 0 0 0 4 99 100.4 57.3
C 0 0 0 0.17 0.17 0.17 0.17 0.17 0.17 0 0 0
D 0 0 0 13 12 12 13 13.11 12 0 0 0
E 0 0 0 20 16 20 20 18.78 15 0 0 0

hc F 0 0 0 1.23 0 2.61 0 1.06 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 8.02
H 0 0 0 0.23 107 0.23 0 0.18 12362 0 0 7.63
I 0 0 0 0.26 0.32 0.25 0.29 0 0 0 0 261
J 0 0 0 0.12 0.14 0.13 0.14 4 0 0 0 0
K 0 0 0 0.12 0.14 0.13 0.15 0.13 0 0 0 0
L 0 0 0 0.23 0.28 0.22 0.25 0.17 0.17 0 0 0

A 0.01 0.03 0.22 0.23 0.15 0.23 0.17 0.39 0.47 0.3 0.18 0.23
B 0.3 0.4 19 29 29 33.74 26.47 301 356 38 26 152
C 98.7 73 96 23424 72 22992 72 25935 76 30807 68 40335 16 4 18526 84 22328 12

bw D 44 23567 0 0 0 0 0 0 0 0 0 0
E 0.02 0.07 0.15 0.22 0.2 0.25 0.27 0.68 0.84 0.2 0.19 0.77
F 0 0.01 0 0 0 0 0 0 0 0 0 0.01
G 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 3.29 3.73 0 0 7.74 10.36 0.54 0.3 0.37
B 80 16468 0 3386 0.03 0.03 0 0 0.03 0.03 0.03 0.02 0.02
C 0 0 0 0 0 0 0 2506 0 0 31 247
D 0 0 0 27 26 1.6 2 216 48 1.7 0.6 0.7
E 0 0 0 0 0 36 0 0.29 0.36 0.27 0.16 0.16
F 0 0 0 2.11 2.1 1.57 1.6 0 0 3.88 1.84 2.68

bmc G 0 0 688 0.16 0.16 0.14 0.14 0.14 0.14 0.24 0.16 0.16
H 0 0 0 0 0 0 0 0 0 20 2.57 1.75
I 0 0 0 0 0 0 0 0 0 46 2.92 2.17
J 0 0 0 1.85 1.84 1.62 1.63 1.69 1.57 5.09 1.95 1.86
K 0 0 0 0 0 0 0 0 0 37 1.33 1.56
L 0 0 0 1.68 2.46 1.46 1.98 2.11 3.67 0 2.5 3.09
M 0 0 0 0 0 0 0 0 0 28 1.14 1.79

A 0 0 0 5.58 5.81 5.45 5.68 5.68 5.9 0 0 0
B 0 0 0 33.25 31.31 29.56 31.72 28.2 38.05 0 0 0
C 0 0 0 38.64 38.56 39.32 39.85 41.27 34.14 0 0 0

app D 0 0 0 4.98 5.02 4.98 4.98 4.98 4.99 0 0 0
E 0 0 0 5.31 5.38 5.73 5.37 5.48 5.31 0 0 0
F 0 0 0 54.56 55.15 57.14 53.99 54.1 52.67 0 0 0
G 0 0 0 25.66 33.44 32.17 24.02 33.7 26.81 0 0 0
H 0 0 0 6.43 5.41 5.09 5.04 5.33 5.4 0 0 0
I 0 0 0 22.85 28.21 22.65 22.38 22.86 22.2 0 0 0
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Table 8 cca success rates (%s) and solution times (sec). Blank %s means 100. Blank sec
means %s < 50

o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx
%s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec %s sec

A 0.01 0.1 4.39 0.11 0.17 2.66 0.27 0.67 0.51 0.06 0.05 0.05
B 0.01 0.06 1.04 0.03 0.03 0.02 0.03 0.01 0.02 0.03 0.02 0.02

ssa C 0.01 0.06 1.31 0.03 0.03 0.02 0.03 0.01 0.01 0.03 0.02 0.02
D 0.01 0.07 2.11 0.05 0.09 1.41 0.08 0.05 2.83 0.04 0.03 0.03

A 0.06 0.29 21.96 14.79 10 16.14 16.01 138 196.74 33.85 36.69 284
B 1.09 3.2 92 25896 80 26561 76 20623 88 21336 84 42365 8 12 76 16219 92 19299 4
C 0.06 0.28 12.09 14.06 15.22 20.68 14.43 50.67 37.57 52.31 40.69 198
D 12.55 15.6 56 14321 72 38249 60 57246 64 41662 68 50185 4 4 0 0 0

qg E 0.02 0.12 8.86 17.56 18.67 19 16.6 28.83 30.64 15.56 21.14 73.6
F 0.04 0.2 164.1 89.31 104.74 147 148 617 880 199.8 210 4517
G 0.11 0.9 6618 5577 4327 3867 4556 0 0 36 36 0
H 0.03 0.19 26.86 29.17 19.42 22.23 21.17 106 70.91 136.4 141 1559
I 0.02 0.19 4.69 5.02 4.9 3.64 3.33 9.9 11.22 11.11 13 39.39
J 8413 8025 16 52 35936 44 36 56 36958 0 0 0 0 0

A 0 0 0 0.06 8 0.06 0 0.05 48 0.67 0.71 4
B 0 0 0 0.07 4 0.07 4 0.04 44 0.78 0.84 12

p32 C 0 0 0 0.06 0 0.06 0 0.05 24 0.74 0.69 16
D 0 0 0 0.06 4 0.06 0 0.05 12 0.67 0.74 8
E 0 0 0 0.06 0 0.06 0 0.05 28 0.73 0.66 8

A 15.87 4.9 4 0.01 1.39 0.01 0.88 0.01 0.18 0.02 0.02 0.01
B 16.17 17.5 0 0.01 1.08 0.01 1.75 0.01 0.29 0.02 0.02 0.01

p16 C 18.28 28.7 0 0.01 2 0.01 1.91 0.01 0.46 0.02 0.02 0.01
D 17.76 10.1 0 0.01 4.86 0.01 5.95 0.01 0.84 0.02 0.02 0.01
E 72.02 11.8 0 0.01 2.15 0.01 2.05 0.01 0.45 0.02 0.02 0.01

A 0.01 0.05 54.85 53.98 50.7 48.46 31.82 68.54 56.19 51.26 52.4 1.48
B 0.01 0.05 47.73 32.03 37.15 23.24 33.16 58.46 59.1 42.66 41.54 3.21

log C 0.02 0.09 129.8 126 94.22 82 89.68 203 259 126.01 127.82 6.51
D 0.07 0.71 52 9262 96 4485 96 3864 96 3830 92 2194 48 44 64 9283 56 143 188.7

A 4.22 0.64 8 8 8 0 8 0 0 587 831 505
B 1.67 14.7 0 0 0 0 0 0 0 0 0 8
C 0 0 0 0.18 0.18 0.18 0.19 0.18 0.18 0 0 0
D 0 0 0 0 4 1300 8 4 0 0 0 0
E 0 0 0 1812 84 8343 219 676 36 4 0 0 0

hc F 0 0 0 160 0 179 0 60 49057 0 0 0 0
G 0 0 0 0 0 0 0 137.6 133 0 0 0
H 0 0 0 0.6 46.23 0.48 0 0.25 6414 0 0 14.5
I 0 0 0 0.63 3.06 0.52 0.88 0 0 0 0 29
J 0 0 0 1.91 4.84 1.96 4.9 15.35 22.63 0 0 5523
K 0 0 0 1.95 5.15 1.86 5.26 0.97 0 0 0 6897
L 0 0 0 5.14 13.48 5.44 14.26 0.19 0.19 0 0 0

A 0.01 0.04 18.34 11.72 13.51 14.87 6.62 5.04 10.11 21.4 24.44 8.33
B 0.03 0.2 2872 1026 2515 2747 3015 3619 3254 5735 5499 96 17633
C 0.5 1.6 16 16 16 16 12 0 0 8 0 0

bw D 5.42 21.3 0 0 0 0 0 0 0 0 0 0
E 0 0.07 13.38 12.21 19.34 16.07 19.7 5.77 14.76 21.21 25.04 11.51
F 0 0.01 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.06 0.07 0.04
G 0 0.01 0 0 0 0 0 0 0 0 0 0

A 20611 431 0 4 0 1412 753 64 3924 64 4447 46.94 70.7 17.27
B 0.03 1.8 116.4 25.51 27.68 184 188 36.55 51.65 0.15 0.06 0.07
C 0 0 0 0 0 0 0 0 0 612.8 402 179.8
D 0 0 0 461 440 1508 625 685 711 139.4 220 42.48
E 7.52 14.4 0 4 0 0 0 2.27 4.97 11.52 5.4 2.93
F 0 0 0 5.14 5.15 2.93 2.77 0 0 617.8 24 1611

bmc G 0.13 1.9 3773 1663 1562 493 128 15.8 26.62 13.41 338 4.6
H 0 0 0 0 0 0 0 0 0 0 0 1426
I 0 0 0 0 0 0 0 0 0 0 0 662.7
J 0 0 0 8.24 9.33 4.28 4.67 3.36 646 0 391 241.7
K 0 0 0 0 0 0 0 0 0 674 269 227
L 0 0 0 0 0 0 0 0 0 0 635 508
M 0 0 0 16 0 0 0 0 0 456 301 1324

A 0 0 0 16 12 4 8 16 8 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0

app D 0 0 0 8 4 4 8 8 8 0 0 0
E 0 0 0 20 12 8 8 4 4 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 8 0 0 0 0 0
I 0 0 0 48.51 47.58 51.11 47.62 47.64 49.93 0 0 0
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instances in fractions of seconds, while settings rtxe, rtdxe, and rtcxe can take
several seconds.

5. log: Settings o, l, rtx, rtdx, and rtcx of anp solve these problem instances within
a second, while settings rt, rte, rtxe, rtde, rtdxe, and rtcxe take tens to thousands
of seconds. For cca, the original settings o and l solve most of these instances
within a second, settings rtx, rtdx, and rtcx solve within about 10 seconds while
settings rt, rte, rtxe, rtde, rtdxe, rtce, rtcxe solve in about 100 seconds.

6. hc: Settings o, l, rt, rtx, and rtdx of both anp or cca could not solve 10−11 out of
12 problem instances while setting rtcx cannot solve 5 instances. Other settings
of anp can solve some problem instances within a second while other settings
of cca solve some problem instances in several seconds. Problem instances B
and G are not solved by most solver settings.

7. bw: Problem instance D is not solved by any settings of anp and cca, except
setting l. Problem instance C is challenging for anp gtype settings and could
not be solved by any cca gtype settings. Other problem instances are solved
within one second by anp and cca settings. Setting o of both solvers are better
than the other settings including setting l.

8. bmc: Settings o, l, and rt of solver anp could not solve up to 12 out of 13 bmc
problem instances. Setting o, l, and rt of cca could solve 2–4 problem instances.
Settings rtcx and rtdx of anp solve all problem instances within several seconds,
while the same settings of cca solve most problem instances in several hundreds
of seconds.

9. app: Settings o, l, and rt of both anp and cca could not solve any app problem
instances. Settings rte, rtxe, rtde, rtdxe, rtce, rtcxe of anp could solve all 9 app
problem instances within about 60 seconds. The same settings of cca could
solve only 1 problem instance within similar times and have very low success
rates in several other problem instances.

Fig. 9 (top chart) shows gtype settings of anp perform much better than o,
l, and rt settings. Setting o and l performs very close to each other while setting
rt is worse than them. In the short run, settings rtxe, rtdxe and rtcxe show very
similar performance, while in the long run rte, rtde, rtce, rtx, rtdx, rtcx show similar
performance. The best three anp settings are rte rtde, and rtce, followed by rtxe,
rtdxe, rtcx, rtdx, rtcxe, and rtx. Fig. 9 (bottom chart) shows cca-o performs better
in the problem instances that take up to 10 seconds time. The difference in the
performance of o and rt settings of cca is very much. In the problem instances
taking small solution times, setting l is worse than setting o but in the long run
their performances are similar. Performances of gtype settings of cca are similar
to the same settings of anp. Setting rtcx of cca shows some noticeable behaviour:
in terms of the numbers of problem instances solved, rtcx comes the third but over
the time duration, it shows significantly worse performance than setting rtce (as
per t test). Overall, we consider setting rtce is the third for the cca solver.

Table 9 presents the Pearson’s correlation coefficients of 9 gtype settings of
both anp and cca solvers. Since all these settings have rt in common, some positive
correlations are expected among the four settings and we have to consider the dif-
ferential effects. We see a cluster of very strong positive correlations (coefficients
larger than 0.9 in top left corners of both tables) between all possible pairs of e,
xe, de, dxe of both anp and cca. These results show the dominance of option e over
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Fig. 9 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) by anp (top)
and cca (bottom) settings

other options x and d. There is another cluster of very strong positive correlations
(coefficients larger than 0.9 bottom right corners of both tables) between all pos-
sible pairs of x, dx, and cx of both solvers. These results also show the dominance
of option x over other options d and c. Moreover, we see last two rows x and dx in
both tables have moderate to strong correlations with the other settings of both
solvers. However, most these are because of common options x or e or also their
moderate to strong correlatios.

There are in total 69 problem instances that we used in the experiments. Ta-
ble 10 shows the numbers of problem instances solved by each solver setting.
Among the anp settings, rte, rtce, rtde are the three best performers. The best
four performers (with a tie at the third position) among the cca settings are rtde,
rte, rtce, and rtcx. The gtype settings solve significantly more problem instances
than the o and rt settings of each solver, except setting rtcxe of cca. While the
performance of setting rt is similar to that of settings o and l for anp, there is a
significant difference in these settings of cca. Although our emphasis is on solv-
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Table 9 Pearson’s correlation coefficients among 9 gtype settings of both anp and cca solvers,
where all settings have rt in common. Only the coefficients larger than 0.66 are shown.

anp-rt
setting e xe de dxe ce cxe cx dx
xe 1.00
de 0.97 0.98
dxe 0.94 0.96 0.99
ce
cxe 0.80
cx
dx 0.74 0.74 0.83 0.85 0.87 0.75 0.96
x 0.68 0.67 0.72 0.74 0.83 0.70 0.99 0.98

cca-rt
setting e xe de dxe ce cxe cx dx
xe 0.96
de 0.99 0.98
dxe 0.98 0.93 0.97
ce 0.84 0.82
cxe 0.74
cx
dx 0.96 0.97 0.97 0.98 0.68 0.67 0.96
x 0.94 0.96 0.96 0.96 0.68 0.67 0.96 1.00

ing more problem instances, in Table 10, we also show the numbers of problem
instances where each setting of each solver performs the best (in terms of solution
times) over other settings of the same solver or over all settings of both solvers.
Settings rtde, rtce, and rtcx of anp, among all anp settings, perform the best in
17-18 problem instances each. For cca, setting o, among all cca settings, is the best
in 27 problem instances, while setting rtce is the second best. Among all settings of
both solvers, cca-o is the best in 24 problem instances, and anp-rtce and anp-rtde
are the second and third best settings.

Table 10 Summarised performance of various anp and cca settings on 69 problem instances

total numbers of problem instances solved by each setting; top ones emboldened
o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx

anp 30 31 31 59 53 57 50 58 52 46 49 49
cca 36 36 24 47 40 48 41 42 35 40 41 42

total numbers of problem instances with the best time performance
of each setting among all the settings of the same solver; top ones emboldened

o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx
anp 6 3 5 15 5 17 7 18 13 6 15 18
cca 27 2 1 9 3 10 2 19 5 1 2 13

total numbers of problem instances with the best time performance
of each setting among all the settings of both the solvers; top ones emboldened

o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx
anp 3 0 2 13 4 16 6 17 11 6 14 14
cca 24 0 1 3 1 3 1 3 1 1 1 3

Fig. 10 shows the selected settings having e or x of both anp and cca along with
the same setting rt. These settings are selected because the ptype gates are the key
behind the performances. Settings rt, l, and o are also included. Both rte and rtx
settings of anp clearly outperform the same settings of cca. Setting cca-o and cca-l
clearly separate themselves from other o, and l and rt settings. Setting cca-o is the
best in problems taking very short solution times. Both baseline settings perform
worse than their respective original settings. Setting l is rather worse than setting
o. The gtype settings of both solvers perform outstandingly better than the o, l,
and rt settings.

Fig. 11 shows similar results as Fig. 10 shows, but not using medians of at least
50% successful runs, rather using the best performance over all runs, successful
or unsuccessful. This means Fig. 11 even includes solution times when just one
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Fig. 10 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for selected
settings that have e or x, but not c or d, and of course along with the same setting rt. Setting
o is also shown for both solvers.

Fig. 11 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for selected
settings that have e or x, but not c or d, and of course along with the same setting rt. Setting
o is also shown for both solvers. These results are based on the best performance in 25 runs.

run was successful. As it appears, the performance trends in Fig. 11 are not very
different from what we see from Fig. 10.

5.10 Performance Analysis

We investigate the reasons behind certain very noticeable behaviours of the solver
settings.
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Baseline Solver Settings

In the final experiments, the baseline settings anp-rt and cca-rt of both solvers ap-
peared to be significantly (as per ANOVA plus HSD tests) worse than the original
solvers. The difference is huge in case of the cca solver. The reason is that the
specialised implementations of the native SAT solvers have clear advantages in
time efficiency over our implementation on top of a generic CBLS system Kanga-
roo. This is in general the case between a specific system and a generic platform.
For CCAnr, we have tried to implement the broader notions of the solver as are
described by Cai et al. (2015), but there could be some differences in the imple-
mentation details. Considering the scope of this work, we are interested in how
the logic gate constraints can be exploited to make significant performance dif-
ferences in solving more and harder problem instances than when not exploiting
those gates. At the end the gtype settings perform better (as per ANOVA plus
HSD) than the original solvers, showing their advantages.

Running Original CCAnr

In the final experiments, performances of cca-o and cca-l are significantly better
(as per ANOVA plus HSD tests) in 21 problem instances (10 qg, 4 log, and 7 bw)
problem instances than that of the gtype settings of cca. We found two reasons
behind these. First, the original cca solver can already solve most of these problem
instances very quickly. Second, Table 6 shows these problem instances have small
numbers of logic gates compared to the other types of problem instances. So the
gate detection procedures essentially spend the time but could not find a large
number of gates, incurring an overhead to the small search times needed for these
problem instances. These are the same reasons behind cca-l being slower than cca-
o in total solutions times; the numbers of etype gates are small in these problem
instances.

Performance of Setting rtcx

In the final experiments, setting rtcx of both anp and cca obtains very good per-
formance in bmc problem instances. In fact, it is the effect of using xtype gates
in these problem instances. The p16, p32 and bmc are the three types of problem
instances that have significant numbers of xtype gates, and rtx and rtcx or rtdx
settings perform very good in these problem instances.

Numbers of Iterations

In the final experiments, we see the average ratios of the numbers of iterations
needed by various solver settings to solve problem instances. Table 11 shows the
ratios for the selected solver settings. While computing the ratios, setting rte has
been considered as the reference. Clearly, settings rte and rtx of anp take much
fewer iterations in most cases than the other three settings. For cca, ratios are lower
for o, l, and rt in qg, log, and bw problem instances. We have already discussed
that cca is faster in these problem instances that have small numbers of gates.
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Table 11 Average ratios of numbers of iterations needed by various solver settings to solve
problem instances. Blank entries mean problem instances not solved. Some problem instance
types are omitted because the ratios cannot be computed or not meaningful. The number of
iterations required by the setting rte is the reference.

anp o l b rte rtx
ssa 202.8 25.9 416.2 1.0 0.1
qg 3817.4 2641.4 1.2 1.0 7.2
p32 1.0 2.0
p16 23167464.0 39111319.0 26475128.0 1.0 1.4
log 0.0 0.1 1.3 1.0 0.0
bw 1.0 0.8 1.3 1.0 1.3

cca o l b rte rtx
ssa 7.5 3.1 17.6 1.0 0.04
qg 0.4 0.5 1.2 1.0 2.0
p32 1.0 13.8
p16 4342798.0 1968600.1 1.0 4.2
log 0.1 0.1 1.4 1.0 0.0
bw 0.3 0.3 2.0 1.0 2.7

Model Building Times

Fig. 12 shows the model building times required by Algorithm 1 against the total
solution times for the problem instances solved by the respective solver settings
anp-rte, anp-rtx, cca-rte, and cca-rtx. In most cases, the model building times are
very small compared to the total solution times that include the model building
times. However, in many cases, particularly for anp-rte, the model building times
are almost equal to the solution times.

Fig. 12 Model building time required by Algorithm 1 for problem instances and total solution
times that include the model building time. Problem instances (x-axis) sorted on solution times
vs time in seconds (y-axis) for Top-Left anp-rte, Top-Right anp-rtx, Bottom-Left cca-rte, and
Bottom-Right cca-rtx.

Interaction Between Gates

Fig. 6 Bottom-Right shows in the number of problems solved, ctype and dtype
gates do not mutually help when both of them are used together. Also, Section 5.6
and Table 5 somewhat explain this with Pearson’s correlation coefficients. Hence,
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we have not used setting cd in our final experiments. Section 5.8 with Pearson’s
correlation coefficients and Fig. 8 show etype and xtype gates do not mutually help
when both of them are used together. Although statistically insignificant (as per
ANOVA), Figure 13 shows settings rtcx and rtdx of anp perform somewhat better
than setting rtx of the same solver. For cca, setting rtcx is somewhat worse than
setting rtx but setting rtdx is close to setting rtx.

Fig. 13 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for (left)
anp and (right) cca solvers with various combinations of c, d and x settings assuming setting
rt is also used.

Restart and Tabu

Using the pilot runs, Fig. 6 Top-Right shows that the tabu technique has a very
clear impact on anp performance, but a marginal impact on cca performance. For
both anp and cca, the restart method has a very small effect. We used both r and
t in the final experiments.

The restart method may have considerably less effect within the 1-hour time-
out of the pilot experiments. This is because the restart method is invoked when
a plateau of a given length (e.g. 10,000) is encountered. So to check the long term
effect of the restart method, we perform further final runs with and without the
restart method and use ANOVA plus HSD tests. Fig. 14 left shows that anp-rte and
anp-te have similar performances. Settings anp-rt and anp-t have similar perfor-
mances as well. In the same figure at the right, we observe the similar performances
for cca settings, e.g. cca-rt vs cca-t and cca-rte vs cca-te. We also see the effect of
the tabu technique in the long run of the cca settings. Performances of cca-rt and
cca-r are close and that of cca-rte and cca-re are also close.

Performance of ptype Gates

Fig. 8, 9, and 10 show the performance of ptype gates. Fig. 13 and 14 even clearly
show the difference xtype and etype gates can make. Table 4 shows that p32, p16,
log, bmc, ssa, hc, and app problem instances have large numbers of etype gates.
The same table also shows that ssa, p32, p16, bmc, and hc problem instances have
(often large numbers of) xtype gates.

1. For etype gates, we have found that when a number of variables are equivalent
to each other, the baseline setting of both solvers spend significant numbers
of iterations to get the same value for each of the variables in the equivalence



Logic Gates in Local Search for Structured Satisfiability 47

Fig. 14 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for (left)
anp and (right) cca solvers with various combinations of r and t and e settings

group. Given such an equivalence group, the number of variables having the
same value true or false goes up and down over iterations, while it should
be either 0 or the number of variables in the group. We then have created a
simple problem instance having a chain of equivalent variables and found a
similar behaviour. Detection of etype gates and then performing simplification
alleviates this issue.

2. For xtype gates, we have found that when a variable is in the clausal pattern
of a number of xtype gates, the baseline setting of both the solvers spend sig-
nificant numbers of iterations to get a value that could be consistent with all
other variables. For example, in p16 problem instances, we have found that
such variables are flipped significantly more times than other variables. Detec-
tion of xtype gates and functionally computing the output variables and then
propagating these values through the chains of such gates alleviates this issue.

The above findings help us explain why ptype gates led to the enormous perfor-
mance difference.

Performance of atype Gates

Section 5.6 and Table 5 with Pearson’s correlation coefficients and Fig. 6 Bottom-
Right in the number of problem instances solved show that ctype and dtype gates do
not mutually help when both of them are used together. Moreover, not using atype
gates even performs better in the number of problem instances solved than using
them. Fig. 9 and Table 10 show similar results. With option e, adding options c or
d worsens the performance while with option x, adding options c or d somewhat
improves. However, option c or d along with option e produces better results than
along with option x.

To understand why atype gates do not help much compared to xtype gates,
we have found that local symmetries at the gate level plays a significant role. In
an atype gate with n inputs, only 1 out of 2n input combinations produces the
desired output (e.g. true for and and false for or) at any time. In an xtype gate
with n inputs, 2n−1 out of 2n input combinations produce the desired output. So
there is no symmetry in an atype gate for the desired output while an xtype gate
has an abundance of symmetry. Absence of symmetries or breaking symmetries
have negative effects on local search (Prestwich and Roli 2005). Local search wan-
ders around the search space and the more the solutions, the more the likelihood
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of finding a solution. When symmetries are absent or broken, the effects could be
extremely strong, slowing down local search performance by several orders of mag-
nitude. One great example is Golomb Rulers (Prestwich 2002; Polash et al. 2017)
that have only a handful number of solutions in the enormous search space and
local search struggles hard. Because of lack of symmetries, in atype gates, changing
the output from the undesired one to the desired one could often need changing
more than one input and essentially more than one involving variable. However,
in our approach, we consider the impact variables such that changing just one
of them could change the output of a gate. Clearly, we do not have any impact
variables for an atype gate when its output will change to the desired one if more
than one variable needs flipping. Designing moves involving multi-variable flips
might address this issue, but the computation of potential multi-variable moves
will incur further overhead while even the single-variable moves already pose a
trade-off. Further investigation in this aspect is out of scope of this paper.

Overall Performance

The gtype settings solve hc, app, bmc, and p32 problem instances which are not
solved by o, l, or rt settings of the solvers. There are 39 problem instances (12 hc,
9 app, 13 bmc, and 5 p32) of these types and these are very hard instances for the
AdaptNovelty+ and CCAnr solvers. The gtype settings of both solvers could solve
most of them.

5.11 Additional Experiments

We compare our purely local search solvers with the winner of the SAT Compe-
tition 2020 kissat (Biere et al. 2020), which is a CDCL based solver. We run two
sets of experiments for this comparison: one set on the satlib and sc14 problem
instances and the other set on the sc20 problem instances.

Comparison on satlib and sc14 Problem Instances

Fig. 15 shows the performance of kissat (Biere et al. 2020), on our 69 satlib and
sc14 problem instances. Fig. 15 also shows the selected best settings of anp and
cca solvers. These experiments are run with 5000 seconds timeout.

Note that out of 69 problem instances, kissat solves 63 problem instances while
anp-rte solves 59 problem instances. In particular, kissat cannot solve 4 out of 5 p32
instances of satlib, while some anp and cca settings solve them within a fraction of a
second. Moreover, kissat solves 6 out of 21 sc14 instances taking more than 1 minute
and 2 remains unsolved. Overall, kissat takes more than 1 second to solve 19 out
of 69 of these problem instances, more than 1 minute to solve 7 problem instances,
and 6 problem instances remain unsolved with 5000 seconds timout. These show
that our satlib and sc14 problem instances still pose significant challenges to the
state-of-the-art SAT solvers such as kissat. Nevertheless, this comparison is mainly
to show how our gate constraint based local search solvers compare with the state-
of-the-art SAT solvers, and not to claim better performances.
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Fig. 15 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) for kissat
solver and for selected best settings of anp and cca solvers.

Comparison on sc20 Problem Instances

We run kissat, anp, and cca solvers on the problem instances from the main track of
SAT Competition 2020 (https://satcompetition.github.io/2020/downloads/sc2020-
main.uri). These experiments are based on running each solver setting on each
problem instance once as is done in SAT competitions (Cai et al. 2015). We have
used 32GB memory limit and 5000 seconds time limit for each run.

SAT Competition 2020 has 400 problem instances but for various reasons we
show the performances of the solvers on 107 problem instances. Below we describe
the filtering process used in selecting these 107 problem instances.

1. Unsatisfiable Problem Instances: Purely local search solvers are incom-
plete and hence cannot prove that a problem instance is unsatisfiable. So for
meaningful experiments with our anp and cca solvers, we have to use only
the satisfiable problem instances. The 400 problem instances mentioned above
include both satisfiable and unsatifiable problem instnaces. To identify the un-
satisfiable ones, we run kissat on all 400 problem instances since as a CDCL
based solver kissat can prove unsatisfiability. We have found that within the
resource (memory and time) limits, kissat has proved 126 problem instances to
be unsatisfiable. The remaining 374 problem instances could still have unsat-
isfiable ones. So we consider only the satisfiable problem instances solved by
kissat and those that could not be solved by kissat within the resource limits
but are solved by at least one of anp and cca solver settings.

2. Gate Count and Detection Time: We perform get detection on the re-
maining 374 instances with a timeout of 1 minute. From the problem instances
with the gate detection process completed within the timeout, we ignore the
problem instances having no gates detected. Since we are interested in using
gate constraints with local search solvers, problem instances with no gate are
not relevant. Nevertheless, this filtering gives us about 139 problem instances
that have some gates. The numbers of gates in these problem instances range
from 40 to 313686 and with an average of 21734.
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After the filtering process, from the 139 problem instances obtained, we have
found that 32 problem instances could not be solved by kissat or any of the anp
and cca solver settings. We divide the remaining 107 problem instances into two
groups sc20m and sc20f based on whether the problem instances have at least 100
(in other words, 100 or more) etype gates or fewer. This grouping allows us to see
the effect of etype gates on the solver performances as we have seen them to be
the key factor in our detailed experiments.

sc20m: There are 60 problem instances each with 100 or more etype gates.
sc20f: There are 47 problem instances each with fewer than 100 etype gates.

Table 12 Summarised performance of various anp and cca settings on sc20 problem instances
where kissat has solved in total 74 problem instances; the best settings are emboldened.

on 107 sc20 problem instances
solver o l rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx

anp 2 3 2 46 32 47 27 48 24 7 14 29
cca 12 9 0 40 25 40 15 48 25 8 21 23

on 60 sc20m problem instances having at least 100 etype gates
kissat solver rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx

37 anp 0 44 30 44 26 40 24 6 12 16
cca 0 40 25 40 15 40 25 4 11 19

on 47 sc20f problem instances having fewer than 100 etype gates
kissat solver rt rte rtxe rtde rtdxe rtce rtcxe rtx rtdx rtcx

37 anp 2 2 2 3 1 8 0 1 2 13
cca 0 0 0 0 0 8 0 4 10 4

Table 12 (top part) shows the summarised performance of various anp and cca
solver settings on 107 sc20 problem instances. Note that kissat has solved in total 74
problem instances. Among anp settings, rte, rtde, and rtce are the best performing
ones solving 46, 47 and 48 problem instances respectively. Among cca settings, rte,
rtde and rtce are the best performing solving 40, 40, and 48 settings respectively.
Table 12 (middle part) shows the summarised performance of the solvers on 60
sc20m problem instances while Table 12 (bottom part) shows on 47 sc20f problem
instances. For sc20m, rte, rtde, and rtce are the best settings for both anp and cca
solvers. For sc20f, rtce and rtcx are the best settings for anp while rtce and rtdx are
for cca. For both sc20m and sc20f, kissat has solved 37 instances. In the numbers
of problem instances solved, while anp and cca solvers have performed better than
kissat on sc20m problem instances, they are far worse than kissat on sc20f problem
instances. From Table 12 (top part), we see that rte performs better than rtxe,
which performs better than rtdxe and rtcxe. In the absence of option e, we see rtdx
and rtcx perform better than rtx.

Fig. 16 (top chart) shows kissat and the seletected best settings rte, rtce, and
rtde of both anp and cca solvers on sc20m problem instances. Clearly, anp and cca
solver settings are very significantly better than kissat (as per ANOVA plus HSD
tests). Since rte, rtce, rtde settings of anp and cca solvers outstanding performance
in the solutions times on sc20m problem instances, we compute Pearson’s correla-
tions coefficients among these settings and show the coefficients in Table 13. We
see very strong correlation between rtde and rtce with the coefficient 1.00 while
high correlation between rte and the other settings with the coefficients between
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Fig. 16 Numbers of problem instances solved (x-axis) vs time in seconds (y-axis) by kissat
and selected anp and cca solver settings on problem instances having at least 100 etype gates
(top chart) and fewer than 100 etype gates (bottom chart)

0.67 and 0.73. Also, there is no significant difference among these settings (as per
ANOVA test). Fig. 16 (bottom chart) shows kissat and the selected best settings
anp-rtce, anp-rtcx, cca-rtce, and rtdx of our solvers on sc20f problem instances.
Clearly, kissat shows the dominance by solving much more problems although for
the first 10-15 problem instances solved by any solver or setting, anp-rtce and
cca-rtce show dominance.

Table 13 Pearson’s correlation coefficients among rte, rtde, rtce settings of anp and cca solvers
on sc20m problem instances

anp
rte rtde

rtde 0.70
rtce 0.67 1.00

cca
rte rtde

rtde 0.73
rtce 0.68 1.00
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Overall, the conclusions from our detailed experiments qualitatively remain
the same in the additional experiments.

6 Conclusions

Structured satisfiability problems, in their conjunctive normal (CNF) forms, con-
tain logic gate patterns. Boolean circuits (BC) then can be obtained using the
detected logic gates and local search algorithms can be adapted to BCs. However,
it is not known which logic gates are useful to local search the most and why. In
this work, we empirically evaluate the effect of using various types of logic gate
constraints in local search algorithms. We also study the interactions among such
logic gates. To show all these, we adapt two state-of-the-art local search families
AdaptNovelty+ and CCANr to logic gate constraints. We describe how variable
dependencies that comprise logic gate constraints can be heuristically made cy-
cle free and then be represented by a directed acyclic graph. We then develop
an algorithm to statically propagate equivalence of variables through the directed
acyclic graph. We implement our satisfiability local search algorithms on top of a
constraint-based local search system that allows dynamic propagation of changes
from the input variables of the logic gates to their output variables. For exper-
iments, we use benchmark instances from SATLib, SAT2014, and SAT2020. We
empirically show that exploitation of xor, xnor, eq, and not gates is a key factor
behind the performance of local search algorithms using single variable flips when
adapted to logic gate constraints. Controlled experiments and investigations into
the variables selected for flipping further elucidates these findings.
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Järvisalo M, Niemelä I (2008) The effect of structural branching on the efficiency of clause
learning sat solving: An experimental study. Journal of Algorithms 63(1-3):90–113
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